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Abstract 
The main aim of the research is to implement the most advanced modeling and solution 
techniques in the automated process synthesizer MIPSYN. In particular, different 
modeling formulations are studied, rooted in disjunctive programming and convex hull 
representation. Alternative modeling is proposed for logical interconnection nodes and 
alternative outer approximation formulation. Initial research indicates that they could be 
efficient for solving large-combinatorial process network problems. 
 
Keywords: disjunctive programming, outer-approximations, MINLP, process synthesis, 
process synthesizer. 

1. Introduction 
Over the last couple of decades significant advances have been achieved in modeling 
and mathematical programming techniques (see e.g. Grossmann and Kravanja, 1997; 
Biegler and Grossmann, 2004). Recent developments in logic-based optimization (e.g. 
Grossmann and Biegler, 2004) are regarded as one of the most important achievements 
for effectively modeling and solving discrete-continuous synthesis problems. Although 
several general-purpose MINLP solvers (see www.gamsworld.org/minlp/solvers.html), 
including the logic-based solver LOGMIP (Vecchietti and Grossmann, 1997), have 
been developed, almost no automated synthesis environment, based on recent advanced 
techniques, and specializing in the synthesis of process flowsheets, has been developed 
so far. This paper reports on the experience gained in developing such a synthesis 
environment, and experiences gained when solving process network problems using up 
to several hundred discrete variables. Different formulations for logical interconnection 
nodes are applied and the following representations of outer approximations (OA) for 
the Outer Approximation/Equality Relaxation algorithm are compared: 
Big-M formulation:        ( ) ( )( ) )1(f yMxxxhxh l

x
l −≤−∇+    (1) 

Convex hull representation:  ( ) ( ) ( )( )yxhxxhxxh lll
x

l
x −∇≤∇ T   (2) 

An alternative formulation:  ( ) ( ) ( ) ( ) ( )( )yxhxxxhxxhxxh lll
x

l
x

l
x −−∇+∇≤∇ fTf   (3) 

Unlike convex hull representation, where the continuous variables x are usually forced 
into zero values when the corresponding disjunctives are false, in the new formulation 
the variables are forced into arbitrarily-forced values, xf.  
We report our experience in the selection of different xf and implementation of different 
formulations in the MINLP process synthesizer MIPSYN (Mixed-Integer Process 
SYNthesizer), the successor of PROSYN-MINLP (Kravanja and Grossmann, 1994). 

2.  An alternative convex-hull representation 
An efficient way of formulating discrete/continuous nonlinear problems in the area of 
process synthesis is to use Generalized disjunctive programming (GDP) (e.g. Türkay 
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and Grossmann, 1996). One of the most important features of GDP is that NLPs are 
solved only in the reduced space of global and currently selected alternatives. The other 
important feature is that, before the first outer approximation disjunctive program 
(OADP) is solved, outer approximations (linearizations) are derived for the whole 
problem. Both features significantly improve efficiency when solving (OADP) 
problems. The conventional (OADP) is given in the following form: 
 
 
 
 
 
 
                                                                                                                               (OADP) 
 
 
 
 
 
 
 
 
 
where qualitative logical and discrete decisions are represented by disjunctives (i ∈  Dk, 
k ∈  SD) and propositional logical constraints Ω(Y), whilst continuous quantitative 
decisions by (non)linear (in)equality constraints, which can be global (g(x) ≤ 0,       

( ) gg bxA ≤ ) or belong to local representations of alternatives ( ( ) 0≤xhik , ( ) ikik bxA ≤ ). 
Note that when an alternative is not selected, its linearizations do not apply, and x is set 
to zero. Türkay and Grossmann (1996) developed convex-hull OAs for variables x that 
take zero or nonzero values by disaggregating vector x into sub vectors of zero xZ and 
nonzero xNZ variables. Here, an alternative and more general OADP is proposed, where 
vector x can be set to any value xf when the alternative is not selected:  
 

 
 
 

                              (A-OADP)    
 
 
 
                                                      
 
 
 
 
 
 
Note that, auxiliary linear inequalities ( ( ) ( ) fTT xxhxxh l

ikx
l

ikx ∇≤∇ ) are applied in order 
to preserve the feasibility of OAs in MILP when an alternative is not selected and the 
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corresponding x is set to xf. By replacing Yik in (A-OADP) with binary variable yik, the 
following alternative convex-hull formulation for OAs can be derived at: 

( ) ( ) ( )( ) ( ) )1(fTTT
ik

l
ikxik

l
ik

ll
ikx

l
ikx yxxhyxhxxhxxh −∇+−∇≤∇                   (4) 

which can finally take the form: 

