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Abstract 
Advanced model-based experiment design techniques are essential for rapid 
development, refinement and statistical assessment of deterministic process models. 
One objective of experiment design is to devise experiments yielding the most 
informative data for use in the estimation of the model parameters. Current techniques 
assume the multiple experiments are designed in a sequential manner. The concept of 
model-based design of parallel experiments design is presented in this paper. A novel 
approach, viable for sequential, parallel and sequential-parallel design is proposed and 
evaluated through an illustrative case study. 
 
Keywords: model-based experiment design, dynamic modelling, parameter estimation, 
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1. Introduction 
Model-based experiment design techniques allow selecting conditions for the next 
experiment that are “best”, in the sense of having the maximum information content 
about the underlying process. Typically, it is desired to establish the most appropriate 
model structure and the best values of the parameters, so as to provide the best fit to 
experimental data. Based on earlier work of Espie and Macchietto [1] and Zullo [2], 
Asprey and Macchietto [3] proposed a general systematic procedure to support the 
development and statistical verification of dynamic process models for both linear and 
non-linear dynamic systems described by differential and algebraic equations (DAEs). 
According to this approach and assuming that no model discrimination is required 
beforehand, three consecutive steps are needed to determine model parameters: 
1. the design of a new set of experiments, based on current knowledge (model 

structure and parameters, and statistics from prior experiments); 
2. the execution of the designed experiment and collection of new data; 
3. the estimation of new model parameters and statistical assessment. 
The sequential iteration of steps 1, 2 and 3 typically leads to a progressive reduction in 
the uncertainty region of model parameters, thanks to the new information obtained 
from the experimental data. The procedure has been successfully demonstrated in 
several applications, such as crystallisation processes [4], mammalian cell cultures [5] 
and biofuels production [6]. A similar procedure for optimum experimental design was 
developed by Bauer et al. [7], who assessed it on an industrial reactive system. They 
also adopted a sequential approach. 
There are a number of research and industrial applications where it is possible to 
envisage the simultaneous execution of several experiments in parallel rather than 
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sequentially. Miniaturisation allows the definition of array of modules (e.g. micro-
reactors for chemical or biochemical reactions) in which several experimental 
conditions can be simultaneously set up to carry out parallel experiments. Clear 
advantages in terms of elapsed time saving are presently offset by the lack of a 
systematic procedure for model-based design of parallel experiments. 
In this work, the possibility of advancing the current techniques to tackle the design of 
parallel experiments is discussed. Furthermore, a new approach based on a statistical 
analysis of the variance-covariance matrix of the parameters to be estimated is 
developed and assessed. It is shown that this can also be applied to develop hybrid 
sequential-parallel experiment design strategies. Parallel and sequential-parallel 
techniques are compared to a standard sequential approach and potential 
advantages/disadvantages are highlighted. The applicability of the new experiment 
design methods to dynamic systems and their performance are illustrated via an 
illustrative case study.  

2. The methodology 
Let us consider a process described by the set of DAEs of the form: 

( )( ), ( ), ( ), ( ), , 0f x t x t y t u t q θ =  , (1) 

where x(t) and y(t) are vectors of the differential and algebraic variables, u(t) and q are 
vectors of the time-varying and time-invariant control variables, and θ is the set of Nθ 
unknown model parameters to be estimated. Here it is assumed for simplicity the all the 
M differential variables x can be measured (the case where only a subset is measured 
being a trivial extension).  
Model-based experiment design for parameter precision aims at determining the optimal 
vector ϕ of experimental conditions (initial conditions x0, control variables u and q and 
the times when measurements are sampled) required to maximise the expected 
information content from the measured data generated by these experiments, i.e. to 
minimise the confidence ellipsoid of the parameters to be estimated. This means that 
some measure ψ of the variance-covariance matrix Vθ of the parameters has to be 
minimised. If we take into account a number Nexp of experiments, the matrix Vθ is the 
inverse of the Nθ × Nθ  information matrix Hθ [8]: 
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where H*
θ |k is the information matrix after the k-th experiment, σij is the ij-th element of 

