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Abstract

We introduce a new methodology for computing a validated enclosure of all solutions
of an ODE system with interval-valued parameters and/or initial values. The method
is based on a traditional interval approach, but involves a novel use of Taylor models to
address the dependency problem of interval arithmetic. Numerical results on a bioreac-
tor kinetics problem, with uncertain initial biomass concentration and uncertain kinetic
parameters, demonstrate that this approach provides a very effective way to obtain an
enclosure of all possible solutions to a parametric ODE system under uncertain conditions.
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1. Introduction

Initial value problems (IVPs) for ordinary differential equations (ODEs) arise naturally
in many applications in process engineering. However, it is often the case that the pa-
rameters and/or the initial values are not known with certainty. One common way to
represent the uncertainties in such parametric ODEs is to treat the parameters and/or
initial values as intervals. Thus, consider the problem of determining a validated enclosure
of all solutions of the parametric autonomous IVP,

y'(t)=f(y.0), ylt)=y,€Y, 6€0O, (1)

where ¢ € [to,t,,] for some t,, > t;. Here 6 is a p-dimensional vector of time-invariant
parameters, y is the n-dimensional vector of state variables, and y, is the n-dimensional
vector of initial values. The interval vectors ® and Yy represent enclosures of the uncer-
tainties in @ and y,, respectively.

Interval methods [1] (also called validated or verified methods) for ODEs can not only
determine a guaranteed error bound on the true solution, but can also verify that a
unique solution to the problem exists. Traditional interval methods usually consist of
two processes applied at each integration step [1]. In the first process, existence and
uniqueness of the solution are proven using the Picard-Lindel6f operator and the Banach
fixed point theorem, and a rough enclosure of the solution is computed. In the second
process, a tighter enclosure of the solution is computed. In general, both processes are
realized by applying interval Taylor series (ITS) expansions with respect to time, and
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using automatic differentiation to obtain the Taylor coefficients. An excellent review of
the traditional interval methods has been given by Nedialkov et al. [2]. For addressing
this problem, there are various packages available, including AWA [3], VNODE [4] and
COSY VI [5], all of which consider uncertainties in initial values only.

In the work described here, we will describe a method for efficiently determining val-
idated solutions of ODEs with parametric uncertainties. The method makes use, in a
novel way, of the Taylor model approach that Makino and Berz [6] used to deal with the
dependence problem in interval arithmetic, and which they applied in COSY VI [5].

2. Taylor Models

Makino and Berz [6,7] have described a remainder differential algebra (RDA) approach
for bounding function ranges and controlling the dependency problem of interval arith-
metic. This method expresses a function by a model consisting of a Taylor polynomial,
usually a truncated Taylor series, and an interval Taylor remainder bound. Consider a
function f:x € X C R™ — R that is (¢ + 1) times partially differentiable on X . Based
on the Taylor expansion about the point g € X, the Taylor model of f(x) then consists
of a g-th order polynomial function in (& — xo), py,

q

pr=3 1@~ m0) - VI @), )

i=0
and an interval remainder bound Iy, evaluated here in interval arithmetic,

Ry = (qi 1)! (X —x) - V]qH Flzo + (X —x0)=], (3)

and is denoted T} = (ps, Ry), where Z = [0, 1], and [g - \/]* is the operator
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Arithmetic operations with Taylor models can be done using the RDA operations de-
scribed by Makino and Berz [6,8], which include addition, multiplication, reciprocal, and
intrinsic functions. Therefore, for any function representable in a computer environment,
it is possible to compute a Taylor model using RDA operations by simple operator over-
loading. In performing RDA operations, only the coeflicients of p; are stored and operated
on. Computation of bounds on T over X is denoted by B(T%). It has been shown that,
compared to other rigorous bounding methods, the Taylor model can be used to obtain
sharper bounds for modest to complicated functional dependencies [6,7,9].

3. Validated Solver for Parametric ODEs

The method proposed here uses the traditional two-phase approach, but makes use of
Taylor models to deal with the dependency problem arising due to the uncertain quantities
(parameters and initial values). In phase 1, the goal is to find a step size h; = t; 11 —t; > 0,
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Algorithm 1 Phase2 (In: Tyj7 A;, Vi, hy, 17]-7 Y;; Out: Ty, T
1: Zj = hEFP(Y;,0) (with Y from phase 1)

R k=1
2: 1—1111_*_1 Ty] + Z h/Z,T}[,] + Z]’+1

Aji1, Vi)

Yj+1?

3 S, —I—s—Zhl (fi.v; @)

4: Ag+1 (m(S AN)!

5: (Tyj+17 RU7+1) ~ TUJ+17 with WL(RUJ“) =0
6: V]'+1 (A]+1S A )V] + A;‘&IRUj‘Fl
7Ty, =Ty, +A:Vin

and a rough enclosure Yj of the solution such that existence and uniqueness of the solution

can be verified. We apply the traditional interval method to the parametric ODEs by using
. . . =0 - .

an ITS with respect to time; that is, for Y; C Y, h; and Y'; are determined such that

??‘
,_\

Y, = S 0.0, F (Y, 0) + [0, b, FH (Y], @) C Y7, (5)
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o

where F1 is the interval extension of £, the i-th Taylor coefficient in terms of y'(t) =
f(y,0). Eq.(5) demonstrates that there exists a unique solution y(t;t;,y;,0) € Y, for
all t € [tj,tj1], any y; € Y, and any 6 € ©. i

