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Abstract

In this paper, we outline the foundations of a general global optimisation strategy
for the solution of multilevel hierarchical and general decentralised multilevel prob-
lems based on our recent developments in multiparametric programming theory. The
core idea is to recast each optimisation subproblem in the multilevel hierarchy as a
multiparametric programming problem and then transform the multilevel problem into
a single-level optimisation problem. For decentralised systems, where more than one
optimisation problem is present at each level of the hierarchy, Nash equilibrium is con-
sidered. A three person dynamic optimisation problem is presented to illustrate the
mathematical developments.

1. Introduction

It is widely recognised that the successful design of large and complex systems involves
some type of decomposition of the original problem into smaller and intercommunicating
subsystems, typically arranged in a multilevel hierarchy. Such multilevel problems arise
commonly in process systems engineering [9,12,13], with bilevel programming problems
being the simplest and most studied [8,14]. Bilevel programming problems involve an
optimisation hierarchy of two levels, of the following form:

min
x,y

F (x, y)

s.t. G(x, y) ≤ 0
x ∈ X

y ∈ argmin{f(x, y) : g(x, y) ≤ 0, y ∈ Y }

(1)

where X ⊆ R
nx, Y ⊆ R

ny and both are compact convex sets; F and f are real
functions: R

(nx+ny) → R; G and g are vectorial real functions, G : R(nx+ny) → R
nu

and g : R(nx+ny) → R
nl; nx, ny ∈ N and nu, nl ∈ N∪ {0}. We also define the rational
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reaction set as follows:

M(x) = {y ∈ Y : y ∈ argmin{f(x, y) : y ∈ C(x)}}; (2)

where, C(x) = {y ∈ Y : g(x, y) ≤ 0};

Multilevel and decentralised optimisation problems, which typically arise in many en-
gineering [4,9,12,13] and financial applications [2,10], involve a hierarchy of such optimi-
sation levels, as in (1); where each optimisation level (or subproblem) controls a subset
of the overall optimisation variables. When more than one subproblem is present at
the same hierarchical optimisation level the problem is called a decentralised multilevel
problem. Nash equilibrium is often a preferred strategy to coordinate such decentralised
systems [13].

Despite their significance, general solution strategies for solving such complex prob-
lems are limited, especially due to the multi-layer nature, non-linearities and non-
convexities occur [14]. In addition, the potential presence of logical decisions (which
requires the inclusion of binary variables) increases further the complexity of the prob-
lem. Therefore, it is widely accepted that a global optimisation approach is needed for
the solution of such multilevel optimisation problems [8].

Recently, Pistikopoulos and co-workers [1,5,6,11] have proposed novel solution algo-
rithms, based on parametric programming theory [7], which open the possibility to
address general classes of multilevel programming problems. The core idea of this ap-
proach is to recast each optimisation subproblem as a multiparametric programming
problem, and hence obtain an analytical solution for the rational reaction set for each
of the subproblems. These analytical expressions can then be used to compute, through
direct comparison the Nash equilibrium between subproblems in the same optimisation
level, for decentralised problems.

2. Methodology

The proposed approach is illustrated by considering a multiple person dynamic linear-
quadratic optimisation problem [10], which involves the coordination of a number of
controllers within a complex system.

Consider the dynamic system represented in Figure 1, where u, v1 and v2 are input
variables, and x, y1 and y2 output variables:

u, v1, v2 x, y1, y2

System

Figure 1. Schematic representation of the dynamic system

The discrete dynamic behaviour of this system is described by the following linear
state transition model:

xt+1 = xt + ut − 2v1
t + v2

t ,

y1
t+1 = y1

t + 2v1
t , t = 0, 1, 2

y2
t+1 = y2

t + 2v2
t ,

(3)
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with constrains on the input and state variables as follows:

−30 ≤ v1
0 , v1

1 , v1
2 , v2

0 , v2
1 , v2

2 ≤ 30,
−20 ≤ u0, u1, u2 ≤ 20,
−10 ≤ x0, y

1
0 , y2

0 ≤ 10.

