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Abstract

The scope of this work is the numerical calculation of the three-dimensional, time-
dependent velocity and concentration fields in cylindrical bubble columns with two-
phase gas-liquid and three-phase gas-liquid-solid flow. Therefore all phases are
described by an Eulerian approach. In particular the local interfacial area density and the
interphase transfer terms for mass and momentum are calculated based on a population
balance equation approach. The proposed approach enables an effective way to couple
population balance and computational fluid dynamics. For three-phase gas-liquid-solid
flow heavy particles with diameters in the range of 100 um are considered as catalyst
for a heterogeneous chemical reaction. The solids phase viscosity and pressure are
described based on the granular flow theory. The influence of particles on bubble
coalescence has been investigated to extend the model. From the calculation the three-
dimensional, time-dependent velocity and concentration fields are obtained.
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1. Introduction

The flow pattern in bubble columns is strongly influenced by the superficial gas
velocity. The homogeneous flow regime arises for low superficial gas velocities. In this
flow regime the integrated volume fraction of gas and the interfacial area density
increase almost linearly with the superficial gas velocity. However for technical
applications the heterogeneous flow regime is of more importance. In this flow regime
increasing coalescence of small bubbles lead to the formation of larger ones. These
large bubbles rise up much faster than the small ones thus a large amount of gas is
entrapped with them. The liquid flow pattern is characterized by large scale vortices,
which cause a large degree of backmixing. If mass transfer occurs between the gas and
the liquid phase backmixing influences the local concentration difference.

The dimension of bubble column reactors is widely based on empirical models for the
interfacial area, the phase velocities and backmixing (Deckwer [1], Nigam and
Schumpe [2]). The scale-up of these models is however limited to the experimental
dimensions since the reactor geometry has a strong influence on these parameters. In
contrast computational fluid dynamic methods enable a physical based prediction of the
flow field independent of the column dimension. For the description of bubbly flow the
Euler-multi-fluid model and the Euler-Lagrange approach are commonly used for the
calculation of large-scale flow fields. Other approaches such as direct numerical
simulations are restricted to detailed investigations of small numbers of bubbles.

The description of bubbly flow requires the knowledge of the interfacial area since
mass, momentum and energy transport are proportional to it. Therefore the population
balance equation is often used to calculate the interfacial area in dependence of the flow
field. In this work the multi-fluid model is coupled with a population balance equation
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approach according to Lehr et al. [3]. From the numerical solution of the population
balance equation a bi-modal bubble size distribution is obtained for the heterogeneous
flow regime, thus the gas phase can be divided into one fraction containing small
bubbles and a second fraction containing large bubbles. Using the self-similarity of the
calculated bubble size distributions a transport equation for the mean bubble diameter of
the small and large bubble fraction is derived. Both bubble fractions are coupled by
bubble coalescence and break-up, thus the volume fraction and the bubble size vary
throughout the flow field.

2. Modeling bubbly flow

In this section the model is described briefly. A detailed description can be found in [4]
to [6].

The calculation considers three Eulerian phases: the liquid phase, a gas phase
representing small bubbles and a gas phase representing large bubbles. For three phase
gas-liquid-solid flow an additional Eulerian phase arises for the solid phase.

For each phase the momentum transport equation
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is solved independent of the physical phase distribution. The inln the above equation all
phases share the same bulk pressure. The temporal and convective changes of
momentum on the left hand side of eq. (1) are balanced by several forces on the right
hand side. These forces are due to the bulk pressure gradient, shear, secondary fluxes
due to mass transfer, gravitational forces and interphase momentum transfer. The index
1 refers to the liquid phase, g; and g, refer to the small and the large bubble phase. For
the multi-fluid approach in particular modeling of the interphase momentum transfer is
important. The most important interphase force is due to interphase drag. The drag force
per unit volume is calculated to

