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Abstract

Advanced model-based experiment design techniques are essential for rapid
development, refinement and statistical assessment of deterministic process models.
One objective of experiment design is to devise experiments yielding the most
informative data for use in the estimation of the model parameters. Current techniques
assume the multiple experiments are designed in a sequential manner. The concept of
model-based design of parallel experiments design is presented in this paper. A novel
approach, viable for sequential, parallel and sequential-parallel design is proposed and
evaluated through an illustrative case study.
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1. Introduction

Model-based experiment design techniques allow selecting conditions for the next
experiment that are “best”, in the sense of having the maximum information content
about the underlying process. Typically, it is desired to establish the most appropriate
model structure and the best values of the parameters, so as to provide the best fit to
experimental data. Based on earlier work of Espie and Macchietto [1] and Zullo [2],
Asprey and Macchietto [3] proposed a general systematic procedure to support the
development and statistical verification of dynamic process models for both linear and
non-linear dynamic systems described by differential and algebraic equations (DAEs).
According to this approach and assuming that no model discrimination is required
beforehand, three consecutive steps are needed to determine model parameters:
1. the design of a new set of experiments, based on current knowledge (model
structure and parameters, and statistics from prior experiments);
2. the execution of the designed experiment and collection of new data;
3. the estimation of new model parameters and statistical assessment.
The sequential iteration of steps 1, 2 and 3 typically leads to a progressive reduction in
the uncertainty region of model parameters, thanks to the new information obtained
from the experimental data. The procedure has been successfully demonstrated in
several applications, such as crystallisation processes [4], mammalian cell cultures [5]
and biofuels production [6]. A similar procedure for optimum experimental design was
developed by Bauer et al. [7], who assessed it on an industrial reactive system. They
also adopted a sequential approach.
There are a number of research and industrial applications where it is possible to
envisage the simultaneous execution of several experiments in parallel rather than
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sequentially. Miniaturisation allows the definition of array of modules (e.g. micro-
reactors for chemical or biochemical reactions) in which several experimental
conditions can be simultaneously set up to carry out parallel experiments. Clear
advantages in terms of elapsed time saving are presently offset by the lack of a
systematic procedure for model-based design of parallel experiments.

In this work, the possibility of advancing the current techniques to tackle the design of
parallel experiments is discussed. Furthermore, a new approach based on a statistical
analysis of the variance-covariance matrix of the parameters to be estimated is
developed and assessed. It is shown that this can also be applied to develop hybrid
sequential-parallel experiment design strategies. Parallel and sequential-parallel
techniques are compared to a standard sequential approach and potential
advantages/disadvantages are highlighted. The applicability of the new experiment
design methods to dynamic systems and their performance are illustrated via an
illustrative case study.

2. The methodology
Let us consider a process described by the set of DAEs of the form:

I (x(0),5(0), y(),u(t),q.6) =0 , (1)

where x(f) and y(f) are vectors of the differential and algebraic variables, u(¢) and ¢ are
vectors of the time-varying and time-invariant control variables, and 8 is the set of Ny
unknown model parameters to be estimated. Here it is assumed for simplicity the all the
M differential variables x can be measured (the case where only a subset is measured
being a trivial extension).

Model-based experiment design for parameter precision aims at determining the optimal
vector @ of experimental conditions (initial conditions x°, control variables u and ¢ and
the times when measurements are sampled) required to maximise the expected
information content from the measured data generated by these experiments, i.e. to
minimise the confidence ellipsoid of the parameters to be estimated. This means that
some measure ¥ of the variance-covariance matrix V, of the parameters has to be
minimised. If we take into account a number N,,, of experiments, the matrix Vg is the
inverse of the Nyx Ny information matrix Hy [8]:

