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Abstract

Modern high-resolution measurement techniques offer the possibility to determine
unknown functional dependencies directly from the data. The underlying inverse
problems, however, are much more demanding than standard parameter estimation.
Still, systematic strategies for experimental design of such ill-posed problems are
missing. A new approach is proposed here that in particular achieves the sound
integration of the bias-variance trade-off critical to the solution of ill-posed problems.
The new design approach is based on the minimization of the expected total error (ETE)
between true and estimated function. The ETE design approach is exemplified for the
classical example of determination of reaction rates from measured data.
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1. Introduction

In model-based experimentation, the goal is often to extract an unknown functional
relationship from the data. Standard examples are e.g. reaction rates or phase equilibria
as function of the state variables. The usual approach is to reduce the problem
complexity: first, a model structure (or several candidates) is specified; then the
unknown parameters contained are determined from experiments [1].

However, it would often be desirable to avoid the separation of the problem in two parts
and to determine the unknown function directly. With the advent of high-resolution
measurement techniques, modern process information management systems and
advanced mathematical methods (e.g. data mining) this direct route is now becoming
increasingly feasible [2].

Still, the identification of unknown functions represents an infinitely dimensional
inverse problem. In addition, these problems are generally ill-posed, i.e. the solution is
not unique or does not depend continuously on the data [3]. The solution of ill-posed
problems for function estimation therefore poses much higher requirements on the data
than standard parameter estimation problems where a finite number of parameters are
determined in a known model structure.

Despite the increased complexity, the systematic generation of optimal experimental
conditions for ill-posed problems has received only little attention. Model-based optimal
design theory for parameter estimation, pioneered by Box & Lucas [4], is now well
established. The approaches available for ill-posed problems are generally direct
extensions of these classical design methods [5,6,7]. Since they are set in the maximum
likelihood framework they assume unbiased estimates. However, in the solution of ill-
posed problems, bias is systematically introduced to stabilize the problem. The trade-off
between variance and bias is then the key element [3]. A sound approach to optimal
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experimental design for ill-posed problems therefore has to incorporate this trade-off.
However, none of the approaches currently available includes the bias effect.

A new design criterion for ill-posed problems is therefore introduced in this work. The
criterion minimizes the statistically expected total error (ETE) between the true and the
estimated function. It thus incldues both error contributions: bias and variance. The new
criterion is derived next. Estimation of reaction rates from experimental data is then
considered as an example application. A discussion of the new approach concludes this

paper.

2. Design criterion for ill-posed problems

In order to limit the discussion to the essence of the method only linear problems are
considered. Nonlinear problems can be treated using proper linearization as in standard
design theory [4,5]. Linear ill-posed problems are often obtained from integral
equations [3]

g() = [K(t.5:d)/ (s)ds. (1)

where f{?) is the unknown function to be identified from the measured data g(t;). Data is
usually available only at discrete points # and corrupted by measurement errors
(assumed here to be Gaussian with zero mean and variance ¢°). The kernel function
K(t,s;d) is generally known from theory and contains also the design parameters d that
can be chosen by the experimenter. It is the goal of experimental design to find the
optimal settings for these parameters.

For the solution of the inverse problem, direct inversion of Eq. (1) would lead to
unstable solutions. Therefore, regularization methods have to be employed. The most
common approach is Tikhonov regularization where the estimate for the unknown
function f'is determined as [3]

A

f=arg mini%(g(ti) — [K(t,s:d) f (s)ds | + /1||Lf||iz . @)
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Here, the first term is the data error. The second term represents a penalty ensuring
smoothness. For the operator L, the identity or the second derivative are frequently
used. The regularization parameter A gives the relative weight to both contributions of
the objective.

The goal of a successful experiment should be that the estimate [ is as close as

possible to the true solution /. The expected value for the total error (ETE) between the
Tikhonov estimate and the true function can be computed as [8]

E(H - in ) =[r-«" (l)KfHZ + aztmce(K*‘ DK )

where K™'(A)=(K"K+AL'L) ' K.
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Assuming that an initial guess of the true solution and the measurement error is
available it is therefore proposed here to obtain the optimal experimental design from
minimizing the expected total error with respect to the design variables d. Thus, the
optimal design d* is determined from ETE criterion

2
)- “4)
L,

The first term of the ETE criterion in Eq. (3) reflects the bias introduced by the penalty
term whereas the second term summarizes the variance in the estimate. Thus, the bias-
variance trade-off is properly incorporated into the new ETE design criterion.

The regularization parameter A integrates naturally as an additional free variable of the
design optimization problem (4) and is determined along with the experimental settings.
The ETE criterion thus provides a consistent rule to determine A. Previous approaches
had to rely on a priori knowledge [5,6].

Discretization of Eq. (3) is not critical. A simple trapezoidal scheme is usually sufficient
since the discretization error is typically much smaller than regularization and data error

[8].

min{] -7

3. Example: Identification of reaction rates — Numerical differentiation

The specific merits of the new approach are discussed in the light of an example. For
this purpose, the determination of reaction rates as function of time from measured
concentration data is considered [9]. Such model-based reaction rate measurements
typically form the starting point for the identification of constitutive equations [2]. The
core of the underlying mathematical problem is the differentiation of experimental data.
This by itself is a standard problem in chemical engineering beyond the area of reaction
kinetics since often not the measured quantity itself but its derivative is of interest.

In practice, the finite difference scheme is often employed to determine the unknown
derivative f=dg/dt from the measurements g(z;) [9]. Equidistant measurements with
sampling interval d¢=t-t, ;=const. are assumed here. The discretized kernel K is then a
lower triangular matrix with all entries identical to df [6].

