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A parameter estimation algorithm for stochastic differential equation (SDE) 
systems is proposed. The problem is formulated using the maximum likelihood 
(MLE) objective function, and a modified Levenberg-Marquardt (LM) 
algorithm is developed for its solution. Stochastic sensitivity equations are 
derived and used in order to obtain reliable parameter estimates. Computational 
efficiency is addressed by varying the simulation size according to the 
proximity of the current iterate to the optimal solution, as indicated by the 
magnitude of the trust-region radius. To evaluate the confidence intervals of the 
parameters, a global uncertainty analysis is proposed, which is based on 
sampling and accounts for experimental uncertainty and model noise. The 
algorithm is applied to a stochastic model of polymer rheology. 

1. Introduction 

SDEs have gained popularity in recent years, for their ability to model systems 
that are subjected to fluctuations. The general form of an SDE is: 

tttt dWXtdtXtdX );,();,( θσθμ +=  (1) 

where t is time, Xt is the state variable of interest, μ and σ are the drift and 
diffusion term respectively, θ is a vector of model parameters and Wt is a 
Gaussian N(0,Δt1/2) noise term (a stochastic process). Applications of SDEs 
include material modelling (e.g. polymer rheology), environmental pollution 
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models, reactor systems, and finance. [1-4] Due to the existence of the noise 
term it is difficult to obtain closed-form solutions for most SDEs, and numerical 
methods such as the Euler and the Taylor schemes are required to calculate 
discrete-time trajectories of the state variables. [5] The accuracy and cost of 
integrating an SDE system depends on the number of stochastic processes 
generated (size of simulation). A key issue in using SDEs for practical 
applications is the estimation of model parameters. This is hindered by the 
stochastic nature of the model, which makes the computation of gradients 
unreliable, and by the high computational cost of integrating SDEs by 
numerical methods. The objective of this work is to develop a gradient-based 
parameter estimation algorithm for SDE models, that provides reliable values of 
the parameters and their confidence intervals at reasonable computational cost. 
 In section 2, the parameter estimation algorithm is outlined. The 
application of the algorithm to a model of polymer rheology is demonstrated in 
section 3, and in section 4, a global uncertainty analysis method for evaluating 
confidence intervals is described. 

2. Methodology and algorithm 

The algorithm is a modification of the LM algorithm [6], which takes into 
account the stochastic nature of the problem by careful consideration of the 
reliability of the gradients, and by using a variable simulation size.  
 The parameter-estimation problem is formulated using the MLE 
objective function: 
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where NE is the number of experiments performed and NMi is the number of 
measurements in the ith experiment; the LM algorithm is specifically designed 
to solve least-square problems. 
 The algorithm requires reliable gradients to successfully identify 
optimal parameters. The issue of gradient calculation is addressed by deriving 
the sensitivity equations for the SDE model. The original SDEs are 
differentiated with respect to the model parameters, and the augmented SDE 
system is then integrated to obtain the sensitivities of the state variables. The 
importance of this is illustrated in the following example, using the stochastic 
model of polymer-melt rheology (described in the next section) as a 
representative stochastic process. A comparison of analytical gradients, derived 
using the sensitivity equations, with numerical gradients, derived using the 
central finite-difference method, for different step sizes h (Figure 1) reveals that 
the numerical gradients are noisier. The numerical gradient with h = 0.1 appears 
unstable as the small step size amplifies the noise of the model predictions, and 
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results in a gradient with the wrong sign for part of the trajectory. For the larger 
step size h = 0.5, even though the trajectories follow the same shape as the 
analytical gradient, the same accuracy cannot be achieved. Moreover, the 
analytical gradient calculations, which involve one integration of the augmented 
SDE, require about 40% less computational time than the numerical gradient 
calculations which involve two integrations of the SDE model. As a result, the 
analytical gradients are more reliable, less noisy and faster to compute. 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Numerical gradients (h = 0.1, 0.5) compared with analytical gradients from sensitivity 
equations 

 The stochastic nature of the problem reduces computational efficiency; 
a large simulation size is required to obtain reliable model predictions. This 
issue is addressed by varying the simulation size from iteration to iteration. In 
the LM algorithm, the size of the step to the next iterate is determined by the 
trust-region radius Δ. The magnitude of Δ is kept constant or increased after 
successful iterations, while it is reduced after unsuccessful iterations. In this 
work, upon each successful iteration the simulation size is kept constant or 
decreased; when the contrary happens, the simulation size is increased to 
improve the accuracy of the predictions of the state variables and the reliability 
of the gradients so as to increase the probability of identifying the optimal 
solution. As a result, at each iteration the simulation size is computed as an 
inverse function of Δ, increasing computational efficiency. The function used in 
this work is size = 5000 ||D θ ||Δ-1, where ||·|| denotes the Euclidean norm, and D 
is a diagonal scaling matrix (for details, see page 111 of Reference 6). 
 