( ) ( ) ( ) ( )( ) ik
l

ik
ll

ikx
l

ikx
l

ikx yxhxxxhxxhxxh −−∇+∇≤∇ )( fTfTT    (5) 

In addition, in order to set x to xf when an alternative is not selected, the following 
constraints should be applied:  

ikyxxxx )( fUPf −+≤ (6)  ikyxxxx )( fLOf −+≥   (7) 

The key feature of the alternative OAs (eq. 5) is that they preserve feasibility, even in 
the presence of nonconvexities when alternatives are not selected and x is set to xf. This 
enables the use of variables with nonzero lower bounds, directly without additional 
logical constraints on the variables. Note that when xf is equal to the lower bounds      
(xf = xLO), inequality (7) becomes redundant and can be omitted from the formulation. 
Similarly, ineq. (6) can be omitted when xf is equal to xUP. This reduces the size of the 
MILP problem. An interesting feature of the proposed formulation of OAs (ineq. 5) is 
that nonzero xf can be chosen, such that linearization coefficients at y become zero, and 
the mixed-integer OAs become pure-continuous constraints that are much easier to 
solve, especially when the number of binary variables is very high. However, forcing x 
to a nonzero xf, transforms pure-continuous linear constraints ( ) ik

ik bxA ≤  into mixed-
integer constraints ( ) ikik

ik byxxA ≤− LO . It is then obvious that the selection of xf
 and, 

especially the selection of the most suitable OA and modeling representation, may not 
be a straightforward task and may significantly influence the efficiency of the search. 
The earliest experience indicates that the best efficiency is achieved when xf

 is set to 
xLO. A procedure for a systematic selection of the most suitable xf

 is under way. Until 
recently only big-M formulation of OAs and big-M representation of logical 
interconnection nodes (single-choice mixers and splitters) were used in MIPSYN to 
solve MINLP synthesis problems. Now, OAs and logical interconnected nodes are also 
represented by the conventional convex-hull and the alternative convex-hull 
formulations.    

3. Examples 
Three synthesis problems of different sizes and complexities are solved using all three 
OAs and modeling representations, in order to test and compare their efficiencies. The 
first numerical example is a network synthesis example with a simple model but very 
large-scale combinatorics with 400 binary variables. The second example is the 
synthesis of heat exchanger network (HEN) comprising different types of exchangers. 
The model exhibits moderate complexity and high combinatorics (249 binary variables). 
The last, alil chloride example, is the synthesis of a reactor/separator network in to an 
overall heat integrated process scheme, with a complex model and smaller-size 
combinatorics (32 binary variables). 
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3.1. Network synthesis problem 

Fig. 1 shows a superstructure comprising a sequence of exclusive-or alternatives. This 
model consists of a linear objective function, nonlinear design equations, formulation 
for single-choice splitters and mixers and exclusive-or logical constraints (detailed 
formulations will be given in the extended paper). The objective is to minimize total 
cost at the fixed demand of the final outflow. The problem was solved by using all three 
OA and modeling representations. Solution statistics until the 3rd major MINLP iteration 
is reported in Table 1. 

                
 Figure 1: Superstructure of the network synthesis problem. 

 
Table 1: Solution statistics of the network synthesis problem. 
 

 Best 
NLP 

Integrality 
gap, % 

No. of eq./ 
No.of var. 

No.of 
nodes 

CPU for 
3 it., sec. 

Nodes/CPU 
for 3 it. 

BigM n/a n/a 3802/1801 n/a n/a n/a 
Convex-hull 183.870 0.868 3402/1801 319 15.071 21.2 

ACH (xf = xLO) 183.870 0.868 2202/1801 293 4.274 68.6 
ACH (xf = xUP) 183.870 0.868 3402/1801 2264 46.209 49.0 
ACH (xf = x1) 183.870 0.868 3402/1801 341 24.142 14.1 

 
As can be seen in Table 1, it was impossible with big-M formulation to solve the 
problem in a reasonable time, whilst both convex-hull representations enable the 
solving of this high combinatorial problem very quickly. Also it can be seen that for the 
alternative convex-hull formulation (ACH) the selection of xf is very important and that 
the best efficiency of the search is achieved when xf = xLO. Note that with the same 
integrality gap and somewhat smaller number of constraints, the alternative formulation 
with xf = xLO could solve the problem in only a quarter of the CPU time needed to solve 
the problem using the conventional convex-hull formulation.  
 