- 3 0. . -
F;=Cp ZPl(ﬁ“i —1)|(U; —up) . )
1

based on the drag on a single sphere. In eq. (2) the drag coefficient is calculated
following Clift et al. [7]
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In eq. (5) the surface tension between the liquid and gas phase is 6. The Sauter-bubble
diameter d; is calculated from a transport equation for the mean bubble volume (Lehr et
al. [3]). In addition secondary fluxes of momentum occur due to mass flux between the
phases
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In eq.(5) the mass flux from phase i to phase j is labeled M ij- For the gas phase also

secondary fluxes due to coalescence and break-up of bubbles are considered.
The bulk mass balance equation for each phase is
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considering mass transfer from the gaseous to the liquid phase.
For multi-component flow with n species in addition to the bulk mass balance a species
mass balance equation
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is solved for (n-1) species. In eq. (8) one of these (n-1) species is named A. The species
represent the tracer substance or the transferring component. For the calculation of the
mass transfer rate the phase equilibrium at the gas-liquid interface is described
following Henry’s law. The mass transfer across a turbulent air-water surface is
investigated by Law and Khoo [8]. The experimental results indicate that the mass
transfer rate is correlated to the turbulence near the surface. However the authors
emphasize that for the implementation into a multi-fluid model the dependency between
the near surface turbulence and the bulk phase turbulence needs further investigations.
Therefore in this work the mass transfer coefficient is calculated in dependence of a
Sherwood-number. The mass transfer rate is calculated
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with the bulk molar concentration of the liquid phase c¢; and the bulk molar
concentration of the transferred component c, ;. The Sherwood-number is calculated
according to Brauer [12].
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In bubbly flow turbulent velocity fluctuations arise in the liquid phase. These
fluctuations are caused due to the shear flow but also the presence of the bubbles induce
turbulence. So far no general accepted model for the description of the turbulence
exists. In this work the turbulence in the liquid is described by the k-€ model with
additional source terms accounting for bubble induced turbulence following the
proposal of Lopez de Bertodano et al. [9].

For three-phase flow the solids phase is considered by an Eulerian-phase. The
momentum balance is written to
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In addition to the bulk pressure p the solids pressure p; arises. The solids pressure
describes the additional pressure due to interactions between the solids. Inter-particle
collisions are considered by the shear stress tensor t. For the calculation of the solids
pressure and the shear stress tensor the theory of granular flow is applied [10].
Collisions between solids and bubbles lead to momentum transfer between the gas and
solid phases. Based on the assumption of elastic collisions the momentum transfer term
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arises in the gas and solid phases. In eq. (11) the solids diameter is d,, the diameter of
the bubble is dg; and the relative velocity between solids and bubbles is u.

For the description of the local bubble size and the local interfacial area density a
simplified solution of the population balance equation is used. This model enables the
prediction of the volume fraction and bubble size for homogeneous and heterogeneous
bubbly flow. The resulting transport equations for the volume fraction and bubble size
are coupled with the balance equation for mass and momentum. Thus the flow field is
calculated in dependence of the local bubble size. In this work three-phase gas-liquid-
flow with small but heavy particles is considered. The solids represent the catalyst for a
heterogeneous chemical reaction.

The resulting set of equations is solved with the code CFX-5.7 using the method of
finite volumes. The flow domain is discretized using a block-structured grid with
hexahedral volumes. The edge length of the grid is 1 cm. Near the wall region a finer
grid is used. The flow field in bubble columns strongly varies with time and space. For
the temporal resolution time steps in the order of 0.01s to 0.05s are made. These time
steps provide the calculation of the large-scale velocity fluctuations in the flow field.
The convective terms are discretized with second order accuracy to reduce numerical
diffusion.
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3. Results

3.1. Experimental investigation of coalescence in three-phase flow

The transport equation for the mean bubble volume describes the local bubble diameter
in dependence of bubble-break-up and coalescence processes. For the case of small
particles in the order of 100um the collision between particles and bubbles does not
cause bubble break-up. However bubble coalescence can be affected by the presence of
solids. From two-phase gas-liquid flow it is known, that coalescence arises if the
relative velocity between the bubbles perpendicular to their surface is smaller than a
certain critical velocity. To determine the influence of solids loading on this critical
velocity binary collisions between bubbles are analyzed.