(4)

In Process and Systems Engineering, the performance of the system is in most of the
cases optimised regarding just one objective function (e.g. optimal control). But, it is
also common to have conflicting goals during in the management of a dynamic process.
Since the aim is to optimise the overall performance of the system, suitable cost-functions
should be considered. For example, we consider a three-controller system [10]:

J1 = min
u0,u1,u2

4x3 + 3y1
3 + 2y2

3 +
2∑

t=0

{
(ut)

2 +
(
v1

t

)2 −
(
v2

t

)2
+ 2utxt + x2

t

}
, (5)

J2 = min
v2
0 ,v2

1 ,v2
2

2x3 + 3y2
3 +

2∑

t=0

{
2 · utv

2
t +

(
v1

t + 1
)2

+
(
v2

t + 1
)2

}
, (6)

J3 = min
v1
0 ,v1

1 ,v1
2

x3 + 2y1
3 − 10y2

3 +
2∑

t=0

{
−15ut +

(
v1

t − 1
)2 − 2v1

t v2
t +

(
v2

t

)2
}

. (7)

Where J1, J2 and J3 correspond to Controllers 1,2 and 3, respectively.
Figure 2 further displays two possible configurations for the control structure of the

considered system.P

Controller 1

Controller 2

Controller 3

Controller 1

Controller 2 Controller 3
Nash Equilibrium

(a) Three-level controller structure (b) Multifollower controller structure

Figure 2. Three-controller multilevel problem

The objective then is to derive suitable optimal strategies for the two controller struc-
tures. Case (a) of Figure (2) corresponds to a three-level optimisation problem, whereas
case (b) refers to a bilevel multifollower optimisation problem.

In the following subsections, we briefly describe the developed optimisation strategy
for the global solution [6] of these two classes of optimisation problems.
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2.1. Three-level programming problem
The steps of the proposed parametric global optimisation strategy for the three-

level programming problem follow directly from the strategy adopted to the bilevel
programming problem [6], and can be summarised as follows:

Step 1. Recast the lower optimisation problem, J3, as a multiparametric programming
problem, with the control variables belonging to the other two levels being the
parameters (x0, y

1
0 , y2

0 , ut, v
2
t ). Solve the resulting problem using a multiparametric

optimisation algorithm [5];

Step 2. Include the rational reaction set, v1
t = f(x0, y

1
0 , y2

0 , ut, v
2
t ), into the optimisa-

tion problem corresponding to Controller 2, J2;

Step 3. Recast the optimisation problem J2 as a multiparametric programming prob-
lem, with the control variables belonging to the upper level being the parameters
(x0, y

1
0 , y2

0 , ut), and solve it using a multiparametric optimisation algorithm;

Step 4. Include the rational reaction set from the two levels below,

v1
t = f(x0, y

1
0 , y2

0 , ut, v
2
t (ut)),

and

v2
t = f(x0, y

1
0 , y2

0 , ut),

into the optimisation problem corresponding to the leader controller, J1;

Step 5. Recast the multilevel optimisation problem in a single-level multiparametric
programming problem, having as parameters the state-space (x0, y

1
0 , y2

0), and solve
it using a multiparametric optimisation algorithm.

If overlapping regions were created at Step 5, the comparison method described in
[1] is employed. The result for this problem is listed in Table 1.

