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Abstract 
In order to improve the reliability of the Quantitative Structure-Property Relationships 
(QSPR) for property prediction, a "targeted" QSPR (TQSPR) method is developed, 
from a training set, which contains only compounds structurally similar to the target 
compound. Structural similarity is measured by the partial correlation coefficients 
between the vectors of the molecular descriptors of the target compound and those of 
the predictive compounds. The available properties of the compounds in the training set 
are then used in the usual manner for predicting the properties of the target and the rest 
of the compounds of unknown properties in the set. Preliminary results show that the 
targeted QSPR method yields predictions within the experimental error level for 
compounds well represented in the database and fairly accurate estimates for complex 
compounds that are sparsely represented. The cut-off value of the partial correlation 
coefficient provides an indication of the expected prediction error. 
 
Keywords: Quantitative structure-property relationship; QSPR, QS2PR; Property 
prediction; Process design;. 

1. Introduction 

Modeling and simulation of chemical processes require, in addition to the process 
model, correlations of physical and thermodynamic properties of the various 
compounds, often for wide ranges of temperatures, pressures and compositions. Pure 
component properties are needed to derive the correlations. However, often those 
properties cannot be measured, or the measurements are expensive and/or unreliable. 
In the recent years there has been increased interest in the development and use of 
Quantitative Structure-Property Relationship (QSPR) models [1-7]. The QSPR models 
are being extensively used for predicting a variety of pure component properties 
pertaining to chemistry and chemical engineering, environmental engineering and 
environmental impact assessment, hazard and operability analysis, etc. In the present 
work we will concentrate on the "most significant common features" QSPR methods, as 
defined in [1] which we shall call for short QSPRs henceforward. The above QSPRs can 
be schematically represented by the following equation: 
 

),;,;,,( 102121 npmppskssp xxxxxxfy βββ ………=                      (1) 
 
where xs1, xs2,… xsk are the molecular structure descriptors of a particular pure 
compound, xp1, xp2,… xpm are measurable properties of the same compound (such as 
boiling temperature, melting temperature, toxicity, etc.), β0, β1,… βn are the QSPR 
parameters and yp  is the target property (to be predicted) of the same compound. 
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To derive the QSPR, the available data is divided into a "training set" and an 
"evaluation set".  Using the "training set", multiple linear or nonlinear regression, and 
partial least squares techniques are employed to select the molecular descriptors and/or 
properties to be included in the RHS of Eq. (1), and to calculate the model parameter 
values. Model validation is carried out using the "evaluation set".   
A limitation of the traditional QSPR approach is that if the molecular structure of the 
target compound belongs to a group that is well represented in the “training set”, the 
prediction can be expected to be much more accurate than if the target compound 
belongs to a group which is sparsely represented [e.g. 8]. The structure-property 
relationships are usually nonlinear, therefore, extrapolation toward a target compound of 
unmeasured pure component constants can be rather risky and at present the prediction 
accuracy cannot be assessed. Recently Shacham et al.[9, 10] and Brauner et al. [11] 
presented a different approach:  the Quantitative Structure - Structure Property 
relationship (QS2PR).  This technique enables the derivation of linear property-property 
correlations based on a structure-structure relationship and provides an estimate of the 
prediction error. However it can be envisioned that in some cases it will be difficult to 
apply the QS2PR technique because of the lack of enough predictive compounds for 
which reliable measured property values exist.  
In an attempt to overcome the limitations of both the QSPR and QS2PR techniques we 
have developed a quantitative measure of similarity between molecules and a new 
"targeted QSPR" (TQSPR) technique, which are described in the next section. 
 
2. The Targeted-QSPR method 
 
The TQSPR method attempts to tailor a QSPR to an unknown (target property) of a 
particular compound (target compound). For its effective use a database of molecular 
descriptors, xij and physical properties yij for the predictive compounds, where i is the 
number of the compound and j is the number of the descriptor/property, is required. 
Molecular descriptors for the target compound (xtj) should also be available. The same 
set of descriptors is defined for all compounds in the database, and the span of 
molecular descriptors should reflect the difference between any two compounds in the 
database. In principle, the database should be as large as possible, as adding more 
molecular descriptors and more compounds to the database can increase its predictive 
capability. 
At the first stage of the targeted QSPR method, a similarity group (cluster, training set) 
for the target compound is established. The similarity group includes the predictive 
compounds, identified as structurally similar to the target compound by the partial 
correlation coefficient, rti, between the vector of the molecular descriptors of the target 
compound, xt, and that of a potential predictive compound xi, i.e., rti = xt xi

