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In this paper a new approach for computing global bounds on optimal solutions of
mixed-integer nonlinear programs is presented. These type of problems frequently arise
in optimal design of chemical processes. The approach is based on a hierarchy of polyhe-
dral relaxations leading to mixed-integer linear programs, which can be solved rigorously.
Application is demonstrated for the optimal design of combined reaction distillation pro-
cesses and for feasibility studies of simulated moving bed chromatographic processes.

1. Introduction

The optimal design of chemical processes using mathematical optimization often leads
to mixed-integer nonlinear programs (MINLP). Due to nonconvexity MINLP problems
are usually difficult to solve. Typically either gradient based local optimization methods
are used for this purpose or stochastic optimization methods like simulated annealing or
genetic algorithms (see e.g. [8]). However, in both cases no guarantee can be given that
the solution found by the algorithm is the global optimum.

To overcome this problem, a new global approach is proposed in this paper. It is based
on techniques to derive polyhedral approximations of the underlying nonlinear equations
in such a way that a mixed-integer linear relaxation of the original problem is obtained,
which can be solved rigorously. Since the feasible set of the original nonlinear problem
lies within the feasible set of the relaxed problem, the latter provides global lower bounds
for the optimal solution of the original problem. The lower bound approaches the true
global optimum as the number of grid points of the relaxation is increased.

The applicability of the approach is demonstrated for two different challenging fields.
The first application is concerned with the optimal design of reaction distillation processes
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involving reactor separator recycle systems, reactive distillation columns and side reactor
concepts. The second application is concerned with the feasibility of simulated moving
bed chromatographic processes. With the new method one can prove whether it is possible
to meet given product specifications with a given process configuration and given column
efficiency.

2. Methods

Optimal design of chemical processes often leads to mixed-integer nonlinear programs,
which can be written in the following generic form

min f(x, y)

s. t. h(x, y) = 0,
g(x, y) ≤ 0,

x ∈ X ⊆ Rn,

y ∈ Y ⊆ Zd,

(MINLP)

where f : Rn×d → R is a real function, h : Rn×d → Rq and g : Rn×d → Rp are
vectors of real functions, X := {x ∈ Rn | Ax ≤ a} ⊆ Rn is a compact polyhedron, and
Y := {y ∈ Zd | By ≤ b} ⊆ Zn is the set of integer point lying in a compact polytope.

Several approaches for deriving bounds on the model (MINLP) have been suggested
in the literature that we briefly survey below. Of major importance are the Generalized
Bender Decomposition approach and the outer-approximation technique (see e.g. [3,4]
and references therein). The two types of algorithms work in two phases: In the outer
phase only the integer variables are manipulated. In each inner iteration a nonlinear
subproblem is solved for the continuous variables for fixed values of the integer variables.
The inner optimal solution is used to construct a relaxation in form of a second order
problem to determine better values for the integer variables. Both approaches differ in the
way the second order problem is constructed. Whereas Generalized Bender Decomposition
methods use dual information, the outer-approximation approaches construct a mixed-
integer linear relaxation for the primal problem. It is worth noting, that only in special
cases these approaches yield global results.

An important tool for treating general nonlinear functions occurring in model (MINLP)
is to resort to convex underestimators for the corresponding functions. This ensures that
relaxations of MINLP can be defined that only involve convex functions. Neglecting
the integrality requirements yields a convex relaxation for model (MINLP) that is well
tractable. Following this approach, interesting global bounds on the optimal value of
synthesis problem can be given if one is able to derive good convex underestimators. For
special functions convex underestimators have been given (see e.g. [2] and references
therein).