The liquid phase is de-ionized water, the gas phase is air and the solids are glass spheres
with a mean diameter of 78.11pm. In fig. 1 several sequences for different solids
loadings are depicted. From these images the relative velocity perpendicular to the
bubbles surfaces is determined. For high velocities the bubbles bounce, whereas for
small values coalescence occurs.
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Figure 1: Bubble coalescence due to binary collisions for different solids loadings

In fig. 2 the critical velocity is shown in dependence of the solids mass fraction. For
two-phase gas-liquid flow the critical velocity is 0.095 m/s. In case of ten per cent solids
mass fraction the critical velocity decreases to 0.06 m/s. Thus coalescence is hindered
due to the presence of the glass spheres.

3.2. Numerical calculated flow fields

From the numerical calculation the three-dimensional, time-dependent flow fields are
obtained. The liquid is water, the gas phase is air. For the solid phase glass spheres of
100pm diameter are assumed. The overall solids loading is 0.114. In fig.3 the
instantaneous flow fields of the solid and liquid phase are shown. The streamlines of the
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solid and the liquid phase are colored with the volume fraction and the axial velocity.
The solids motion is similar to the liquids, thus the solids are transported upwards in the
core region of the column and transported downwards near the column wall. In contrast
to the volume fraction of gas, high volume fractions of solids are calculated near the
wall, whereas low volume fractions are calculated in the core region.
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Figure 2: Influence of solids loading on the critical velocity
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Figure 3: Calculated instantaneous flow field in a three-phase bubble column
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The model is extended to consider a heterogenous chemical reaction for which the
solids represent the catalyst. As example the hydrogenation of anthraquinone has been
chosen. For that purpose the gas phase is assumed as hydrogen, the liquid is a solution,
which contains a certain amount of anthraquinone. The solid particles represent the
palladium catalyst. The model includes the absorption of the gas phase, the transport of
the absorbed hydrogen and the anthraquinone to the solids surface and the chemical
reaction at the surface. For the Euler model the chemical reaction is represented by a
quasi-homogeneous reaction rate. The reaction rate depends on the volume fraction of
solids, the solids density and the molar concentration of anthraquinone in the liquid
phase. The chemical reaction rate is calculated to

ty, =K 0P sCAnthrNs (12)

In eq. (12) the constant is k=0.0014 m?/(kg s) [11] and the solids efficiency is set to
Nns=1. The reaction rate is introduced in the mass balance equation thus an additional
source term arises for the liquid phase, whereas for the gaseous phases sink terms arise.
In fig. 4 the calculated volume fraction of the gas phase and the mass fractions of the
absorbed hydrogen, the anthraquinone and the resulting hydroanthraquinone are shown.
In accordance with the decrease of anthraquinone the mass fraction of
hydroanthraquinone increases along the column height.
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Figure 4: Calculated three-phase flow with chemical reaction

4. Conclusion

The three-dimensional, time-dependent flow fields for three-phase gas-liquid-solid flow
in cylindrical bubble columns are calculated using an Eulerian model. In particular the
balance equations for mass and momentum are coupled with a transport equation for the
mean bubble volume. For a heterogeneous chemical reaction the solid phase is
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considered as catalyst. The calculated flow fields are similar to those calculated for two-
phase gas-liquid flow.

Notation
a interfacial area density, m™'
Cp drag coefficient,

molar concentration, mol m™

column diameter, m

bubble diameter, m

force, kg m s

gravitational acceleration, m? s™!

Henry- coefficient, kg m™ s

superficial velocity, m s™'

turbulent kinetic energy per unit mass, m” s

mass flux density, kg m? s

j—j mass flux from phase i to j, kg m> 57!

molar flux density, mol m?s™
pressure, kg m™' s

time, s

velocity, m s™!

coordinate, m

o T g, Z'B_wu-mm mage

Greek letters

volume fraction,

mass transfer coefficient, m s!

turbulent kinetic energy dissipation rate, m” s
dynamic viscosity, kg m™ s™!

molecular weight, kg mol”!

density, kg m™

kinematic viscosity, m* s

mass fraction,

surface tension, kg s

3

QU< DODES O Q

Subscripts

1 liquid

g1 small bubble fraction
g2 large bubble fraction
s solid
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