T, where xt 
and xi are row vectors, centered and normalized to a unit length. Absolute rti values 
close to one ( tir  ≈1) indicate high correlation between vectors xt and xi (high level of 
similarity) between the molecular structures of the target compound and the predictive 
compound i. The similarity group includes the first p compounds with highest tir  
values. Another option is to form the similarity group only with compounds for which 
the tir  values exceed a prescribed threshold value. 
To tailor a QSPR for a property of the target compound (applicable for all members of 
the similarity group) only members of the group for which data for the particular 
property are available are considered (N compounds). In view of the limited variability 
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of the property values within the similarity group, a linear structure-property relation is 
assumed of the form: 
 
         mm xxxy ββββ …22110 ++=                                          (2) 
 
where y is an N vector of the target property values, N is the number of compounds 
included in the similarity group, x1,  x2 … xm are N vectors of predictive molecular 
descriptors (to be identified via a stepwise regression algorithm), and mββββ …210 ,,  
are the corresponding model parameters to be estimated. The signal-to-noise ratio in the 
partial correlation coefficient (CNRj) is used as a criterion for determining the number 
of the molecular descriptors that should be included in the model (m). The calculation of 
CNRj requires specification of error levels for the molecular descriptor data. The error 
(noise) in the molecular descriptors is assumed to be of the order of the round-off error 
of the calculated values. For integer data (no. of carbon atoms, for example) the noise 
level is the computer precision. Addition of new descriptors to the model can continue 
as long as the CNRj is greater than one for, at least, one of the descriptors which are not 
yet included. Detailed description of this stopping criterion can be found in Shacham 
and Brauner[9-11]. It should be noted that if necessary, nonlinear functions of molecular 
descriptors may also be considered in the RHS of Eq. (2). 
As in a typical most “significant common features” method [1], a stepwise regression 
program is used to determine which molecular descriptors should be included in the 
QSPR to best represent the measured property data of the similarity group and to 
calculate the QSPR parameter values. The QSPR so obtained can be subsequently used 
for calculating the estimated value of the corresponding property values for the target 
compound and for other (p-N) compounds in the group that do not have measured data, 
i.e. using the equation: 
 
          tmmttt xxxy ββββ …22110 ++=                                         (3) 
 
where yt is the estimated property value of the target compound and xt1,  xt2, … xtm  are 
the corresponding molecular descriptors values of the target compound. 
The targeted QSPR method ensures that the most pertinent information available in the 
data base (as measured values and molecular descriptors) is used for prediction of each 
property of the structurally similar compounds. 

2. Application of the Targeted QSPR method for Property Prediction 

For practical study of the targeted QSPR method, we used the molecular descriptor and 
property database of Cholakov et al. [2] and Wakeham et al. [1]. The database contains 
260 hydrocarbons, the molecular structure of which is represented by 99 molecular 
descriptors, and values for five physical properties. 
The properties included in the database are the normal boiling temperature (NBT), 
relative liquid density at 20º C ( 20

4d ), critical temperature (Tc), critical pressure (Pc) and 
critical volume (Vc). The list of the hydrocarbons in the database, the sources and 
quality of the property data are given in the corresponding references [1, 2]. 
In general, the molecular descriptors include the molar mass along with carbon atom 
descriptors, descriptors from simulated molecular mechanics (total energy, bond stretch 
energy, etc.) and some of the most popular topological indices, calculated with unit 
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bond lengths and with the bond lengths of the minimized molecular model, obtained by 
molecular mechanics. A complete list of all molecular descriptors in the database can be 
found elsewhere [10]. The 99 molecular descriptors in the data base were normalized 
dividing each descriptor by its maximal absolute value over the 260 database 
compounds. The stepwise regression program SROV [9] was used for identification of 
the similarity group, by sorting the compounds in descending order according to their 
|rti| values. The first p = 50 compounds were included in the similarity group. This 
number was arbitrarily set. The SROV program was also used for deriving the structure-
property relation (Eq. 3).  
In the two examples hereunder the practical application of the targeted QSPR method is 
illustrated. 

2.1. Example 1. Prediction of the Properties of n-tetradecane 

The compound n-tetradecane is a representative of compounds for which accurate 
experimental data is available for most physical properties, it is densely represented in 
the database (meaning that there are many similar compounds included) and its 
properties can be predicted fairly well with existing QSPRs and homologous series 
techniques. 
The results of the similarity group selection are displayed in Figure 1. It can be seen that 
the database contains a large number of compounds with high level of similarity to n-
tetradecane (|rti| between 0.93195 and 0.99968). The highest correlations are with the 
immediate neighbors of the target compound in the homologous series, n-pentadecane 
and n-tridecane. The lowest |rti| is with 1-nonacosene. 
The similarity group was used to derive QSPRs for the NBT, 20

