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Chapter 1

Parameter estimation for stochastic differential
equations: algorithm and application to polymer
melt rheology

Bernardino Pereira Lo, Andrew J. Haslam, and Claire S. Adjiman’

Centre for Process Systems Engineering, Department of Chemical Engineering,
Imperial College London, London SW7 2AZ, UK

A parameter estimation algorithm for stochastic differential equation (SDE)
systems is proposed. The problem is formulated using the maximum likelihood
(MLE) objective function, and a modified Levenberg-Marquardt (LM)
algorithm is developed for its solution. Stochastic sensitivity equations are
derived and used in order to obtain reliable parameter estimates. Computational
efficiency is addressed by varying the simulation size according to the
proximity of the current iterate to the optimal solution, as indicated by the
magnitude of the trust-region radius. To evaluate the confidence intervals of the
parameters, a global uncertainty analysis is proposed, which is based on
sampling and accounts for experimental uncertainty and model noise. The
algorithm is applied to a stochastic model of polymer rheology.

1. Introduction

SDEs have gained popularity in recent years, for their ability to model systems
that are subjected to fluctuations. The general form of an SDE is:

dX, = u(t, X ;0)dt + (1, X ;0)dW, (1)

where ¢ is time, X, is the state variable of interest, 4 and ¢ are the drift and
diffusion term respectively, € is a vector of model parameters and W, is a
Gaussian N(0,4r"%) noise term (a stochastic process). Applications of SDEs
include material modelling (e.g. polymer rheology), environmental pollution
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models, reactor systems, and finance. [1-4] Due to the existence of the noise
term it is difficult to obtain closed-form solutions for most SDEs, and numerical
methods such as the Euler and the Taylor schemes are required to calculate
discrete-time trajectories of the state variables. [5] The accuracy and cost of
integrating an SDE system depends on the number of stochastic processes
generated (size of simulation). A key issue in using SDEs for practical
applications is the estimation of model parameters. This is hindered by the
stochastic nature of the model, which makes the computation of gradients
unreliable, and by the high computational cost of integrating SDEs by
numerical methods. The objective of this work is to develop a gradient-based
parameter estimation algorithm for SDE models, that provides reliable values of
the parameters and their confidence intervals at reasonable computational cost.

In section 2, the parameter estimation algorithm is outlined. The
application of the algorithm to a model of polymer rheology is demonstrated in
section 3, and in section 4, a global uncertainty analysis method for evaluating
confidence intervals is described.

2. Methodology and algorithm

The algorithm is a modification of the LM algorithm [6], which takes into
account the stochastic nature of the problem by careful consideration of the
reliability of the gradients, and by using a variable simulation size.

The parameter-estimation problem is formulated using the MLE
objective function:

NE NM; X P () — )y model 1.0 2
2 2 i=1 j=I ‘ O-i/'

where NE is the number of experiments performed and NM; is the number of
measurements in the i experiment; the LM algorithm is specifically designed
to solve least-square problems.

The algorithm requires reliable gradients to successfully identify
optimal parameters. The issue of gradient calculation is addressed by deriving
the sensitivity equations for the SDE model. The original SDEs are
differentiated with respect to the model parameters, and the augmented SDE
system is then integrated to obtain the sensitivities of the state variables. The
importance of this is illustrated in the following example, using the stochastic
model of polymer-melt rheology (described in the next section) as a
representative stochastic process. A comparison of analytical gradients, derived
using the sensitivity equations, with numerical gradients, derived using the
central finite-difference method, for different step sizes / (Figure 1) reveals that
the numerical gradients are noisier. The numerical gradient with 4 = 0.1 appears
unstable as the small step size amplifies the noise of the model predictions, and
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results in a gradient with the wrong sign for part of the trajectory. For the larger
step size & = 0.5, even though the trajectories follow the same shape as the
analytical gradient, the same accuracy cannot be achieved. Moreover, the
analytical gradient calculations, which involve one integration of the augmented
SDE, require about 40% less computational time than the numerical gradient
calculations which involve two integrations of the SDE model. As a result, the
analytical gradients are more reliable, less noisy and faster to compute.
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Figure 1: Numerical gradients (4 = 0.1, 0.5) compared with analytical gradients from sensitivity
equations

The stochastic nature of the problem reduces computational efficiency;
a large simulation size is required to obtain reliable model predictions. This
issue is addressed by varying the simulation size from iteration to iteration. In
the LM algorithm, the size of the step to the next iterate is determined by the
trust-region radius A. The magnitude of A is kept constant or increased after
successful iterations, while it is reduced after unsuccessful iterations. In this
work, upon each successful iteration the simulation size is kept constant or
decreased; when the contrary happens, the simulation size is increased to
improve the accuracy of the predictions of the state variables and the reliability
of the gradients so as to increase the probability of identifying the optimal
solution. As a result, at each iteration the simulation size is computed as an
inverse function of 4, increasing computational efficiency. The function used in
this work is size = 5000 |9 0|4, where ||-|| denotes the Euclidean norm, and 2
is a diagonal scaling matrix (for details, see page 111 of Reference 6).