Vg(9,¢)=Hg‘(9,¢)=[fH’;k+(29)‘} =[fZZai,kQ,.kQ,k+(zg)‘ , Q)

where H*g‘k is the information matrix after the k-th experiment, oy is the ij-th element of
the inverse of the estimated variance-covariance matrix of the residuals X=cov(x; x;), Q;
is the i-state matrix of the sensitivity coefficients at each of the ng, sampling points:

Qi =|:aa%:| l=1,...,n5p m =1,...,N9 > (3)

and Xpis an approximate variance-covariance matrix of the parameters. Prior
information on the parameters can be ignored by dropping the dependency of equation
(2) on Xy [9]. A common choice for the measure  is the E-optimality criterion [10],
which aims at minimising the largest eigenvalue A; of matrix V, Note that the
definition of matrix V, and the E-optimality criterion are quite general and do not
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depend on whether the experiments are run sequentially or simultaneously. If a
sequential approach is considered, the information matrix is defined as:

Nurp’l

H,= > H,,+H,, (6,p)=K+H,, 6,9 , 4)
k=1

where K is a constant matrix defined by the previous (N,,,—1) experiments. In the above
information matrix, only the vector ¢ of the experimental conditions for the new
experiment, N,,, is available for optimisation.

On the other hand, N.,, new experiments can be designed simultaneously. In this case,
the information matrix becomes:

N,

oap

H, =3 H,,6.0) . 5)

Here, all vectors ¢, , one for each experiment & are optimized simultaneously, using, as
before, the largest eigenvalue A; of the overall matrix V, (E-optimality) as objective
function to be minimised. It is noted that, as the inversion of Hyis a nonlinear operation,
the optimum V, thus obtained will not be the same as the sum of the V, obtained by
optimizing each individual experiment N,,, times. In other words, the N, new optimal
experiments will normally be distinct. The main drawback of this approach is that a
much larger optimisation problem needs solving.

An alternative method is also proposed here. According to this novel approach each
experiment is designed a-priori to deliver a vector of experimental conditions producing
information which is totally different (orthogonal) from the other ones. In mathematical
terms, that means that the information matrix Hy is split into its singular values
identified by its Ny eigenvalues /; : the new optimisation criterion, called SV-optimality,
aims at maximising the information linked to the N,,, largest singular values of Vg
Thus, the overall optimisation problem is split into N,,, separate optimisation problems,
where the k-th measure ¥; is defined as:

V=4V, k=LoN, <N, A>AL>.>A . (6)

The obvious advantage of SV-optimality is that it is easier to solve N, small
optimisation problems rather than a single large one. The second potential advantage is
that we do not design the experiments to maximise the information content of the
overall set, but each experiment is designed to maximise a specific component of the
available information. Note that this approach can also be applied for sequential
experiment design: the first experiment will aim at minimising the largest eigenvalue of
the variance-covariance matrix, the second will minimise the second largest eigenvalue,
and so on.

3. Case study

The methodology discussed in the previous section is applied to a biomass fermentation
process that appeared in several papers on the subject [1,3,8]. Assuming Monod-type
kinetics for biomass growth and substrate consumption, the system is described by the
following set of DAEs:

dx, dx, VX,

6x
—=(y—u1—¢94)x] > _:__+”1(”z_x2) , yE——=

- > (7)
dr dr 8, 6, +x,
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where x, is the biomass concentration (g/L), x; is the substrate concentration (g/L), u; is
the dilution factor (h™), and u, is the substrate concentration in the feed (g/L). The
experimental condition that characterise a particular experiment are the initial biomass
concentration x,° (range 1-10 g/L), the dilution factor u; (range 0.05-0.20 h™"), and the
substrate concentration in the feed u, (range 5-35 g/L). The initial substrate
concentration x,’ is set to 0 g/L. Both x; and x, can be measured during the experiment.
The objective is to design a set of experiments to yield the best possible information for
the estimation of the four parameters . The total duration of a single experiment is set
equal to 40 h. It is assumed that each experimental run involves 5 sampling intervals. A
piecewise-constant profile over 5 switching intervals is assumed for both controls. A
total of 15 variables are optimised in each experiment. The elapsed time between any
two sampling points is allowed to be between 1 and 20 h and the duration of each
control interval between 2 and 20 h. “Experimental data” are obtained by simulation
with 6 =[0.310, 0.180, 0.550, 0.050]" as the “true” parameters and by adding
multivariate normally distributed noise with a mean of zero; two possible MXxM
covariance matrix X of the simulated measurements error will be considered:

