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Abstract

A numerical framework is introduced for solving the population balance equation based
on accurately conserving (from theoretical point of view) an unlimited number of
moments associated with the particle size distribution. The key idea in this work is
based on the concept of primary and secondary particles, where the former is
responsible for the distribution reconstruction while the latter one is responsible for
different particle interactions such as breakage and coalescence. The numerical method
is found to assemble all the advantages and disadvantages of the sectional and moment
methods and hence the name: SQMOM. The method is illustrated here by considering
pure breakage in a well-stirred vessel; however, it is already extended and tested for
particle coalescence (agglomeration) and growth.
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1. Introduction

Population balance equation (PBE) forms nowadays the cornerstone for modeling
dispersed-phase systems arising in many engineering applications such as aerosols
dynamics, crystallization, precipitation, liquid-liquid, gas-liquid and combustion
processes. The resulting model equations of these processes range from integro-
differential to integro-partial differential equations with no general analytical solutions.
Accordingly, there exist in the literature many numerical methods as attempts to solve
certain type of the PBEs. These methods ranges from simple finite differences (FDS) or
sectional methods using linear grids (in terms of particle diameters) to Galerkin and
orthogonal collocations methods on finite elements. An exhaustive review of the
available numerical methods is presented by Attarakih et al. (2004a). The quadrature
method of moments (QMOM) as first introduced by McGraw (1997) to solve the PBE
with pure growth is found very efficient from accuracy and computational cost point of
view. Unlike the sectional (finite difference) methods, the QMOM has a drawback of
destroying the shape of the distribution and retain information about it only through
information stored in its moments. A recent comparison between the QMOM and the
finite difference schemes could be found in Attarakih et al. (2006). On the other hand,
one limitation of the finite difference schemes is their inability to predict accurately
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integral quantities (low-order moments as a especial case) associated with populations
of sharp shapes (Ramakrishna, 2000).

So, the objective of this work is whether it is possible to have a finite difference scheme
that retains the advantages of the QMOM without destroying the shape of the
distribution? The answer to this question is yes, where it is found in this work that all
the attempts made previously to increase the accuracy of the finite difference schemes
such as the fixed and moving pivot techniques (Ramkrishna, 2000) or the conservative
descretization approach of the present authors (Attarakih et al., 2004b) are all merely
limited answers to the above question. In this work the fundamental framework to
combine the FDS and the QMOM is introduced and thoroughly tested using the
available analytical solutions when it is possible. It is found that the new framework as
it is called the Sectional Quadrature Method Of Moments (SQMOM) is very accurate in
solving the PBEs and furnish a Gauss-like quadrature to evaluate any integral quantity
associated with the population density.

2. The Population Balance Equation

The population balance equation for a well-stirred continuous vessel of residence time,
7, could be written as:
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where f{d,?) is the average number of droplets per unit volume of the vessel at time ¢.
The first term on the left hand side denotes the rate of accumulation of droplets of size
d. The term on the right hand side is the net rate of particles as a result of entry and exit
events, breakage and coalescence. The source term, is rather complex and for simplicity,
only the breakage part is presented (for the complete details see Ramkrishna, 2000).
I" and /3 are the breakage frequency and the daughter particle distribution respectively.

3. The Sectional Quadrature Method Of Moments (SQMOM)

In the finite difference or sectional methods the particle size (here is denoted by the
particle diameter, d) is discretized into finite number of sections, M,. The population in
each section is considered to behave like a single particle, and hence it is concentrated at
a representative size usually at the middle of the section. In the present framework of
descretization, this single particle will be called the primary particle and it will be
responsible for the reconstruction of the shape of the distribution. In this way, the
greater the number of primary particles (M), the more accurate is the reconstruction of
the distribution. Unfortunately, large number of primary particles is required to estimate
integral quantities of the distribution accurately and hence increasing extensively the
computational loads when the population balance equation is coupled for example to a
CFD calculations (Marchisio and Fox, 2005). The interaction between primary particles
in different sections, due to breakage event for example, results in a new primary
particle with no representative size due to the discrete approximation of the distribution.
Because of the newly-birthed particle could not conserve any of its low order moments
but one (if it is located at the middle of the section), the rest of the low-order moments
are predicted with low accuracy and hence the associated integral quantities.
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To overcome this fundamental problem of the sectional methods, secondary particles
are generated in each section with positions (abscissas) d;”,i =12,.M.,j=12,..N,
(see Fig.(1) upper panel), where the number of these secondary particles dictates the

desired number of low-order moments to be conserved. The population density in each
section is partitioned between these particles according to the variation of the population

density in this section by assigning weights (wj”,i:1,2..Ms,j:1,2..Nq) to each
particle. These secondary particles are exactly equivalent to the number of quadrature
points in Gauss-like quadratures or the QMOM. Accordingly, each secondary particle
could conserve or reproduce two low-order moments and in general 2N, moments,
where N, is the number of secondary particles.

Secondary particle
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Fig.(1): The concept of primary and secondary particles.

