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Abstract 
A numerical framework is introduced for solving the population balance equation based 
on accurately conserving (from theoretical point of view) an unlimited number of 
moments associated with the particle size distribution. The key idea in this work is 
based on the concept of primary and secondary particles, where the former is 
responsible for the distribution reconstruction while the latter one is responsible for 
different particle interactions such as breakage and coalescence. The numerical method 
is found to assemble all the advantages and disadvantages of the sectional and moment 
methods and hence the name: SQMOM. The method is illustrated here by considering 
pure breakage in a well-stirred vessel; however, it is already extended and tested for 
particle coalescence (agglomeration) and growth. 
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1. Introduction 
Population balance equation (PBE) forms nowadays the cornerstone for modeling 
dispersed-phase systems arising in many engineering applications such as aerosols 
dynamics, crystallization, precipitation, liquid-liquid, gas-liquid and combustion 
processes. The resulting model equations of these processes range from integro-
differential to integro-partial differential equations with no general analytical solutions. 
Accordingly, there exist in the literature many numerical methods as attempts to solve 
certain type of the PBEs. These methods ranges from simple finite differences (FDS) or 
sectional methods using linear grids (in terms of particle diameters) to Galerkin and 
orthogonal collocations methods on finite elements. An exhaustive review of the 
available numerical methods is presented by Attarakih et al. (2004a).  The quadrature 
method of moments (QMOM) as first introduced by McGraw (1997) to solve the PBE 
with pure growth is found very efficient from accuracy and computational cost point of 
view. Unlike the sectional (finite difference) methods, the  QMOM has a drawback of 
destroying the shape of the distribution and retain information about it only through 
information stored in its moments. A recent comparison between the QMOM and the 
finite difference schemes could be found in Attarakih et al. (2006). On the other hand, 
one limitation of the finite difference schemes is their inability to predict accurately 
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integral quantities (low-order moments as a especial case) associated with populations 
of sharp shapes (Ramakrishna, 2000).  
So, the objective of this work is whether it is possible to have a finite difference scheme 
that retains the advantages of the QMOM without destroying the shape of the 
distribution? The answer to this question is yes, where it is found in this work that all 
the attempts made previously to increase the accuracy of the finite difference schemes 
such as the fixed and moving pivot techniques (Ramkrishna, 2000) or the conservative 
descretization approach of the present authors (Attarakih et al., 2004b) are all merely 
limited answers to the above question. In this work the fundamental framework to 
combine the FDS and the QMOM is introduced and thoroughly tested using the 
available analytical solutions when it is possible. It is found that the new framework as 
it is called the Sectional Quadrature Method Of Moments (SQMOM) is very accurate in 
solving the PBEs and furnish a Gauss-like quadrature to evaluate any integral quantity 
associated with the population density.       

2. The Population Balance Equation 
The population balance equation  for a well-stirred continuous vessel of residence time, 
τ , could be written as: 

max( , ) ( ) ( , ) ( ') ( | ') ( ') '
feed d

d

f d t f f d f d t d d d f d d
t

β
τ

∂ −= − Γ + Γ ∂
∂ ∫                                (1) 

 
where f(d,t) is the average number of droplets per unit volume of the vessel at time t.  
The first term on the left hand side denotes the rate of accumulation of droplets of size 
d. The term on the right hand side is the net rate of particles as a result of entry and exit 
events, breakage and coalescence. The source term, is rather complex and for simplicity, 
only the breakage part is presented (for the complete details see Ramkrishna, 2000). 
Γ and β are the breakage frequency and the daughter particle distribution respectively.   