4d , Tc, Pc and Vc for 
compounds structurally related to n-tetradecane in the form of Eq. (2). Those QSPRs 
were subsequently used for predicting the properties using Eq. (3). A summary of the 
QSPRs for the various properties derived for the similarity group of n-tetradecane is 
shown in Table 1. It can be seen that the QSPRs for the various properties include 
different molecular descriptors. The linear correlation coefficient R2 values (>0.999 in 
all the cases) indicate an excellent fit. Only three descriptors were enough for R2>0.999 
for prediction of Pc, while for prediction of the other properties four predictors were 
needed.  
In Table 1 the property prediction errors obtained with the “targeted” QSPR are 
compared with experimental errors assigned by DIPPR and with the corresponding 
prediction errors obtained in previous works [1, 2, 10-11] by applying the QSPR and 
QS2PR methods to the same data.  
In general the “targeted” QSPR advocated in this work predicts the properties of n-
tetradecane better than the traditional QSPRs and with precision comparable to that of 
the QS2PR [10-11] method (Table 1). However, the errors of both the QS2PR and the 
“targeted” QSPR (except for Tc) are well within the experimental errors assigned by 
DIPPR for the target, and hence, when its structure is well represented in the data base, 
either method can be used. 

2.2. Example 2. Prediction of Unmeasured Properties of Members of the Similarity 
Group of n-tetradecane 

For three members belonging to the similarity group of n-tetradecane, namely 2,5-
dimethyldecane, 2,5-dimethyldodecane and 4-methyloctane, there are no experimental 
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values for the critical properties and the relative liquid density (except for 4-
methyloctane). The unknown properties of those compounds can be predicted using the 
same targeted QSPR that was derived for n-tetradecane. 
In Table 3 the property values obtained with the TQSPR are compared with measured 
values (whenever available) and with predictions obtained with the QSPR method of 
Wakeham et al. [1]. The largest differences between measured and predicted values for 
4-methyloctane are: for NBT - 0.4 %; for 4

20d  - 0.36 %, for Tc - 1.6 %, for Pc - 1.6 % and 
for Vc - 3.6 %, all within experimental error. 

3. Conclusions 

The partial correlation coefficient between vectors of molecular descriptors has been 
found to be an efficient and convenient measure for identifying structurally similar 
compounds and creating a training set of structurally similar compounds for traditional 
QSPR techniques. 
The preliminary results obtained with the new targeted QSPR method show that it 
yields predictions within the experimental error level for compounds that are well 
represented in the database, and fairly accurate, reliable estimates for complex 
compounds which are sparsely represented. The cut-off value of the partial correlation 
coefficient provides an indication for the expected prediction error. Thus, the new 
method can complement the QS2PR and the traditional QSPR technique for prediction 
of properties of compounds which are sparsely represented in the molecular descriptor – 
property database. 
More research is required in order to determine the relationships between the prediction 
reliability, the threshold value used for the partial correlation coefficient, the number of 
compounds included in the similarity group and the accuracy of their property data, and 
the improvement that might be eventually achieved by inclusion of nonlinear terms in 
the QSPR model. 
Another important avenue for future research is the potential for application of the 
partial correlation coefficient between the vectors of molecular descriptors in computer 
aided design of molecules, structurally related to a compound with well established 
useful properties. 
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Table 1. Summary of structure-property correlations for various properties of n-tetradecane 
 

Prediction error, % Property Descriptors R2 
Experiment 

(DIPPR) 
Targeted 

QSPR 
QSPR* QS2PR** 

NBT x3,x84,x85,x86 0.99988 < 1 <0.01 1.92 0.05 
20
4d  x3,x42, x88, x95 0.99932 < 1 0.09 0.40 0.04 

Tc  x59, x88, x92,x95 0.99956 < 0.2 0.29 0.42 0.06 
Pc x65, x77, x85 0.99946 < 10 1.46 0.07 0.70 
Vc x72, x86, x95, x98 0.99987 < 10 0.547 1.04 0.10 
* 8 descriptors[1, 2], ** 4 descriptors[10]. 
 
Table 2. Prediction of properties of members of the n-tetradecane similarity group  
 

2,5-dimethyldecane 2,5-dimethyldodecane 4-methyloctane Properties 

Targeted 
QSPR 

Published*
(QSPR**) 

Targeted 
QSPR 

Published*
(QSPR**) 

Targeted 
QSPR 

Published*
(QSPR**) 

NBT 470.33 471.25 506.76 506.75 417.24 415.60 
20
4d  0.7502 (0.7502) 0.7630 (0.7646) 0.7225 0.7199 

Tc  647.8 (642.2) 683.6 (672.5) 588.1 (589.0) 
Pc 1.900 (1.878) 1.659 (1.633) 2.337 (2.355) 
Vc 709 (728) 843 (854) 533 (553) 
* Published values (without brackets), ** Predicted (inside brackets), 8 descriptors[1],[2] 
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Figure 1. Partial correlation coefficients in the group of compounds similar to n-
tetradecane.  
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