the inverse of the estimated variance-covariance matrix of the residuals Σ=cov(xi, xj), Qi  
is the i-state matrix of the sensitivity coefficients at each of the nsp sampling points: 
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and Σθ is an approximate variance-covariance matrix of the parameters. Prior 
information on the parameters can be ignored by dropping the dependency of equation 
(2) on Σθ [9]. A common choice for the measure ψ is the E-optimality criterion [10], 
which aims at minimising the largest eigenvalue λ1 of matrix Vθ. Note that the 
definition of matrix Vθ and the E-optimality criterion are quite general and do not 
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depend on whether the experiments are run sequentially or simultaneously. If a 
sequential approach is considered, the information matrix is defined as: 
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where K is a constant matrix defined by the previous (Nexp−1) experiments. In the above 
information matrix, only the vector ϕ of the experimental conditions for the new 
experiment, Nexp,  is available for optimisation. 
On the other hand, Nexp new experiments can be designed simultaneously. In this case, 
the information matrix becomes: 
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Here, all vectors ϕk , one for each experiment k are optimized simultaneously, using, as 
before, the largest eigenvalue λ1 of the overall matrix Vθ (E-optimality) as objective 
function to be minimised. It is noted that, as the inversion of Hθ is a nonlinear operation, 
the optimum Vθ thus obtained will not be the same as the sum of the Vθ obtained by 
optimizing each individual experiment Nexp times. In other words, the Nexp new optimal 
experiments will normally be distinct. The main drawback of this approach is that a 
much larger optimisation problem needs solving.  
An alternative method is also proposed here. According to this novel approach each 
experiment is designed a-priori to deliver a vector of experimental conditions producing 
information which is totally different (orthogonal) from the other ones. In mathematical 
terms, that means that the information matrix Hθ is split into its singular values 
identified by its Nθ eigenvalues λi : the new optimisation criterion, called SV-optimality,  
aims at maximising the information linked to the Nexp largest singular values of Vθ. 
Thus, the overall optimisation problem is split into Nexp separate optimisation problems, 
where the k-th measure ψk  is defined as: 

( ) 1,..., ...
expk k exp Nk N Nθ θψ λ λ λ λ1 2=           = ≤         > > >V   . (6) 

The obvious advantage of SV-optimality is that it is easier to solve Nexp small 
optimisation problems rather than a single large one. The second potential advantage is 
that we do not design the experiments to maximise the information content of the 
overall set, but each experiment is designed to maximise a specific component of the 
available information. Note that this approach can also be applied for sequential 
experiment design: the first experiment will aim at minimising the largest eigenvalue of 
the variance-covariance matrix, the second will minimise the second largest eigenvalue, 
and so on. 

3. Case study 
The methodology discussed in the previous section is applied to a biomass fermentation 
process that appeared in several papers on the subject [1,3,8]. Assuming Monod-type 
kinetics for biomass growth and substrate consumption, the system is described by the 
following set of DAEs: 
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where x1 is the biomass concentration (g/L), x2 is the substrate concentration (g/L), u1 is 
the dilution factor (h-1), and u2 is the substrate concentration in the feed (g/L). The 
experimental condition that characterise a particular experiment are the initial biomass 
concentration x1

0 (range 1-10 g/L), the dilution factor u1 (range 0.05-0.20 h-1), and the 
substrate concentration in the feed u2 (range 5-35 g/L). The initial substrate 
concentration x2

0 is set to 0 g/L. Both x1 and x2 can be measured during the experiment.  
The objective is to design a set of experiments to yield the best possible information for 
the estimation of the four parameters θi. The total duration of a single experiment is set 
equal to 40 h. It is assumed that each experimental run involves 5 sampling intervals. A 
piecewise-constant profile over 5 switching intervals is assumed for both controls. A 
total of 15 variables are optimised in each experiment. The elapsed time between any 
two sampling points is allowed to be between 1 and 20 h and the duration of each 
control interval between 2 and 20 h. “Experimental data” are obtained by simulation 
with θ =[0.310, 0.180, 0.550, 0.050]T as the “true” parameters and by adding 
multivariate normally distributed noise with a mean of zero; two possible M×M 
covariance matrix Σ of the simulated measurements error will be considered: 