3. The Sectional Quadrature Method Of Moments (SQMOM) 
In the finite difference or sectional methods the particle size (here is denoted by the 
particle diameter, d) is discretized into finite number of sections, Ms. The population in 
each section is considered to behave like a single particle, and hence it is concentrated at 
a representative size usually at the middle of the section. In the present framework of 
descretization, this single particle will be called the primary particle and it will be 
responsible for the reconstruction of the shape of the distribution. In this way, the 
greater the number of primary particles (Ms), the more accurate is the reconstruction of 
the distribution. Unfortunately, large number of primary particles is required to estimate 
integral quantities of the distribution accurately and hence increasing extensively the 
computational loads when the population balance equation is coupled for example to a 
CFD calculations (Marchisio and Fox, 2005).  The interaction between primary particles 
in different sections, due to breakage event for example, results in a new primary 
particle with no representative size due to the discrete approximation of the distribution. 
Because of the newly-birthed particle could not conserve any of its low order moments 
but one (if it is located at the middle of the section), the rest of the low-order moments 
are predicted with low accuracy and hence the associated integral quantities. 
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 To overcome this fundamental problem of the sectional methods, secondary particles 
are generated in each section with positions (abscissas) , 1, 2,... , 1, 2,...i

j s qd i M j N< > = =  
(see Fig.(1) upper panel), where the number of these secondary particles dictates the 
desired number of low-order moments to be conserved. The population density in each 
section is partitioned between these particles according to the variation of the population 
density in this section by assigning weights ( , 1, 2.. , 1, 2..i

j s qw i M j N< > = = ) to each 
particle. These secondary particles are exactly equivalent to the number of quadrature 
points in Gauss-like quadratures or the QMOM. Accordingly, each secondary particle 
could conserve or reproduce two low-order moments and in general 2Nq moments, 
where Nq is the number of secondary particles. 
 

                         
 
Fig.(1): The concept of primary and secondary particles.  
 
In this framework, the particle mechanisms such as breakage and coalescence occur 
through interactions between the secondary particles. It is obvious from Fig.(1) above 
(the upper panel) that q sN M× particles are contributing in the breakage and 
coalescence events. The distribution could be reconstructed from the secondary particles 
by averaging the total weights of the secondary particles with respect to the section 
width and locating it at the mean size of the secondary particles as shown in Fig.(1) (the 
lower panel). In pure mathematical sense, the above presentation is equivalent to 
applying the QMOM to each section of arbitrary width: 

1/ 2 1/ 2[ , ],  1, 2,...i i sd d i M− + = resulting in a set of sectional moments that could be written 
as: 
 

1/ 2
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By applying this set of moment transformations to Eqs.(1) and after some algebraic 
manipulations one could get: 
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where: 
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Note that each secondary particle in the ith section is characterized by its location 
(abscissa), i

jd < > , and weight, i
jw< > . These characterization variables are only function of 

time and could be calculated by inverting the ith moment problem assuming equal 
number of secondary particles in each section as follows: 

1
( )

qN
i i r i

r j j
j

d wμ< > < > < >

=

=∑           (4)                                                 

The above 2 qN equations are solved uniquely for the qN abscissas and qN weights 
using the standard product-difference algorithm as outlined by McGraw (1997). For the 
special cases of one and two secondary particles an analytical solution could be found. 
The solution when one secondary particle is used is trivial; however, for two secondary 
particles ( 2qN = ) the algebraic manipulations are rather involved (but straight forward) 
and the result is presented below: 
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where: ψ , χ , σ are functions of the first four moments  and 1 0/i i id μ μ< > < > < >=�   
The system given by Eqs(3), (5) and  (6) is a differential algebraic equation system 
(DAE) that could be reduced to only a differential system by substituting Eqs.(5) and 
(6) into (3). Note that it is clear by this combination that the solution of the system (3) 
guarantees the conservation (reproduction) of 2 qN low order moments ( , 0,1,...2 1qr r Nμ = − ). 