In an experiment, the sampling interval dt can be chosen by the experimenter himself. It
thus serves as design parameter. It is well known that if the sampling is too coarse the
approximation will be poor. However, in the inverse problem, too fine sampling can
also lead to an amplification of the error since the measurement noise will corrupt the
result and the variance increases [3].

The ETE design criterion (3) is now applied to determine the optimal sampling interval
for finite differences. No additional regularization parameter A is required as the
sampling interval itself has a regularizing effect. For the sound incorporation of the bias
effect, the first term in the objective (3) is therefore computed using interpolation of the
estimated solution on a finer grid.

In the example, a first-order reaction, leading to an exponential decay, serves as true
function, i.e. f=exp(-10t). Measurement standard deviation is 6=0.01.

The ETE design objective (3) is shown as function of the sampling interval d¢ in Fig. 1.
The new criterion shows the expected behavior for the ill-posed problem. The optimal
sampling time is found as the trade-off point between bias and variance contribution.
Variance dominates the error for small time steps while bias increases for large time
steps.
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Fig. 1: ETE design objective as function of sampling interval dt. Bias (dotted) and variance
(dashed) contributions to the objective are also shown (left axis). The E-optimal design
criterion (thin full line) is shown on the right axis.

Criteria proposed previously for the design of ill-posed problems [5,6,7] solely focus on
the variance contribution. In these methods, the so-called Fisher information matrix is
usually introduced as a variance measure. The Fisher matrix corresponds here to the
term inside the trace in Eq. (3). As an example for these design criteria, the E-optimal
experimental design criterion [5,6] is plotted on the right axis in Fig. 1. In E-optimal
design, the smallest eigenvalue of the Fisher information matrix is maximized [10]. It
can be seen that the classical design criteria suggest the use of the maximum sampling
time. Thus, these criteria are not able to reflect the specific nature of ill-posed problems.
In order to assess the quantitative accuracy of the ETE criterion a simulation study was
performed. Simulated measurement data was corrupted with random noise and the finite
difference scheme was applied to this data. The average deviation from the true signal
was then evaluated and averaged over 10,000 replications. The average error is shown
in Fig. 2. It can be seen that the ETE criterion truly captures the behavior found in the
actual experiment. The predicted optimal sampling time is slightly larger than the value
found in the simulation study which adds to the robustness of the estimate. In summary,
it can be concluded that the ETE criterion is able to find the best sampling time with
good accuracy.

The example of numerical differentiation studied here is well suited to show the specific
properties of the new approach. However, it is also special since the design variable, the
sampling time, serves at the same time as implicit regularization parameter. The success
of the approach therefore shows at the same time that the new method is also able to
initialize a regularization parameter. This step was missing in previous approaches [5,6].

4. Discussion and conclusions

It could be shown that the new ETE criterion is suitable for the experimental design of
ill-posed problems whereas other approaches fail. Still, the new approach requires some
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Fig. 2: Error as function of sampling interval dt computed using true solution and simulated
measurement data averaged over 10,000 cases.

discussion. In particular, it relies on the assumption that an initial guess for the true
solution f— which is actually sought — is available a priori. One may thus wonder about
the practicality of the approach. However, it should be noted that this is the standard
dilemma in experimental design theory. For nonlinear problems, more relevant in
chemical engineering, it already cannot be avoided even in the simpler case of design
for parameter estimation [4]. An iterative experiment cycle is thus usually required to
find the desired solution [1]. This strategy may also be applied to the ETE approach.
Still, even in the initial stage of an analysis, the ETE criterion can be adapted to the
level of a priori knowledge available as briefly sketched in the following discussion.
Often, the experimenter has at least some qualitative knowledge about the general class
of functions the solution should belong to. This is even true for more complex cases
than presented in Section 3 (e.g. exponential decay for reaction rates, peak shaped
functions for spectra, polynomials for transport coefficients). The criterion may then be
used to study the influence of the design variables for the expected function class. This
may already give important insight into the proper design. Robust design formulations
(e.g. average, min-max design) could then be applied to obtain quantitative design rules
[10]. These robust formulations could be of even more importance for nonlinear
problems in order to capture the effect of local linearization.

In a case when there is really no reasonable assumption available the first term of the
ETE criterion (3) may simply be neglected (f=0). The criterion then corresponds to a
direct extension of the well-known A-optimal design criterion [10] to ill-posed
problems. Such a design is therefore expected to provide at least a reasonable initial
experiment.

In general, it is an important feature of the formulation that it identifies the individual
contributions for bias and variance. Note that the assumed measurement error variance
enters the formulation only as relative weight of these two terms (cf. Eq. (3)). A deeper
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problem understanding can therefore be gained by a separate analysis of the dependence
of bias and variance on the design variables.

In this context, it should be noted that the impact of the design variables on the bias
could be approximately analyzed even without assuming any a priori knowledge on
functional form for f. After discretization, the bias contribution is given by (cf. Eq. (3))

H([ ~K(A)'K) 1] <[z - & k]|

) ()

where [ is the identity matrix. The right hand side follows from the submultiplicative
property of the matrix norm. Assuming the true solution to be bounded and of order 1
(always possible by proper scaling) an analysis of the bias term could be based on the
first matrix norm of the right hand side. Thereby, an upper bound for the bias would be
studied. This would thus correspond to standard design theory where a lower bound for
the variance from the Cramer-Rao theorem is used [10].

In summary, the expected total error (ETE) design criterion introduced in this work
seems to provide the first sound framework for the experimental design of ill-posed
problems. As discussed above, the method even yields design guidelines with minimal a
priori knowledge. This property underlines the practical utility of the new approach.
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