3. Application of algorithm to a stochastic model of polymer rheology 

The parameter estimation algorithm has been applied to a stochastic model of 
polymer melt rheology [1]. In this model, the role of the SDEs is to mimic the 
random orientation of polymer chains under flow conditions, known as 
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reptation. The model is used to predict transient viscosity under different shear 
and extensional flow conditions. The key stochastic variable of the model is the 
random orientation vector u; its stochastic process takes the form:  
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where κ is the transpose of the velocity gradient tensor and D is the orientation 
diffusion coefficient associated with the reptation motion. The stress tensor, τ, is 
then obtained as a function of the expectation of the dyadic product uu at time t. 
The transient shear viscosity η+ and extensional viscosity μ+ are then given by 
simple functions of the appropriate components of the stress tensor and the 
shear rate or strain rate (respectively). The maximum likelihood objective 
function is then computed as a function of the least-square of the difference 
between model-predicted viscosity and experimental data. There are three 
model parameters which are related to the dynamic properties as well as the 
architecture of polymer chains. They are:  
• the plateau modulus, G0

N: this is the plateau value of the shear relaxation 
modulus, and it characterises the transition of the dynamics of polymer chain 
motion from vibration at short time scales to reptation at long time scales. 

• the reptation time, τd: this is a characteristic relaxation time for polymer 
chains to diffuse away from an imaginary confined tube imposed by 
surrounding polymer chains. 

• the maximum stretching ratio, λmax: this is the ratio of the contour length of a 
fully stretched polymer chain to the length when it is in its equilibrium state. 

 The ability of the algorithm to identify known parameter values is 
tested by considering a “model” polymer. Pseudo-experimental data are 
generated from simulations using known parameter values at three different 
extensional rates, and noise, representing experimental error, is added to the 
data. Starting from parameter values some distance away from the true values, 
the algorithm estimates parameter values that are close to the true ones, both for 
fixed and variable-size simulations (see Table 1). The quality of fits to the data 
(Figure 2) is very high. However, the computational expense is 50% smaller 
when using a variable size, compared to the case of fixed size.  
 

Table 1: Parameters used to generate pseudo-experimental data, starting point of the algorithm, 
parameters estimated by the algorithm and the computational expense (runs were performed on a 

hyperthreaded Pentium 4 3.4GHz computer running on RHEL 3 system).. 

Parameter G0
N (Pa) τd (s) λmax CPU (s) 

“True” parameter 9876 54.3 2.1 ----- 
Starting point 1000 100 10 ----- 
Fixed size (= 100,000) 9894 53.44 2.130 49104 
Variable size (min 10, max 100,000) 9774 55.00 2.090 99754 
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Figure 2: Model-predicted viscosity (lines) and pseudo-experimental data (symbols) for a model 
polymer at three different extensional rates. The fits for both fixed and variable size are shown, 
but they are so close that they are indistinguishable. 

 The algorithm is then applied to polystyrene data [7] at four different 
shear rates. Figure 3 shows the parameters estimated and the fits to the 
experimental shear viscosity. The model-predicted and experimental trajectories 
are in qualitative agreement while, quantitatively, the fits are better at shear rate 
= 1.0 s-1 than at higher rates, as is expected for this model. 

Figure 3: Parameter estimates for a polystyrene sample and the fits to experimental data 

4. Evaluating the confidence intervals of the parameters 

Uncertainty in the parameters estimated arises from experimental error and from 
the stochastic nature of the model. To obtain confidence intervals, a global 
uncertainty analysis is proposed in this work. A number of normally distributed 
experimental trajectories are first sampled, and the cumulative probability that a 
given set of parameters is optimal is then estimated, based on knowledge of the 
simulation noise (±0.5% for size = 100,000). This is repeated for a set of 
uniformly distributed parameters values, and a distribution of the probability 
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that any given parameter value is optimal is obtained.  This then gives an 
estimate of the expected parameters values and their confidence intervals. 
 Table 3 shows the results of the global uncertainty analysis for a sample 
of polyacrylate at extensional rate = 1.0 s-1.  The optimal parameters predicted 
by the algorithm are close to the expected value of the parameters, and the 95% 
confidence intervals are small, ranging between 2 to 7% of the parameter values. 
 

Table 3: Results of global uncertainty analysis for polyacrylate at extensional rate = 1.0 s-1 

Parameter Optimal value Expected value 95% confidence interval 
G0

N (Pa) 24413  24677 [23208, 26475] 
τd (s) 69.71  69.48 [68.27, 71.13] 
λmax 15.70 15.62 [15.06, 16.87] 

5. Conclusions 

SDEs have found many applications in the modelling of complex systems 
subjected to randomness, but pose problems for parameter estimation due to 
their stochastic nature. In this work, a reliable parameter estimation algorithm 
for SDE models has been developed and implemented. This is based on a 
modified Levenberg-Marquardt algorithm, in which the simulation  size is 
varied to improve computational performance. The gradients required for the 
successful identification of the parameters are derived from stochastic 
sensitivity equations. To quantify the uncertainty in the parameters due to 
experimental error and the stochastic nature of the model, a global uncertainty 
analysis is proposed. The application of this algorithm to a stochastic model of 
polymer rheology has been successfully demonstrated. 
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