Table 1
Solution to the three-level optimisation problem
Critical Region 1 Critical Region 2
u0 = 6.84615 − 0.76928x0 u0 = −0.333333 − 1.8519x0

u1 = −20 u1 = −1.33333 + 2.8148x0

u2 = 15.2308 + 0.15388x0 u2 = −2 − 2.4444x0

−10 ≤ x0 ≤ −6.63161 −6.63161 ≤ x0 ≤ 7.36377
Critical Region 3 Critical Region 4
u0 = −1.53333 − 1.6889x0 u0 = −9 − 0.72732x0

u1 = 8.26667 + 1.5111x0 u1 = 20
u2 = −20 u2 = −20
7.36377 ≤ x0 ≤ 7.76466 7.76466 ≤ x0 ≤ 10

v
1
0 = v

2
0 = −2 − 0.5u0; v

1
1 = v

2
1 = −2 − 0.5u1; v

1
2 = v

2
2 = −2 − 0.5u2
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2.2. Bilevel multifollower programming problem
The solution steps for the bilevel multifollower optimisation problem are as follows:

Step 1. Recast optimisation subproblems corresponding to Controller 2 and Controller
3 as multiparametric programming problems, with parameters being the set of
variables out of their control, (x0, y

1
0 , y2

0 , ut, v
2
t ) and (x0, y

1
0 , y2

0 , ut, v
1
t ), respectively.

Then solve each one using a multiparametric optimisation algorithm;

Step 2. Compute the Nash equilibrium point (see Appendix I), through direct com-
parison of the two explicit analytical rational reaction sets,

{
v1

t = f1(x0, y
1
0 , y2

0 , ut, v
2
t )

v2
t = f2(x0, y

1
0 , y2

0 , ut, v
1
t ) ; (8)

Step 3. Incorporate both expressions into Controller 1, J1, and formulate a multi-
parametric optimisation with the state-space (x0, y

1
0 , y2

0) being the parameter.

The unique solution for this problem, in the analysed state space (−10 ≤ x0, y
1
0 , y2

0 ≤
10), is shown in Table 2.

Table 2
Solution to multifollower problem
Critical Region 1
u0 = 1 − x0

u1 = −8 + x0

u2 = 5 − x0

v
1
0 = v

2
0 = −6 + x0

v
1
1 = v

2
1 = 3 − x0

v
1
2 = v

2
2 = −10 + x0

−10 ≤ x0 ≤ 10

The complexity of this solution procedure clearly depends on the complexity of the
underlying parametric programming algorithms, as studied in our previous work [5].

3. Concluding Remarks

A novel global optimisation based strategy has been described for the solution of the
hierarchical multilevel and decentralised multilevel systems problems to global optimal-
ity. Based on recent developments in parametric programming theory and algorithms
[5,11], each subproblem of the optimisation hierarchy is interpreted as a multiparametric
programming problem with the variables from the other subproblems being the parame-
ters. The approach has been successfully tested using a three person dynamic problem
illustrative example, for the two different optimisation strategies.

While the illustrative example involves the same model for the three objective func-
tions (controllers), the proposed optimisation strategy is equally applicable for the case
when different models are involved (i.e. all control subproblems are treated in a decen-
tralised fashion).

The developed algorithm can address linear and quadratic (controller) objective func-
tions, and a linear model for the dynamic system. Extensions towards general nonlinear
models are currently under development.
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5. Appendix I

In this section, the computation of the Nash equilibrium point, using the analytical
expressions for the rational reaction sets, is briefly described. Being ut (Controller 1),
v2

t (Controller 2) and v1
t (Controller 3) the optimisation variables, the Nash equilibrium

for the lower level (u, v2
t ∗, v1

t ∗), Figure 2(b), is reached when [3]:

J2(u, v2
t ∗, v1

t ∗) ≤ J2(u, v2
t , v1

t ∗) ∀v2
t ∈ V 2

t

J3(u, v2
t ∗, v1

t ∗) ≤ J3(u, v2
t ∗, v1

t ) ∀v2
t ∈ V 2

t

(9)

As mentioned before, this equilibrium is easily computed since the expressions for the
rational reaction sets are explicitly obtained. Thus, this equilibrium point is equivalent
to the solution of the following system:
{

v1
t = f1(ut, v

2
t )

v2
t = f2(ut, v

1
t ) . (10)
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