In this framework, the particle mechanisms such as breakage and coalescence occur
through interactions between the secondary particles. It is obvious from Fig.(1) above
(the upper panel) that N, XM particles are contributing in the breakage and

coalescence events. The distribution could be reconstructed from the secondary particles
by averaging the total weights of the secondary particles with respect to the section
width and locating it at the mean size of the secondary particles as shown in Fig.(1) (the
lower panel). In pure mathematical sense, the above presentation is equivalent to
applying the QMOM to each section of  arbitrary width:
ld._,,,d.12], i=1,2,..M resulting in a set of sectional moments that could be written

as:

i+1/2
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By applying this set of moment transformations to Eqgs.(1) and after some algebraic
manipulations one could get:

<i> <i>,feed _ , <i> ) ) ) M, ) ) )
dlu;it (t) — . /ur _Br<t> [I“<I>.W<I>]T +mz:;cr<z,m> |:F<z>.w<z>:|T (3)




212 MM. Attarakih et al.

where:
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Note that each secondary particle in the ith section is characterized by its location
(abscissa), df” , and weight, wj."> . These characterization variables are only function of

time and could be calculated by inverting the ith moment problem assuming equal

number of secondary particles in each section as follows:
N,

ﬂr<1> _ Z(d;i>)rw7i> (4)
j=1

The above 2N, equations are solved uniquely for the N, abscissas and N, weights

using the standard product-difference algorithm as outlined by McGraw (1997). For the

special cases of one and two secondary particles an analytical solution could be found.

The solution when one secondary particle is used is trivial; however, for two secondary

particles (N, =2) the algebraic manipulations are rather involved (but straight forward)

and the result is presented below:
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where: ¥, y, o are functions of the first four moments and d<” = = / y5>

The system given by Eqs(3), (5) and (6) is a differential algebraic equation system
(DAE) that could be reduced to only a differential system by substituting Eqs.(5) and
(6) into (3). Note that it is clear by this combination that the solution of the system (3)
guarantees the conservation (reproduction) of 2N, low order moments (4, o, .y, 1 )-

Since the number of secondary particles, N, , is unlimited from theoretical point of

view, it follows that the discretized PBE given by the system (3) is guaranteed to
reproduce an unlimited number of low-order moments (internally consistent with
respect to 2N, moments). This makes the present framework of discretization generally

consistent and accurate for solving general PBEs without placing any assumption on the
shape and type of the distribution or breakage functions. Accordingly, all the attempts in
the literature that are concerned with conserving certain and hence limited number of
moments appear to be special cases of the present descretization method by varying the
number of primary and secondary particles. For example, when the number of the
primary particles equals one the standard QMOM is recovered, while when the number
of secondary particles equals one, the standard moving pivot technique is recovered by
conserving the total number and volume of the particles in each section (the zero and
third moments are conserved).



Solution of the Population Balance Equation Using the SOMOM 213

4. Numerical Results and Discussion

Due to the space limitation, only one example is presented here for the case of particle
(droplet) breakage in a well-mixed continuous vessel where the analytical solution for
Eq.(1) is available (Attarakih et al., 2004b) using the following set of functions:

frel = 3de, T=d°, B=6d*/d”, f(d,00=0, d, =0.001, d  =2and
7=100s . The sectional moments are evolved in time using the trapezoidal rule with
fixed step size of 0.1 second. First, Fig.(2a) compares the convergence of the SQMOM
at fixed number of secondary particles by varying the number of primary particles from
2 to 4. It is clear how the first two moments ( £, & 4, ) are over predicted using only two

primary and secondary particles. The inaccuracy is attributed to the sharpness of the
distribution as it is evolved in time (see Fig. 3a). By doubling the number of primary
particles or equivalently the number of sections, the width of each section is decreased
resulting in an accurate integration over the sharp distribution as expected where this
fact is true for all Gauss-like quadrature methods. On the other hand, by increasing the
number of secondary particles from 2 to 3 as seen in Fig.(2b), the same result is almost
obtained, which is expected since the accuracy of the quadrature methods is increased
by increasing the number of the quadrature points (secondary particles).

In Fig.(3a), the average number concentration as predicted using the SQMOM is
compared to the analytical solution at different periods of time. It is clear that using 35
primary particles is enough to follow the shape of the number concentration function
very accurately. However, since the predicted shape of the distribution is not used in the
prediction of any integral property, small number of primary particles is found enough
to get an idea about the shape of the distribution. Consequently, the location and
weights (Eqs.(5) & (6)) of the secondary particles is used to evaluate any integral over
the unknown distribution with the desired accu racy.

To get more insight on the convergence properties of the SQMOM, the systematic error

(d30“"" —d30™™ ) based on the mean particle diameter (d30= g/ 1,) is studied as

function of the number of primary and secondary particles. It is evident that the order of
convergence is increased by increasing both the primary and secondary particles due to
the increasing accuracy of evaluating the unclosed integrals in the PBE. The increasing
accuracy by increasing the number of secondary particles is reported by many
researchers (McGraw, 1997 and Marchisio, 2005).
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Fig.(2): Convergence of the first four moments using the SQMOM: a- By varying the number of
primary particles. b- By varying the number of secondary particles.
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The present framework is already extended to particle coalescence and growth where
the results are found very accurate and the computational load is dependent on the
accuracy and details needed by the user.
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Fig.(3): a- Comparison between the analytical solution and that predicted by the
SQMOM. b — Convergence of the SQMOM in terms of the systematic error in d30.

5. Conclusions

The present framework for solving the PBE based on the concept of the primary and
secondary particles is found general where all the previous attempts in literature to
overcome the problem of internal consistency are merely especial cases of the present
framework. In this way, the primary particles are responsible for the distribution
reconstruction, while the secondary ones are responsible for breakage, coalescence ..
etc. events and carry a lot of information about the distribution. The SQMOM is found
extremely accurate and converges very fast by increasing either the number of primary
or secondary particles; however, at the expense of the computational load. This
computational load is up to the user and the degree of details required about the
distribution. Accordingly, the flexibility of the method by its reduction to the standard
QMOM when the number of primary particles equals one makes it very attractive from
computational point of view. For example, if if M, = 1 and N, = 2, only four ODEs are
to be solved; however, if M, =5 and N, = 2, then twenty ODE:s are to be solved.
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