In phase 2, we compute a tighter enclosure Y ;41 C Y'; such that y(t;41;%0, Y0, ®) C
Y ;1. This will be done by using an ITS approach to compute a Taylor model Ty,
of y;; in terms of the uncertain quantities (initial values and parameters), and then
obtaining the enclosure Y, = B (Tva+ .). For the Taylor model computations, we begin
by representing the interval initial values y, € Y, by a Taylor model with components

Ty, = (m(YOZ) + (in - m(YbZ))v [07 0])7 i=1,-,n, (6)

and the interval parameters 8 € © by a Taylor model with components
Ty, = (m(©;) + (6; —m(6:)),[0,0]), i=1,---,p. (7)

Then, we can determine the Taylor model T gy of the I'TS coefficients fm(y]-, 0) by using
RDA operations to compute Tfm =1 M(Tyj, To). The algorithmic procedure of phase
2 is summarized in Algorithm 1. The procedure begins with Vo = 0, Ty, = (m(Y ) +
(yo — (YO)) [0,0]), and Ay = I. J(f%; Y, @) denotes the interval extension of the
Jacobian of f 1 over y; €Y, and 0 € ©.
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Table 1
Bioreactor microbial growth parameters
Parameter Value Units Parameter Value Units
« 0.5 - Lm [1.19, 1.21] day!
k 1053 gS/gX Kg [7.09, 7.11] g S/l
D 0.36  day! Ky [0.49, 0.51] (g S/1)!
St 5.7 g S/1 Xo [0.82, 0.84] g X/1
So 0.80 gsS/1

4. Numerical Experiments

In a bioreactor, a simple microbial growth process [10], which involves a single biomass
and single substrate, can be described using the following ODE model,
X = (u-aD)x (8)
S = D(§ —8)—kuX, 9)
where X and S are concentrations of biomass and substrate, respectively; « is the process
heterogeneity parameter; D and S* are the dilution rate and the influent concentration

of substrate, respectively; k is the yield coefficient; and p is the growth rate, which is
dependent on S. We consider two models for p, the Monod law,

HmS

H= K¢+ S (10)
and the Haldane law,
P
= a7 11
N Re+ S+ K8 (11)

where i, is the maximum growth rate, Kg is the saturation parameter, and K is the
inhibition parameter. In this study, the initial value of biomass concentration Xy, and
the process kinetic parameters (i, Kg, and K;) are assumed to be uncertain and given
by intervals. Thus, for the Monod law, there are three uncertain quantities, and four for
the Haldane law. The values of the initial conditions (X, Sp), the inputs (D and S?),
and parameters (a, k, fi,, Kg, and K;) are given in Table 1.

We now report experimental results of a C++ implementation of the method described
above. This implementation is called VSPODE (Validating Solver for Parametric ODEs).
The results for VSPODE were obtained using a k = 17 order interval Taylor series method,
and with a ¢ = 5 order Taylor model. For purposes of comparison, as a representative of
traditional interval methods, we use the popular VNODE package [4], with a k = 17 order
interval Hermite-Obreschkoff QR method. Though, like other available solvers, VNODE
is designed to deal with uncertain initial values, it can take interval parameter values as
input. However, better performance can be obtained by treating the uncertain parameters
as additional state variables with zero time derivatives; thus the parametric uncertainties
become uncertainties in the initial values of the extra state variables. All tests were done
using a constant step size of h = 0.1, and were performed on a workstation running Linux
with an Intel Pentium 4 3.2GHz CPU.
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Figure 1. Enclosures for the Monod law
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Figure 2. Enclosures for the Haldane law

The enclosures computed for ¢ € [0, 20] using VSPODE and VNODE for the Monod
law and the Haldane law, are shown in Fig. 1 and Fig. 2, respectively. VSPODE clearly
provides a better enclosure, with VNODE failing at ¢ = 9.3 for the Monod law, and at
t = 6.6 for the Haldane law. In order to allow VNODE to solve the problem all the way
to t,, = 20, we divided the intervals into a number of equal-sized sub-boxes and then
used VNODE to determine the solution for each sub-box. The final solution enclosure
is then the union of all the enclosures resulting from each sub-box. Results showing the
final solution enclosures (t,, = 20) and their widths, as determined using VSPODE (with
no box subdivision) and VNODE with an increasing number of sub-boxes, are given in
Table 2 for the Monod law. For example, VNODE-1000 in Table 2 indicates the use of
1000 sub-boxes in VNODE. Even with 1000 sub-boxes, the solution enclosure determined
by VNODE is still significantly wider than that obtained from a single calculation with
VSPODE, and requires about 200 times more computation time.
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Table 2
Results for the Monod law, showing final enclosures (¢, = 20).
Method Enclosure Width CPU time (s)
VSPODE [ 0.8386, 0.8450 ] 0.0064 1.34
[ 1.2423,1.2721] 0.0298
VNODE-343 [ 0.8359, 0.8561 ] 0.0202 68.6
[ 1.2309, 1.2814 | 0.0505
VNODE-512 [ 0.8375, 0.8528 ] 0.0153 102.8
[ 1.2331, 1.2767 | 0.0436
VNODE-1000 [ 0.8380, 0.8502 ] 0.0122 263.1

[ 1.2359, 1.2732 | 0.0373

5. Concluding Remarks

We have described a new method for obtaining validated solutions of initial value prob-
lems for ODEs with interval-valued initial conditions and parameters. The dependence
of y'(t) = f(y,0) on t is handled using ITS methods, as in VNODE [4]. However, the
dependence on the initial state y, and the parameter vector 8 is handled by using, in
a novel way, Taylor models of the form described by Makino and Berz [6,8]. Numerical
results on a bioreactor kinetics problem demonstrate that this approach provides a very
effective way to obtain an enclosure of all possible solutions to a parametric ODE system
under uncertain conditions.
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