3.2. HEN synthesis problem  

Each match in a stage-wise superstructure is comprised of a double pipe, a plate and 
frame, a shell and tube exchanger, and a by-pass when the match is rejected. The model 
is described in detail by Soršak and Kravanja (2002).  
Consideration of different types of exchangers enables the simultaneous selection of 
exchanger types; however, it significantly increases the number of binary variables. In 
this example of 4 hot and 5 cold process streams and 4 stages, the problem originally 
had 320 binary variables. By prescreening alternatives the number was reduced to 249. 
Table 2 shows statistics for three different representations. With respect to integrality 
gap, CPU time and the number of nodes, both convex-hull representations outperform 
the big-M one whilst the efficiency of the alternative convex-hull formulation is slightly 
better than the conventional formulation one. Also, with big-M, a slightly inferior 
solution was obtained than with the convex-hull representations. 

z11 x11

x21 z21 

x1 

z12

z22

x2 

z1i z1N 

z2i z2N 

x12 x1i x1N 

x22 x2i x2N

x3 xi+1 5

M. Ropotar and Z. Kravanja236



  
Table 2: Solution statistics for the HEN synthesis problem. 
 

 Best 
NLP 

Integrality 
gap, % 

No. of eq./ 
No.of var. 

No.of 
nodes 

CPU for 
8 it., sec. 

Nodes/CPU 
for 8 it. 

BigM 821.00 31.321 8414/5595 18950 86.050 220.2 
Convex-hull 818.69 7.465 6814/5595 4817 29.779 161.8 

ACH (xf = xLO) 818.69 7.465 5534/5595 4065 28.207 144.0 
 
3.3. Alil chloride example 
 
Details of the alil chloride problem are given by Iršič-Bedenik et al. (2004). The 
reactor/separator superstructure comprises a series of basic reactor substructure 
elements with side streams and intermediate separators at different locations. In each 
element a recycle reactor (a recycle stream around a PFR) and a CSTR are embedded in 
parallel arrangement so as to enable a different feeding, recycling and bypassing. In 
addition, each PFR consists of a train of several alternative elements. The corresponding 
DAE system is modeled by the orthogonal collocation on finite elements. Simultaneous 
heat integration was performed by a multi-utility configuration model (Duran and 
Grossmann, 1986). The overall model is highly nonlinear and nonconvex. 32 binary 
variables were assigned to discrete decisions. The objective is to maximize the net 
present value at a fixed production for alil chloride. The solution statistics of all three 
OA and modeling representations is given in Table 3. 
 
Table 3: Solution statistics of alil chloride problem. 
 
 Best 

NLP 
k$/a 

Integrality 
gap, % 

No. of eq./ 
No.of var. 

No.of 
nodes 

CPU for 
7 it., sec. 

Nodes/CPU 
for 7 it. 

BigM OAs 83.709 0.348 2046/10426 568 66.027 8.6 
Convex-hull 83.679 0 4408/10426 53 10.567 5.0 

ACH (xf = xLO) 86.245 0 3903/10426 9 5.866 1.5 
 
When logical constraints (x ≤ xUPy) are imposed on all continuous variables presented 
as alternatives, integrality gaps of both convex-hull approaches are decreased practically 
to zero which significantly facilitates the efficiencies of the first couple of MILPs. 
However, in the tighter MILP representations, the effects of nonconvexities become 
more severe, causing a significant increase in the number of nodes in the subsequent 
MILPs. It is interesting to note that, due to the presence of nonconvexities, even with 
the zero integrality gaps the efficiencies of the convex-hull representations do not 
improve. In order to decrease the troublesome effect of nonconvexities a special convex 
test (Kravanja and Grossmann, 1994) was applied and violating OAs were temporarily 
dropped out of the master MILPs. Statistics of solutions for both convex-hull 
representations are now significantly improved (Table 3), especially in the case of 
alternative convex-hull representation, where the best solution was found and the least 
computational effort was needed to obtain it. 
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4. Conclusion 
The main aim of this research is oriented towards the development of an advanced and 
robust synthesizer shell, capable of solving large-scale applications in different 
engineering domains. The performances of different OA and modeling representations 
are summarized in Table 4. Both convex-hull representations usually outperform the 
big-M one. The earliest high performance solutions with alternative representation, 
indicates that the alternative convex-hull representation could be more efficient in 
solving high combinatorial problems than the conventional one and has the smallest 
problem size. On the other side it exhibits the strongest sensitivity to the effects of 
nonconvexities and the model formulation is probably the most complicated. It should 
be noted that so far the research has been focused only to the OA algorithm. The 
application of the alternative convex-hull formulation with other MINLP techniques is 
under way. 
 
Table 4: Performance of different OA and modeling representations. 
 
 Big-M Convex-hull Alternative xf= xLO 

Easiness of modeling The most easy Moderate The most complicated 

Problem size From the smallest 
to the largest The largest Moderate 

Effect of 
nonconvexities The smallest Moderate The strongest 

Nodes/sec of CPU time The largest Moderate The smallest or moderate 
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