5 _[001 0 5 _[00s 0 ®
2710 005 5710 008

The initial guess for the parameters’ values is set to 8=[0.313, 0.202, 0.551, 0.050]".

3.1. Proposed experiment designs and results

Different experiment design approaches are compared assuming that we wish to design
the same number of new experiments. Initially, the following designs are implemented:
1. D1: sequential experiment design (E-optimality), 2 experiments

2. D2: parallel experiment design (E-optimality), 2 experiments

3. D3: sequential experiment design (SV-optimality), 2 experiments

4. D4: parallel experiment design (SV-optimality), 2 experiments

Each design is applied first assuming “clean” measurements (Case A: matrix X4) and
then noisy ones (case B: matrix Xp).

Results, in terms of the a-posteriori statistics obtained after the optimally designed
experiments were executed and model parameters re-estimated with the new data, are
summarised in Table 1. In all cases, the model responses with the estimated parameters
give a statistically good fit of the data derived from the designed experiments, as
expressed by the ;{2 value, which is in all cases less than ;fref based on a Student
distribution. It should be noted that the #* values for the different cases cannot be
compared to each other, since each represents the capability of the model to fit the data
from the experiments of that specific design. Here, the different designs could be
assessed by comparing the estimated parameter values to the true ones. However, in
“real life”, this test is not possible since the true values are of course not known.
Therefore, the best approach is to evaluate the accuracy of the design by observing for
each parameter either the interval of estimation confidence or the #-value statistics. For a
set of experiments to produce a reliable parameter estimation the #-value must be greater
than a computed reference value derived from a Student distribution (z-test).

3.1.1. Case A — Clean measurements

All designs provide statistically sound results (all #-values are above the reference
threshold). Note, that from this point of view, parallel design is a sensible alternative to
save time since the experimental session requires half the time as either D1 or D3 (but,
of course, double equipment is needed). One drawback of design D2 is that, as
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previously stated, it requires the solution of a larger optimisation problem (30 variables)
and, therefore, it may be more upset by convergence issues and, more importantly, by a
larger number of local minima. This issue is overcome by design D4.

Table 1. Comparison of sequential and parallel approaches for model-based experiment design
(two experiments). Superscript - indicates z-values failing the #-test

Design Param. estimate Conf. interval (95%)  t-value (¢.=1.75) ;{2 (;fret: 26.30)

DI-A 6=10.305, 0.164, [£0.0110, +0.0518, [27.87,3.17, 21.46
0.541, 0.046]" +0.0243, £0.0101]" 22.29,4.52]"

D2-A 6=10.299, 0.145, [£0.0137, +£0.0582, [21.80, 2.50, 19.17
0.512, 0.042]" +0.0474, +0.0097]" 10.79, 4.32]"

D3-A 6=10.305, 0.163, [£0.0107, +0.0520, [28.43,3.14, 21.63
0.542, 0.046]" +0.0221, £0.0096]" 24.60, 4.82]"

D4-A 6=10.305, 0.269, [£0.0134, +0.1431, [22.80, 1.88, 15.35
0.521,0.041]" +0.0384, £0.0120]" 13.58,3.41]"

DI-B 6=10.300, 0.185, [£0.0390, +0.1202, [7.69, 1.54", 22.19
0.523, 0.038]" +0.1138, +0.0387]" 4.60, 0.98"1"

D2-B 6=10.320, 1.189, [£0.0443, +1.283, [7.22,0.93", 17.12
0.474, 0.032]" +0.0769, £0.0182]" 6.16,1.73°1"