0.01 0 0.05 0
0 0.05 0 0.08A B

⎡ ⎤ ⎡ ⎤
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⎣ ⎦ ⎣ ⎦

Σ Σ  . (8) 

The initial guess for the parameters’ values is set to θ =[0.313, 0.202, 0.551, 0.050]T. 
3.1. Proposed experiment designs and results 
Different experiment design approaches are compared assuming that we wish to design 
the same number of new experiments. Initially, the following designs are implemented: 
1. D1: sequential experiment design (E-optimality), 2 experiments 
2. D2: parallel experiment design (E-optimality), 2 experiments 
3. D3: sequential experiment design (SV-optimality), 2 experiments 
4. D4: parallel experiment design (SV-optimality), 2 experiments 
Each design is applied first assuming “clean” measurements (Case A: matrix ΣΑ) and 
then noisy ones (case B: matrix ΣΒ). 
Results, in terms of the a-posteriori statistics obtained after the optimally designed 
experiments were executed and model parameters re-estimated with the new data, are 
summarised in Table 1. In all cases, the model responses with the estimated parameters 
give a statistically good fit of the data derived from the designed experiments, as 
expressed by the χ2 value, which is in all cases less than χ2

ref based on a Student 
distribution. It should be noted that the χ2 values for the different cases cannot be 
compared to each other, since each represents the capability of the model to fit the data 
from the experiments of that specific design. Here, the different designs could be 
assessed by comparing the estimated parameter values to the true ones. However, in 
“real life”, this test is not possible since the true values are of course not known. 
Therefore, the best approach is to evaluate the accuracy of the design by observing for 
each parameter either the interval of estimation confidence or the t-value statistics. For a 
set of experiments to produce a reliable parameter estimation the t-value must be greater 
than a computed reference value derived from a Student distribution (t-test). 
3.1.1. Case A – Clean measurements 
All designs provide statistically sound results (all t-values are above the reference 
threshold). Note, that from this point of view, parallel design is a sensible alternative to 
save time since the experimental session requires half the time as either D1 or D3 (but, 
of course, double equipment is needed). One drawback of design D2 is that, as 
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previously stated, it requires the solution of a larger optimisation problem (30 variables) 
and, therefore, it may be more upset by convergence issues and, more importantly, by a 
larger number of local minima. This issue is overcome by design D4. 
 

Table 1. Comparison of sequential and parallel approaches for model-based experiment design 
(two experiments). Superscript * indicates t-values failing the t-test 

Design Param. estimate Conf. interval (95%) t-value (tref=1.75) χ2 (χ2
ref = 26.30) 

D1-A θ = [0.305, 0.164, 
0.541, 0.046]T 

[±0.0110, ±0.0518, 
±0.0243, ±0.0101]T 

[27.87, 3.17, 
22.29, 4.52]T 

21.46 

D2-A θ = [0.299, 0.145, 
0.512, 0.042]T 

[±0.0137, ±0.0582, 
±0.0474, ±0.0097]T 

[21.80, 2.50, 
10.79, 4.32]T 

19.17 

D3-A θ = [0.305, 0.163, 
0.542, 0.046]T 

[±0.0107, ±0.0520, 
±0.0221, ±0.0096]T 

[28.43, 3.14, 
24.60, 4.82]T 

21.63 

D4-A θ = [0.305, 0.269, 
0.521, 0.041]T 

[±0.0134, ±0.1431, 
±0.0384, ±0.0120]T 

[22.80, 1.88, 
13.58, 3.41]T 

15.35 

D1-B θ = [0.300, 0.185, 
0.523, 0.038]T 

[±0.0390, ±0.1202, 
±0.1138, ±0.0387]T 

[7.69, 1.54*,  
4.60, 0.98*]T 

22.19 

D2-B θ = [0.320, 1.189, 
0.474, 0.032]T 

[±0.0443, ±1.283, 
±0.0769, ±0.0182]T 

[7.22, 0.93*,   
6.16, 1.73*]T 

17.12 

D3-B θ = [0.292, 0.151, 
0.513, 0.040]T 

[±0.026, ±0.1084, 
±0.0564, ±0.0188]T 

[11.20, 1.40*, 
9.10, 2.15]T 

20.48 

D4-B θ = [0.300, 0.132, 
0.536, 0.044]T 

[±0.0278, ±0.1122, 
±0.0627, ±0.0287]T 

[10.78, 1.17*, 
8.55, 1.53*]T 

22.80 

 

