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Abstract

In order to improve the reliability of the Quantitative Structure-Property Relationships
(QSPR) for property prediction, a "targeted" QSPR (TQSPR) method is developed,
from a training set, which contains only compounds structurally similar to the target
compound. Structural similarity is measured by the partial correlation coefficients
between the vectors of the molecular descriptors of the target compound and those of
the predictive compounds. The available properties of the compounds in the training set
are then used in the usual manner for predicting the properties of the target and the rest
of the compounds of unknown properties in the set. Preliminary results show that the
targeted QSPR method yields predictions within the experimental error level for
compounds well represented in the database and fairly accurate estimates for complex
compounds that are sparsely represented. The cut-off value of the partial correlation
coefficient provides an indication of the expected prediction error.

Keywords: Quantitative structure-property relationship; QSPR, QS2PR; Property
prediction; Process design;.

1. Introduction

Modeling and simulation of chemical processes require, in addition to the process
model, correlations of physical and thermodynamic properties of the various
compounds, often for wide ranges of temperatures, pressures and compositions. Pure
component properties are needed to derive the correlations. However, often those
properties cannot be measured, or the measurements are expensive and/or unreliable.

In the recent years there has been increased interest in the development and use of
Quantitative Structure-Property Relationship (QSPR) models [1-7]. The QSPR models
are being extensively used for predicting a variety of pure component properties
pertaining to chemistry and chemical engineering, environmental engineering and
environmental impact assessment, hazard and operability analysis, etc. In the present
work we will concentrate on the "most significant common features" QSPR methods, as
defined in [1] which we shall call for short QSPRs henceforward. The above QSPRs can
be schematically represented by the following equation:

Yy =f(x.v]’x.YZ""xsk;xpl’po ""x[)m;ﬂ(]’ﬂl ﬂn) (1)

where X, Xp,... xi are the molecular structure descriptors of a particular pure
compound, X,i, X,... X,m are measurable properties of the same compound (such as
boiling temperature, melting temperature, toxicity, etc.), B, Bi,... S, are the QSPR
parameters and y, is the target property (to be predicted) of the same compound.
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To derive the QSPR, the available data is divided into a "training set" and an
"evaluation set". Using the "training set", multiple linear or nonlinear regression, and
partial least squares techniques are employed to select the molecular descriptors and/or
properties to be included in the RHS of Eq. (1), and to calculate the model parameter
values. Model validation is carried out using the "evaluation set".

A limitation of the traditional QSPR approach is that if the molecular structure of the
target compound belongs to a group that is well represented in the “training set”, the
prediction can be expected to be much more accurate than if the target compound
belongs to a group which is sparsely represented [e.g. 8]. The structure-property
relationships are usually nonlinear, therefore, extrapolation toward a target compound of
unmeasured pure component constants can be rather risky and at present the prediction
accuracy cannot be assessed. Recently Shacham et al.[9, 10] and Brauner et al. [11]
presented a different approach: the Quantitative Structure - Structure Property
relationship (QS2PR). This technique enables the derivation of linear property-property
correlations based on a structure-structure relationship and provides an estimate of the
prediction error. However it can be envisioned that in some cases it will be difficult to
apply the QS2PR technique because of the lack of enough predictive compounds for
which reliable measured property values exist.

In an attempt to overcome the limitations of both the QSPR and QS2PR techniques we
have developed a quantitative measure of similarity between molecules and a new
"targeted QSPR" (TQSPR) technique, which are described in the next section.

2. The Targeted-QSPR method

The TQSPR method attempts to tailor a QSPR to an unknown (farget property) of a
particular compound (target compound). For its effective use a database of molecular
descriptors, x; and physical properties y;; for the predictive compounds, where i is the
number of the compound and ; is the number of the descriptor/property, is required.
Molecular descriptors for the target compound (x,) should also be available. The same
set of descriptors is defined for all compounds in the database, and the span of
molecular descriptors should reflect the difference between any two compounds in the
database. In principle, the database should be as large as possible, as adding more
molecular descriptors and more compounds to the database can increase its predictive
capability.

At the first stage of the targeted QSPR method, a similarity group (cluster, training set)
for the target compound is established. The similarity group includes the predictive
compounds, identified as structurally similar to the target compound by the partial
correlation coefficient, r,, between the vector of the molecular descriptors of the target
compound, x,, and that of a potential predictive compound x,, i.e., 7, = X, X;', where X,
and x; are row vectors, centered and normalized to a unit length. Absolute r,; values

close to one (|r,,.| ~1) indicate high correlation between vectors x; and x; (high level of
similarity) between the molecular structures of the target compound and the predictive
compound i. The similarity group includes the first p compounds with highest |r”,|
values. Another option is to form the similarity group only with compounds for which
the |”1| values exceed a prescribed threshold value.