D3-B 6=10.292,0.151, [£0.026, £0.1084, [11.20, 1.407, 20.48
0.513, 0.040]" +0.0564, £0.0188]" 9.10, 2.15]"

D4-B 6=10.300, 0.132, [£0.0278, +0.1122, [10.78, 1.17", 22.80
0.536, 0.044]" +0.0627, £0.0287]" 8.55,1.53"

The best parameter estimation in terms of confidence interval and z-values is obtained
by means of design methods D1 e D3, i.e. the two sequential ones. This is as expected,
since the second experiment is designed using the information content from the first
experiment. It is interesting to note that approach D3 performs slightly better than DI.
In particular, D3 produces a more confident estimation of parameter &, hinting that
some of the information content related to that parameter belong to a different direction
in the variance-covariance matrix. Although less precise, a similar behaviour can be
detected by comparing D2 and D4. D4 is less precise as far as the estimation of
parameters 6 and 6, is concerned. Nonetheless, a better estimation of & is obtained.

3.1.2. Case B — Noisy Measurements

These results are rather more interesting. First of all, no design is capable of providing a
full set of reliable parameters (D2 produces a particularly bad & estimation). More
experiments are needed. In this case SV-optimality is a better criterion. Both designs D3
and D4 are sensibly more performing. Design D3 is the only one providing a
statistically sound estimation of three parameters. However, what is surprising is that
D4 is overall a better design than D1. Exploiting the information related to A, is more
important than having the chance to design the second experiment by using the
information of the first experiment. Once again, it can be seen that SV-optimality leads
to a good estimation of parameter &, while E-optimality provide a better estimation of
parameter 6. This confirms the hypothesis that the direction identified by the second
eigenvalue contains some valuable information related to the third parameter.
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In view of the above results, it seems reasonable to design a set of 3 experiments aiming
first at extracting most of the information related to the first eigenvalue (indeed, the
most informative) and then at maximising the information related to the next two largest
eigenvalues. Two more design formulations are thus considered:
5. DS5: sequential experiment design (E-optimality), 3 experiments
6. DG6: sequential-parallel experiment design (E+SV-optimality), 1+(2 parallel)
experiments
Results are summarised in Table 2 (from the same initial conditions as before). Design
D5 shows that three sequential experiments are still insufficient to reliably estimate all
parameters: the estimate of parameter & is nearly acceptable, but that of 6, is not. On
the contrary, the results from design D6 are fully satisfactory. Not only is it possible to
obtain (in a shorter time period) a statistically precise estimation of the entire set 6
(particularly of &), but all parameters are better estimated than in D5. This seems to
confirm that valuable information is related to the smaller eigenvalues and that a proper
exploitation of such information can produce more effective experimental designs.

Table 2. Comparison of sequential and sequential-parallel approaches for model-based
experiment design (three experiments). Superscript ~ indicates z-values failing the #-test

Design ~ Param. estimation Conf. interval (95%)  t-value (4=1.70) 2 (frer= 38.85)

D5-B 6=1[0.305, 0.189, [£0.0297, +0.1118, [10.28, 1.69", 29.78
0.532, 0.0411" +0.0920, £0.0307]" 5.79, 1.34]"

D6-B 6=10.298, 0.158, [£0.0105, +£0.0364, [13.87,2.11, 27.54
0.528, 0.043]" +0.0237, £0.0080]" 10.85,2.611"

4. Final remarks

A novel procedure based on the decomposition of the variance-covariance matrix has
been suggested, which is applicable to the model-based design of both sequential and
parallel experiments. Preliminary results on an illustrative application demonstrate the
promising potential of this new approach. Future work will assess the applicability of
the methods to larger applications and the development of a systematic procedure to
help determine the best approach to use for model-based experiment design, whether
sequential, parallel, or mixed sequential-parallel.
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