The best parameter estimation in terms of confidence interval and t-values is obtained 
by means of design methods D1 e D3, i.e. the two sequential ones. This is as expected, 
since the second experiment is designed using the information content from the first 
experiment. It is interesting to note that approach D3 performs slightly better than D1. 
In particular, D3 produces a more confident estimation of parameter θ3, hinting that 
some of the information content related to that parameter belong to a different direction 
in the variance-covariance matrix. Although less precise, a similar behaviour can be 
detected by comparing D2 and D4. D4 is less precise as far as the estimation of 
parameters θ2 and θ4 is concerned. Nonetheless, a better estimation of θ3 is obtained.  
3.1.2. Case B – Noisy Measurements 
These results are rather more interesting. First of all, no design is capable of providing a 
full set of reliable parameters (D2 produces a particularly bad θ2 estimation). More 
experiments are needed. In this case SV-optimality is a better criterion. Both designs D3 
and D4 are sensibly more performing. Design D3 is the only one providing a 
statistically sound estimation of three parameters. However, what is surprising is that 
D4 is overall a better design than D1. Exploiting the information related to λ2 is more 
important than having the chance to design the second experiment by using the 
information of the first experiment. Once again, it can be seen that SV-optimality leads 
to a good estimation of parameter θ3, while E-optimality provide a better estimation of 
parameter θ2. This confirms the hypothesis that the direction identified by the second 
eigenvalue contains some valuable information related to the third parameter.   
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In view of the above results, it seems reasonable to design a set of 3 experiments aiming 
first at extracting most of the information related to the first eigenvalue (indeed, the 
most informative) and then at maximising the information related to the next two largest 
eigenvalues. Two more design formulations are thus considered: 
5. D5: sequential experiment design (E-optimality), 3 experiments 
6. D6: sequential-parallel experiment design (E+SV-optimality), 1+(2 parallel) 

experiments 
Results are summarised in Table 2 (from the same initial conditions as before). Design 
D5 shows that three sequential experiments are still insufficient to reliably estimate all 
parameters: the estimate of parameter θ2 is nearly acceptable, but that of θ4 is not. On 
the contrary, the results from design D6 are fully satisfactory. Not only is it possible to 
obtain (in a shorter time period) a statistically precise estimation of the entire set θ 
(particularly of θ3), but all parameters are better estimated than in D5. This seems to 
confirm that valuable information is related to the smaller eigenvalues and that a proper 
exploitation of such information can produce more effective experimental designs.  
 

Table 2. Comparison of sequential and sequential-parallel approaches for model-based 
experiment design (three experiments). Superscript * indicates t-values failing the t-test 

Design Param. estimation Conf. interval (95%) t-value (tref=1.70) χ2 (χ2
ref = 38.85) 

D5-B θ = [0.305, 0.189, 
0.532, 0.041]T 

[±0.0297, ±0.1118, 
±0.0920, ±0.0307]T 

[10.28, 1.69*, 
5.79, 1.34*]T 

29.78 

D6-B θ = [0.298, 0.158, 
0.528, 0.043]T 

[±0.0105, ±0.0364, 
±0.0237, ±0.0080]T 

[13.87, 2.11, 
10.85, 2.61]T 

27.54 

4. Final remarks 

A novel procedure based on the decomposition of the variance-covariance matrix has 
been suggested, which is applicable to the model-based design of both sequential and 
parallel experiments. Preliminary results on an illustrative application demonstrate the 
promising potential of this new approach. Future work will assess the applicability of 
the methods to larger applications and the  development of a systematic procedure to 
help determine the best approach to use for model-based experiment design, whether 
sequential, parallel, or mixed sequential-parallel. 
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