To tailor a QSPR for a property of the target compound (applicable for all members of
the similarity group) only members of the group for which data for the particular
property are available are considered (N compounds). In view of the limited variability
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of the property values within the similarity group, a linear structure-property relation is
assumed of the form:

y:ﬁ0+ﬂlxl+ﬂ2x2”'ﬂmxm (2)

where y is an N vector of the target property values, N is the number of compounds
included in the similarity group, X;, X, ... X, are N vectors of predictive molecular
descriptors (to be identified via a stepwise regression algorithm), and £,,8,,8,...5,

are the corresponding model parameters to be estimated. The signal-to-noise ratio in the
partial correlation coefficient (CNR)) is used as a criterion for determining the number
of the molecular descriptors that should be included in the model (7). The calculation of
CNRj requires specification of error levels for the molecular descriptor data. The error
(noise) in the molecular descriptors is assumed to be of the order of the round-off error
of the calculated values. For integer data (no. of carbon atoms, for example) the noise
level is the computer precision. Addition of new descriptors to the model can continue
as long as the CNRj is greater than one for, at least, one of the descriptors which are not
yet included. Detailed description of this stopping criterion can be found in Shacham
and Brauner[9-11]. It should be noted that if necessary, nonlinear functions of molecular
descriptors may also be considered in the RHS of Eq. (2).

As in a typical most “significant common features” method [1], a stepwise regression
program is used to determine which molecular descriptors should be included in the
QSPR to best represent the measured property data of the similarity group and to
calculate the QSPR parameter values. The QSPR so obtained can be subsequently used
for calculating the estimated value of the corresponding property values for the target
compound and for other (p-N) compounds in the group that do not have measured data,
i.e. using the equation:

Y, = ﬂo +ﬁ1x11 +ﬂ2xr2 "‘ﬁm'xtm (3)

where y, is the estimated property value of the target compound and x,; x,, ... X,, are
the corresponding molecular descriptors values of the target compound.

The targeted QSPR method ensures that the most pertinent information available in the
data base (as measured values and molecular descriptors) is used for prediction of each
property of the structurally similar compounds.

2. Application of the Targeted QSPR method for Property Prediction

For practical study of the targeted QSPR method, we used the molecular descriptor and
property database of Cholakov ef al. [2] and Wakeham et al. [1]. The database contains
260 hydrocarbons, the molecular structure of which is represented by 99 molecular
descriptors, and values for five physical properties.

The properties included in the database are the normal boiling temperature (NBT),
relative liquid density at 20° C (d"), critical temperature (T), critical pressure (P,) and

critical volume (V). The list of the hydrocarbons in the database, the sources and
quality of the property data are given in the corresponding references [1, 2].

In general, the molecular descriptors include the molar mass along with carbon atom
descriptors, descriptors from simulated molecular mechanics (total energy, bond stretch
energy, etc.) and some of the most popular topological indices, calculated with unit
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bond lengths and with the bond lengths of the minimized molecular model, obtained by
molecular mechanics. A complete list of all molecular descriptors in the database can be
found elsewhere [10]. The 99 molecular descriptors in the data base were normalized
dividing each descriptor by its maximal absolute value over the 260 database
compounds. The stepwise regression program SROV [9] was used for identification of
the similarity group, by sorting the compounds in descending order according to their
|r4| values. The first p = 50 compounds were included in the similarity group. This
number was arbitrarily set. The SROV program was also used for deriving the structure-
property relation (Eq. 3).

In the two examples hereunder the practical application of the targeted QSPR method is
illustrated.

2.1. Example 1. Prediction of the Properties of n-tetradecane

The compound n-tetradecane is a representative of compounds for which accurate
experimental data is available for most physical properties, it is densely represented in
the database (meaning that there are many similar compounds included) and its
properties can be predicted fairly well with existing QSPRs and homologous series
techniques.

The results of the similarity group selection are displayed in Figure 1. It can be seen that
the database contains a large number of compounds with high level of similarity to -
tetradecane (|r;| between 0.93195 and 0.99968). The highest correlations are with the
immediate neighbors of the target compound in the homologous series, n-pentadecane
and n-tridecane. The lowest |r;;| is with 1-nonacosene.