In this paper, we propose an alternative approach, where integrality requirements for
the discrete variables y are explicitly taken into account. Instead of using convex un-
derestimators a hierarchy of polyhedral relaxations is constructed. The construction of
these relaxations is based on combinatorial substructures arising from the nonlinearities
of the specific application. Each member of this hierarchy is a mixed-integer linear pro-
gram in an extended space of variables and defines a global bound on the optimal value
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of the overall problem, because it contains all feasible solutions of the original nonlinear
model. In the past decades several algorithmic techniques have been proposed to solve
such MILPs in practice. Most notably, clever enumeration strategies in combination with
advanced preprocessing and cutting plane techniques make instances tractable today that
were out of any reach even ten years ago [1].

f( )x
(b)(a)

Figure 1. For the nonlinear function Φ(x) on a box [l, u] in (a), a polyhedral relaxation
for the graph of Φ(x) is given in (b): The domain is subdivided into four subregions. For
each subregion a polyhedron is defined enclosing the graph of Φ(x).

In order to apply this idea, it is crucial to decompose the function f and each component
function of h and g, i. e., to express the function as the sum of functions φ1 . . . , φr. Next,
one introduces a new variable for the value of φi. More precisely, the following relaxation
procedure is applied as illustrated in Fig. 1: To this end, let (x, y)> ∈ Rn × Zd be a
vector of n continuous variables xi ∈ [li, ui], i = 1, . . . , n, and d integer variables yj ∈
{Lj, . . . , Uj}, j = 1, . . . , d, and consider a nonlinear function φ : Rn × Zd → R restricted

to D :=
∏n

i=1
[li, ui] ×

∏d

j=1
{Lj, . . . , Uj} ⊆ Rn × Zd. The main steps of our relaxation

procedure includes

• a subroutine ANALYZE in which the nonlinear function φ(x, y) is investigated for
local and global properties, e. g., local and global extrema, discontinuities, etc.,
using elementary differential geometry.

• a subroutine BINMOD that returns a hierarchy of subdivisions of the domain D.
Each subdivision consists of a set of support vectors. A subdivision that is higher
in the hierarchy contains all the support vectors of the lower-level ones.

• a subroutine POLYPROX that defines an enclosing (not interpolating) polyhedron
for the graph of φ(x, y) on every subregion Dν based on the results of the subroutine
ANALYZE.

• a subroutine COMBINE that, based on combinatorial substructures given by linear
(and nonlinear) relations between the variables occurring in φ(x, y), determines valid

inequalities involving the corresponding binary variables.

The hierarchy of subdivisions provided by subroutine BINMOD gives rise to a hierarchy
of nonlinear mixed-integer optimization problems. Each such instance is an extended
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formulation of (MINLP) by introducing additional variables. It attains the following
form

min
∑r

k=1
fkφk(x, y)

s. t.
∑r

k=1
hj,kφk(x, y) = 0, for all j = 1, . . . , q,

∑r

k=1
gj,kφk(x, y) ≤ 0, for all j = 1, . . . , p

∑νi

ι=1
si

ιβ
i
ι ≤ xi ≤

∑νi

ι=1
si

ι+1β
i
ι , for all i = 1, . . . , n,

∑νi

ι=1
βi

ι = 1, for all i = 1, . . . , n,

x ∈ [l, u] ⊆ Rn,

y ∈ [L, U ] ∩ Zd,

β = (β1, . . . , βn)> ∈
∏n

i=1
{0, 1}νi

(MDEF)

Therein, the additional binary variables β i
ι indicate subintervals [si

ι, s
i
ι+1] ⊆ [li, ui] for the

original domain of xi. Such a division into subintervals can be represented as a list of
supporting points, Si := {si

1, . . . , s
i
νi+1} ⊆ [li, ui], with si

1 = li, si
νi+1 = ui, and si

ι < si
ι+1,

for all ι ∈ {1, . . . , νi}. In this manner, the original domain [l, u] is divided into
∏n

i=1
νi

subboxes. Analytic and geometric properties of the underlying nonlinear functions φk for
specific examples give rise to specific lists of supporting points S i, i = 1, . . . , n.

