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Abstract 
The scope of this work is the numerical calculation of the three-dimensional, time-
dependent velocity and concentration fields in cylindrical bubble columns with two-
phase gas-liquid and three-phase gas-liquid-solid flow. Therefore all phases are 
described by an Eulerian approach. In particular the local interfacial area density and the 
interphase transfer terms for mass and momentum are calculated based on a population 
balance equation approach. The proposed approach enables an effective way to couple 
population balance and computational fluid dynamics. For three-phase gas-liquid-solid 
flow heavy particles with diameters in the range of 100 µm are considered as catalyst 
for a heterogeneous chemical reaction. The solids phase viscosity and pressure are 
described based on the granular flow theory. The influence of particles on bubble 
coalescence has been investigated to extend the model. From the calculation the three-
dimensional, time-dependent velocity and concentration fields are obtained. 
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1. Introduction 
The flow pattern in bubble columns is strongly influenced by the superficial gas 
velocity. The homogeneous flow regime arises for low superficial gas velocities. In this 
flow regime the integrated volume fraction of gas and the interfacial area density 
increase almost linearly with the superficial gas velocity. However for technical 
applications the heterogeneous flow regime is of more importance. In this flow regime 
increasing coalescence of small bubbles lead to the formation of larger ones. These 
large bubbles rise up much faster than the small ones thus a large amount of gas is 
entrapped with them. The liquid flow pattern is characterized by large scale vortices, 
which cause a large degree of backmixing. If mass transfer occurs between the gas and 
the liquid phase backmixing influences the local concentration difference.  
The dimension of bubble column reactors is widely based on empirical models for the 
interfacial area, the phase velocities and backmixing (Deckwer [1], Nigam and 
Schumpe [2]). The scale-up of these models is however limited to the experimental 
dimensions since the reactor geometry has a strong influence on these parameters. In 
contrast computational fluid dynamic methods enable a physical based prediction of the 
flow field independent of the column dimension. For the description of bubbly flow the 
Euler-multi-fluid model and the Euler-Lagrange approach are commonly used for the 
calculation of large-scale flow fields. Other approaches such as direct numerical 
simulations are restricted to detailed investigations of small numbers of bubbles.  
 
The description of bubbly flow requires the knowledge of the interfacial area since 
mass, momentum and energy transport are proportional to it. Therefore the population 
balance equation is often used to calculate the interfacial area in dependence of the flow 
field. In this work the multi-fluid model is coupled with a population balance equation 
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approach according to Lehr et al. [3]. From the numerical solution of the population 
balance equation a bi-modal bubble size distribution is obtained for the heterogeneous 
flow regime, thus the gas phase can be divided into one fraction containing small 
bubbles and a second fraction containing large bubbles. Using the self-similarity of the 
calculated bubble size distributions a transport equation for the mean bubble diameter of 
the small and large bubble fraction is derived. Both bubble fractions are coupled by 
bubble coalescence and break-up, thus the volume fraction and the bubble size vary 
throughout the flow field.  
 

2. Modeling bubbly flow 
In this section the model is described briefly. A detailed description can be found in [4] 
to [6].  
 
The calculation considers three Eulerian phases: the liquid phase, a gas phase 
representing small bubbles and a gas phase representing large bubbles. For three phase 
gas-liquid-solid flow an additional Eulerian phase arises for the solid phase.  
For each phase the momentum transport equation  
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is solved independent of the physical phase distribution. The inIn the above equation all 
phases share the same bulk pressure. The temporal and convective changes of 
momentum on the left hand side of eq. (1) are balanced by several forces on the right 
hand side. These forces are due to the bulk pressure gradient, shear, secondary fluxes 
due to mass transfer, gravitational forces and interphase momentum transfer. The index 
l refers to the liquid phase, g1 and g2 refer to the small and the large bubble phase. For 
the multi-fluid approach in particular modeling of the interphase momentum transfer is 
important. The most important interphase force is due to interphase drag. The drag force 
per unit volume is calculated to 
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based on the drag on a single sphere. In eq. (2) the drag coefficient is calculated 
following Clift et al. [7] 
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in dependence of the Reynolds- and Eotvos-number 
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In eq. (5) the surface tension between the liquid and gas phase is σ. The Sauter-bubble 
diameter di is calculated from a transport equation for the mean bubble volume (Lehr et 
al. [3]). In addition secondary fluxes of momentum occur due to mass flux between the 
phases 
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In eq.(5) the mass flux from phase i to phase j is labeled jiM → . For the gas phase also 
secondary fluxes due to coalescence and break-up of bubbles are considered.  
The bulk mass balance equation for each phase is 
 