The similarity group was used to derive QSPRs for the NBT,d}", T., P. and V. for

compounds structurally related to n-tetradecane in the form of Eq. (2). Those QSPRs
were subsequently used for predicting the properties using Eq. (3). A summary of the
QSPRs for the various properties derived for the similarity group of n-tetradecane is
shown in Table 1. It can be seen that the QSPRs for the various properties include
different molecular descriptors. The linear correlation coefficient R* values (>0.999 in
all the cases) indicate an excellent fit. Only three descriptors were enough for R*>0.999
for prediction of P., while for prediction of the other properties four predictors were
needed.

In Table 1 the property prediction errors obtained with the “targeted” QSPR are
compared with experimental errors assigned by DIPPR and with the corresponding
prediction errors obtained in previous works [1, 2, 10-11] by applying the QSPR and
QS2PR methods to the same data.

In general the “targeted” QSPR advocated in this work predicts the properties of n-
tetradecane better than the traditional QSPRs and with precision comparable to that of
the QS2PR [10-11] method (Table 1). However, the errors of both the QS2PR and the
“targeted” QSPR (except for T;) are well within the experimental errors assigned by
DIPPR for the target, and hence, when its structure is well represented in the data base,
either method can be used.

2.2. Example 2. Prediction of Unmeasured Properties of Members of the Similarity
Group of n-tetradecane

For three members belonging to the similarity group of n-tetradecane, namely 2,5-
dimethyldecane, 2,5-dimethyldodecane and 4-methyloctane, there are no experimental
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values for the critical properties and the relative liquid density (except for 4-
methyloctane). The unknown properties of those compounds can be predicted using the
same targeted QSPR that was derived for n-tetradecane.

In Table 3 the property values obtained with the TQSPR are compared with measured
values (whenever available) and with predictions obtained with the QSPR method of
Wakeham et al. [1]. The largest differences between measured and predicted values for

4-methyloctane are: for NBT - 0.4 %; for d; -0.36 %, for T, - 1.6 %, for P. - 1.6 % and
for V. - 3.6 %, all within experimental error.

3. Conclusions

The partial correlation coefficient between vectors of molecular descriptors has been
found to be an efficient and convenient measure for identifying structurally similar
compounds and creating a training set of structurally similar compounds for traditional
QSPR techniques.

The preliminary results obtained with the new targeted QSPR method show that it
yields predictions within the experimental error level for compounds that are well
represented in the database, and fairly accurate, reliable estimates for complex
compounds which are sparsely represented. The cut-off value of the partial correlation
coefficient provides an indication for the expected prediction error. Thus, the new
method can complement the QS2PR and the traditional QSPR technique for prediction
of properties of compounds which are sparsely represented in the molecular descriptor —
property database.

More research is required in order to determine the relationships between the prediction
reliability, the threshold value used for the partial correlation coefficient, the number of
compounds included in the similarity group and the accuracy of their property data, and
the improvement that might be eventually achieved by inclusion of nonlinear terms in
the QSPR model.

Another important avenue for future research is the potential for application of the
partial correlation coefficient between the vectors of molecular descriptors in computer
aided design of molecules, structurally related to a compound with well established
useful properties.
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Table 1. Summary of structure-property correlations for various properties of n-tetradecane

N. Brauner et al.

Property Descriptors R’ Prediction error, %
Experiment | Targeted | QSPR* | QS2PR**
(DIPPR) QSPR

NBT X3,X84,X85,X86 0.99988 <1 <0.01 1.92 0.05
dar X3,X42, X88, X905 0.99932 <1 0.09 0.40 0.04
Tc X359, Xg88, X92,X95 0.99956 <0.2 0.29 0.42 0.06
P, X655 X77, X85 0.99946 <10 1.46 0.07 0.70
Vc X72, X865 X95, X098 0.99987 <10 0.547 1.04 0.10

* 8 descriptorst" %, #* 4 descriptors

[10]

Table 2. Prediction of properties of members of the n-tetradecane similarity group

Properties | 2,5-dimethyldecane 2,5-dimethyldodecane 4-methyloctane

Targeted | Published* | Targeted | Published* | Targeted | Published*

QSPR (QSPR*¥) QSPR (QSPR*¥) QSPR (QSPR*¥)

NBT 470.33 471.25 506.76 506.75 417.24 415.60
dr 0.7502 (0.7502) 0.7630 (0.7646) 0.7225 0.7199
T. 647.8 (642.2) 683.6 (672.5) 588.1 (589.0)
P, 1.900 (1.878) 1.659 (1.633) 2.337 (2.355)
V. 709 (728) 843 (854) 533 (553)

* Published values (without brackets), ** Predicted (inside brackets), 8 descriptors!'"?]
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Figure 1. Partial correlation coefficients in the group of compounds similar to n-
tetradecane.