In the integer programming community problems of the form (MDEF) involving lin-
ear functions only are known as fixed-charge mixed-integer optimization problems that
include a large variety of applications (see [7]). In the remainder, focus will be on ap-
plications arising in the design of chemical processes. In order to tackle these problems
we make use of a variety of new combinatorial relaxations. These arise from nonlinear
flow conservations, mixed-integer Knapsack constraints and stable sets in special conflict
graphs.

3. Applications

3.1. Optimal design of combined reaction separation processes

The first application is concerned with the optimal design of combined reaction dis-
tillation processes, which play an important role in chemical industry. Depending on
the physical properties of the system, the given constraints on production rate, product
specifications, and the given costs different process candidates can be attractive includ-
ing reactive distillation columns, or nonreactive distillation columns with side- and/or
pre-reactors as illustrated in Fig. 2.

In principle, the best process configuration can be found by optimizing some suitable
superstructures, which include the relevant process alternatives. The objective are min-
imal total costs comprising investment and operating costs. This will lead to a complex
problem of type (MINLP), which could be solved rigorously with a sequence of linear re-
laxations of type (MDEF) with successive refinement until the global optimum is reached.
This however, can be computationally very expensive. Therefore a combined strategy is
proposed, where a quick preliminary ranking of relevant process candidates is obtained
with available local MINLP optimization methods. Afterwards the results can be checked
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(a) (b) (c)

Figure 2. Characteristic process alternatives for combined reaction distillation processes:
(a) reactor with nonreactive distillation column and recycle, (b) reactive distillation col-
umn, (c) nonreactive distillation column with side reactors.

with global lower bounds obtained for each subproblem through polyhedral relaxation.
The ranking of any two process candidates is either proven if the lower bound on the cost
function of the second best candidate is greater than the known local solution of the best
candidate. If that can not be achieved with successive refinement of the polyhedral relax-
ation, we may use the polyhedral relaxation to generate new starting values for the local
optimization to find better global minima. Application of the procedure has been demon-
strated for production of 2,3-dimethylbutene-1 by isomerization of 2,3-dimethylbutene-2.
A detailed description of the mathematical formulation is given elsewhere [5].

3.2. Feasibility of simulated moving bed chromatographic processes

The second application is concerned with the feasibility of simulated moving bed (SMB)
chromatographic processes. SMB is an advanced technology to separate isomers and in
particular enantiomers. For high purity separations with highly efficient columns triangle
theory developed by Storti et al. [9] is used for process design. Triangle theory is based
on a true moving bed model and assumes thermodynamic equilibrium between the solid
and the fluid phase corresponding to an infinite column efficiency. The theory allows
to determine suitable values for the flow rate ratios mI , . . .mIV in the four zones of the
process, which allow for complete separation of a given mixture with components A and
B as illustrated in Fig. 3.

Maximum productivity, i.e. maximum feed rate is obtained for values of mII and mIII

at the vertex of the triangle (point W in Fig. 3. The triangle represents the feasible
region for complete separation. It should be noted that for infinitely efficient columns
total separation is always possible for mixtures with different adsorptivities, which can be
described with linear or Langmuir isotherms. Or, in other words, in this case the feasible
region is always non empty, and, in particular a maximum value for the feed rate different
from zero can be found.

However, in practice often lower purities are acceptable and cheaper columns with re-
duced efficiency can be applied. In this case, the question arises whether a given product
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Figure 3. Characteristic process alternatives for combined reaction distillation processes:
(a) reactor with nonreactive distillation column and recycle, (b) reactive distillation col-
umn, (c) nonreactive distillation column with side reactors.

purity can be achieved with a given column efficiency corresponding to a given number of
theoretical stages in our model formulation. To answer this questions polyhedral relax-
ations are applied to an optimization problem, where we maximize the feed rate for given
purity constraints. By means of polyhedral relaxations on upper bound for the optimal
feed rate is obtained. If this upper bound is zero, than it is proven that it is not possible
to achieve the required purity for any values of mI , . . .mIV .

Application has been demonstrated for a process separating a mixture of fructose-
dextran T9 and fructose-raffinose. A detailed description of the mathematical formulation
is given elsewhere [6].
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