3. Application of algorithm to a stochastic model of polymer rheology
The parameter estimation algorithm has been applied to a stochastic model of

polymer melt rheology [1]. In this model, the role of the SDEs is to mimic the
random orientation of polymer chains under flow conditions, known as
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reptation. The model is used to predict transient viscosity under different shear
and extensional flow conditions. The key stochastic variable of the model is the
random orientation vector u; its stochastic process takes the form:

25 aw, (3)

2
t

du, =||1-——= |-K-u,—2Du, |dt ++2D| 1-
u

where K is the transpose of the velocity gradient tensor and D is the orientation
diffusion coefficient associated with the reptation motion. The stress tensor, 7, is
then obtained as a function of the expectation of the dyadic product uu at time ¢.
The transient shear viscosity 77 and extensional viscosity 4 are then given by
simple functions of the appropriate components of the stress tensor and the
shear rate or strain rate (respectively). The maximum likelihood objective
function is then computed as a function of the least-square of the difference
between model-predicted viscosity and experimental data. There are three
model parameters which are related to the dynamic properties as well as the
architecture of polymer chains. They are:

e the plateau modulus, G’y: this is the plateau value of the shear relaxation
modulus, and it characterises the transition of the dynamics of polymer chain
motion from vibration at short time scales to reptation at long time scales.

e the reptation time, 7, this is a characteristic relaxation time for polymer
chains to diffuse away from an imaginary confined tube imposed by
surrounding polymer chains.

e the maximum stretching ratio, A, this is the ratio of the contour length of a
fully stretched polymer chain to the length when it is in its equilibrium state.

The ability of the algorithm to identify known parameter values is
tested by considering a “model” polymer. Pseudo-experimental data are
generated from simulations using known parameter values at three different
extensional rates, and noise, representing experimental error, is added to the
data. Starting from parameter values some distance away from the true values,
the algorithm estimates parameter values that are close to the true ones, both for
fixed and variable-size simulations (see Table 1). The quality of fits to the data

(Figure 2) is very high. However, the computational expense is 50% smaller

when using a variable size, compared to the case of fixed size.

Table 1: Parameters used to generate pseudo-experimental data, starting point of the algorithm,
parameters estimated by the algorithm and the computational expense (runs were performed on a
hyperthreaded Pentium 4 3.4GHz computer running on RHEL 3 system)..

Parameter G’y (Pa) 7, (s) Momax CPU (s)
“True” parameter 9876 543 21 -
Starting point 1000 100 0 -
Fixed size (= 100,000) 9894 53.44 2.130 49104

Variable size (min 10, max 100,000) 9774 55.00 2.090 99754
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Figure 2: Model-predicted viscosity (lines) and pseudo-experimental data (symbols) for a model
polymer at three different extensional rates. The fits for both fixed and variable size are shown,
but they are so close that they are indistinguishable.

The algorithm is then applied to polystyrene data [7] at four different
shear rates. Figure 3 shows the parameters estimated and the fits to the
experimental shear viscosity. The model-predicted and experimental trajectories
are in qualitative agreement while, quantitatively, the fits are better at shear rate
= 1.0 s than at higher rates, as is expected for this model.
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Figure 3: Parameter estimates for a polystyrene sample and the fits to experimental data

4. Evaluating the confidence intervals of the parameters

Uncertainty in the parameters estimated arises from experimental error and from
the stochastic nature of the model. To obtain confidence intervals, a global
uncertainty analysis is proposed in this work. A number of normally distributed
experimental trajectories are first sampled, and the cumulative probability that a
given set of parameters is optimal is then estimated, based on knowledge of the
simulation noise (+0.5% for size = 100,000). This is repeated for a set of
uniformly distributed parameters values, and a distribution of the probability
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that any given parameter value is optimal is obtained. This then gives an
estimate of the expected parameters values and their confidence intervals.

Table 3 shows the results of the global uncertainty analysis for a sample
of polyacrylate at extensional rate = 1.0 s'. The optimal parameters predicted
by the algorithm are close to the expected value of the parameters, and the 95%
confidence intervals are small, ranging between 2 to 7% of the parameter values.

Table 3: Results of global uncertainty analysis for polyacrylate at extensional rate = 1.0 s

Parameter Optimal value Expected value 95% confidence interval
G’y (Pa) 24413 24677 [23208, 26475]
7;(s) 69.71 69.48 [68.27,71.13]

A 15.70 15.62 [15.06, 16.87]

5. Conclusions

SDEs have found many applications in the modelling of complex systems
subjected to randomness, but pose problems for parameter estimation due to
their stochastic nature. In this work, a reliable parameter estimation algorithm
for SDE models has been developed and implemented. This is based on a
modified Levenberg-Marquardt algorithm, in which the simulation size is
varied to improve computational performance. The gradients required for the
successful identification of the parameters are derived from stochastic
sensitivity equations. To quantify the uncertainty in the parameters due to
experimental error and the stochastic nature of the model, a global uncertainty
analysis is proposed. The application of this algorithm to a stochastic model of
polymer rheology has been successfully demonstrated.
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