 
( ) ( )

⎪⎩

⎪
⎨
⎧

==+
=−

=ρα∇+
∂

ρα∂

→

→
2,1j;li,M

2,1i,M
u

t lj

li
iii

ii                                      (7) 

 
considering mass transfer from the gaseous to the liquid phase.  
For multi-component flow with n species in addition to the bulk mass balance a species 
mass balance equation 
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is solved for (n-1) species. In eq. (8) one of these (n-1) species is named A. The species 
represent the tracer substance or the transferring component. For the calculation of the 
mass transfer rate the phase equilibrium at the gas-liquid interface is described 
following Henry’s law. The mass transfer across a turbulent air-water surface is 
investigated by Law and Khoo [8]. The experimental results indicate that the mass 
transfer rate is correlated to the turbulence near the surface. However the authors 
emphasize that for the implementation into a multi-fluid model the dependency between 
the near surface turbulence and the bulk phase turbulence needs further investigations. 
Therefore in this work the mass transfer coefficient is calculated in dependence of a 
Sherwood-number. The mass transfer rate is calculated   
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with the bulk molar concentration of the liquid phase cl and the bulk molar 
concentration of the transferred component cA,l. The Sherwood-number is calculated 
according to Brauer [12]. 
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In bubbly flow turbulent velocity fluctuations arise in the liquid phase. These 
fluctuations are caused due to the shear flow but also the presence of the bubbles induce 
turbulence. So far no general accepted model for the description of the turbulence 
exists. In this work the turbulence in the liquid is described by the k-ε model with 
additional source terms accounting for bubble induced turbulence following the 
proposal of Lopez de Bertodano et al. [9].  
 
For three-phase flow the solids phase is considered by an Eulerian-phase. The 
momentum balance is written to 
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In addition to the bulk pressure p the solids pressure ps arises. The solids pressure 
describes the additional pressure due to interactions between the solids. Inter-particle 
collisions are considered by the shear stress tensor τ. For the calculation of the solids 
pressure and the shear stress tensor the theory of granular flow is applied [10].  
Collisions between solids and bubbles lead to momentum transfer between the gas and 
solid phases. Based on the assumption of elastic collisions the momentum transfer term  
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arises in the gas and solid phases. In eq. (11) the solids diameter is dp, the diameter of 
the bubble is dBi and the relative velocity between solids and bubbles is urel. 
 
For the description of the local bubble size and the local interfacial area density a 
simplified solution of the population balance equation is used. This model enables the 
prediction of the volume fraction and bubble size for homogeneous and heterogeneous 
bubbly flow. The resulting transport equations for the volume fraction and bubble size 
are coupled with the balance equation for mass and momentum. Thus the flow field is 
calculated in dependence of the local bubble size. In this work three-phase gas-liquid-
flow with small but heavy particles is considered. The solids represent the catalyst for a 
heterogeneous chemical reaction.  
The resulting set of equations is solved with the code CFX-5.7 using the method of 
finite volumes. The flow domain is discretized using a block-structured grid with 
hexahedral volumes. The edge length of the grid is 1 cm. Near the wall region a finer 
grid is used. The flow field in bubble columns strongly varies with time and space. For 
the temporal resolution time steps in the order of 0.01s to 0.05s are made. These time 
steps provide the calculation of the large-scale velocity fluctuations in the flow field. 
The convective terms are discretized with second order accuracy to reduce numerical 
diffusion.  
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3. Results 

3.1.  Experimental investigation of coalescence in  three-phase flow 
 
The transport equation for the mean bubble volume describes the local bubble diameter 
in dependence of bubble-break-up and coalescence processes. For the case of small 
particles in the order of 100µm the collision between particles and bubbles does not 
cause bubble break-up. However bubble coalescence can be affected by the presence of 
solids. From two-phase gas-liquid flow it is known, that coalescence arises if the 
relative velocity between the bubbles perpendicular to their surface is smaller than a 
certain critical velocity. To determine the influence of solids loading on this critical 
velocity binary collisions between bubbles are analyzed. 
The liquid phase is de-ionized water, the gas phase is air and the solids are glass spheres 
with a mean diameter of 78.11µm. In fig. 1 several sequences for different solids 
loadings are depicted. From these images the relative velocity perpendicular to the 
bubbles surfaces is determined. For high velocities the bubbles bounce, whereas for 
small values coalescence occurs. 
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Figure 1: Bubble coalescence due to binary collisions for different solids loadings 
 
In fig. 2 the critical velocity is shown in dependence of the solids mass fraction. For 
two-phase gas-liquid flow the critical velocity is 0.095 m/s. In case of ten per cent solids 
mass fraction the critical velocity decreases to 0.06 m/s. Thus coalescence is hindered 
due to the presence of the glass spheres. 
  