Since the number of secondary particles, qN , is unlimited from theoretical point of 
view, it follows that the discretized PBE given by the system (3) is guaranteed to 
reproduce an unlimited number of low-order moments (internally consistent with 
respect to 2 qN moments). This makes the present framework of discretization generally 
consistent and accurate for solving general PBEs without placing any assumption on the 
shape and type of the distribution or breakage functions. Accordingly, all the attempts in 
the literature that  are concerned with conserving certain and hence limited number of 
moments appear to be special cases of the present descretization method by varying the 
number of primary and secondary particles. For example, when the number of the 
primary particles equals one the standard QMOM is recovered, while when the number 
of secondary particles equals one, the standard moving pivot technique is recovered by 
conserving the total number and volume of the particles in each section (the zero and 
third moments are conserved).  
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4. Numerical Results and Discussion 
Due to the space limitation, only one example is presented here for the case of particle 
(droplet) breakage in a well-mixed continuous vessel where the analytical solution for 
Eq.(1) is available (Attarakih et al., 2004b) using the following set of functions: 

323feed df d e−= , 6dΓ = , 2 36 / 'd dβ = , ( ,0) 0f d = , min 0.001d = , max 2d = and 
100sτ = .  The sectional moments are evolved in time using the trapezoidal rule with 

fixed step size of 0.1 second. First, Fig.(2a) compares the convergence of the SQMOM 
at fixed number of secondary particles by varying the number of primary particles from 
2 to 4. It is clear how the first two moments ( 0 1&μ μ ) are over predicted using only two 
primary and secondary particles. The inaccuracy is attributed to the sharpness of the 
distribution as it is evolved in time (see Fig. 3a). By doubling the number of primary 
particles or equivalently the number of sections, the width of each section is decreased 
resulting in an accurate integration over the sharp distribution as expected where this 
fact is true for all Gauss-like quadrature methods. On the other hand, by increasing the 
number of secondary particles from 2 to 3 as seen in Fig.(2b), the same result is almost 
obtained, which is expected since the accuracy of the quadrature methods is increased 
by increasing the number of the quadrature points (secondary particles).  
In Fig.(3a), the average number concentration as predicted using the SQMOM is 
compared to the analytical solution at different periods of time. It is clear that using 35 
primary particles is enough to follow the shape of the number concentration function 
very accurately. However, since the predicted shape of the distribution is not used in the 
prediction of any integral property, small number of primary particles is found enough 
to get an idea about the shape of the distribution. Consequently, the location and 
weights (Eqs.(5) & (6)) of the secondary particles is used to evaluate any integral over 
the unknown distribution with the desired accu racy.    
To get more insight on the convergence properties of the SQMOM, the systematic error 
( . .30 30anal numd d− ) based on the mean particle diameter ( 3 030 /d μ μ= ) is studied as 
function of the number of primary and secondary particles. It is evident that the order of 
convergence is increased by increasing both the primary and secondary particles due to 
the increasing accuracy of evaluating the unclosed integrals in the PBE. The increasing 
accuracy by increasing the number of secondary particles is reported by many 
researchers (McGraw, 1997 and Marchisio, 2005).  
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Fig.(2): Convergence of the first four moments using the SQMOM: a- By varying the number of 
primary particles. b- By varying the number of secondary particles. 

( a ) ( b ) 
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The present framework is already extended to particle coalescence and growth where 
the results are found very accurate and the computational load is dependent on the 
accuracy and details needed by the user. 
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Fig.(3): a- Comparison between the analytical solution and that predicted by the 
SQMOM. b – Convergence of the SQMOM in terms of the systematic error in d30. 

5. Conclusions 
The present framework for solving the PBE based on the concept of the primary and 
secondary particles is found general where all the previous attempts in literature to 
overcome the problem of internal consistency are merely especial cases of the present 
framework. In this way, the primary particles are responsible for the distribution 
reconstruction, while the secondary ones are responsible for breakage, coalescence .. 
etc. events and carry a lot of information about the distribution. The SQMOM is found 
extremely accurate and converges very fast by increasing either the number of primary 
or secondary particles; however, at the expense of the computational load. This 
computational load is up to the user and the degree of details required about the 
distribution. Accordingly, the flexibility of the method by its reduction to the standard 
QMOM when the number of primary particles equals one makes it very attractive from 
computational point of view. For example, if if Ms = 1 and Nq = 2, only four ODEs are 
to be solved; however, if Ms = 5 and Nq = 2, then twenty ODEs are to be solved.  
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