 
3.2. Numerical calculated  flow fields 
 
From the numerical calculation the three-dimensional, time-dependent flow fields are 
obtained. The liquid is water, the gas phase is air. For the solid phase glass spheres of 
100µm diameter are assumed. The overall solids loading is 0.114. In fig.3 the 
instantaneous flow fields of the solid and liquid phase are shown. The streamlines of the 
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solid and the liquid phase are colored with the volume fraction and the axial velocity. 
The solids motion is similar to the liquids, thus the solids are transported upwards in the 
core region of the column and transported downwards near the column wall. In contrast 
to the volume fraction of gas, high volume fractions of solids are calculated near the 
wall, whereas low volume fractions are calculated in the core region. 
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Figure 2: Influence of solids loading on the critical velocity 
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The model is extended to consider a heterogenous chemical reaction for which the 
solids represent the catalyst. As example the hydrogenation of anthraquinone has been 
chosen. For that purpose the gas phase is assumed as hydrogen, the liquid is a solution, 
which contains a certain amount of anthraquinone. The solid particles represent the 
palladium catalyst. The model includes the absorption of the gas phase, the transport of 
the absorbed hydrogen and the anthraquinone to the solids surface and the chemical 
reaction at the surface. For the Euler model the chemical reaction is represented by a 
quasi-homogeneous reaction rate. The reaction rate depends on the volume fraction of 
solids, the solids density and the molar concentration of anthraquinone in the liquid 
phase. The chemical reaction rate is calculated to 
 

sAnthrssrv ckr ηρα=                                                          (12) 
 

In eq. (12) the constant is kr=0.0014 m³/(kg s) [11] and the solids efficiency is set to 
ηs=1. The reaction rate is introduced in the mass balance equation thus an additional 
source term arises for the liquid phase, whereas for the gaseous phases sink terms arise. 
In fig. 4 the calculated volume fraction of the gas phase and the mass fractions of the 
absorbed hydrogen, the anthraquinone and the resulting hydroanthraquinone are shown. 
In accordance with the decrease of anthraquinone the mass fraction of 
hydroanthraquinone increases along the column height. 
 

 

4. Conclusion 
The three-dimensional, time-dependent flow fields for three-phase gas-liquid-solid flow 
in cylindrical bubble columns are calculated using an Eulerian model. In particular the 
balance equations for mass and momentum are coupled with a transport equation for the 
mean bubble volume. For a heterogeneous chemical reaction the solid phase is 
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considered as catalyst. The calculated flow fields are similar to those calculated for two-
phase gas-liquid flow.  

Notation 
a           interfacial area density, m-1 

CD  drag coefficient, 
c  molar concentration, mol m-3 

D  column diameter, m 
d  bubble diameter, m 
F  force, kg m s-2 
g  gravitational acceleration, m2 s-1 
H  Henry- coefficient, kg m-1 s-2 
j  superficial velocity, m s-1 
k  turbulent kinetic energy per unit mass, m2 s-2 
m  mass flux density, kg m-2 s-1 

jiM →     mass flux from phase i to j, kg m-3 s-1 

n             molar flux density, mol m-2 s-1 

p            pressure, kg m-1 s-2 

t  time, s 
u  velocity, m s-1 
x  coordinate, m     
 
Greek letters 
α volume fraction, 
β mass transfer coefficient, m s-1 
ε turbulent kinetic energy dissipation rate, m2 s-3 

η dynamic viscosity, kg m-1 s-1 

μ molecular weight, kg mol-1 

ρ density, kg m-3 

ν kinematic viscosity, m2 s-1 

ξ mass fraction, 
σ surface tension, kg s-2 

 
Subscripts 
l liquid 
g1 small bubble fraction 
g2 large bubble fraction 
s   solid 
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