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Abstract 
Simulated Moving Bed (SMB) processes are widely used in sugar, petrochemical, and 
pharmaceutical industries. However, systematic optimization of SMB, especially 
finding the optimal zone configuration, is still a challenging problem. This paper 
proposes a simultaneous, fully discretized approach with an SMB superstructure using 
an interior-point solver. In case studies of the linear and bi-Langmuir isotherms, optimal 
zone configurations have been successfully obtained without introducing discrete 
variables. 
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1. Introduction 
Simulated Moving Bed (SMB) chromatographic process, originally developed and 
commercialized by UOP, performs a continuous and pseudo-countercurrent operation. 
SMB has been gaining more attention in food, sugar, and petrochemical industries. In 
recent years, SMB has been widely used as an enantiomeric separation technique in the 
pharmaceutical industry. 
An SMB system consists of multiple columns connected to each other in a circle, as 
shown in Fig. 1. The feed and desorbent are supplied continuously, and simultaneously 
the raffinate and extract products are withdrawn also continuously. Here, instead of 
actual movement of the adsorbent, the countercurrent operation is “simulated” by 
intermittently switching the four streams, desorbent, extract, feed, and raffinate, in the 
direction of the liquid flow.  The operation of an SMB system is uniquely determined 
by the switching interval (step time) and the four velocities of the four zones, I, II, III, 
and IV. Furthermore, in SMB processes with more than 4 columns, the relative positions 
of the four streams are not unique, as shown in Fig. 2. This creates a large number of 
different zone configurations. As a consequence, we need to deal with quite a large 
number of choices in designing SMB systems. 
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Figure 1. Schematic diagram of SMB: 8 column type with (NI,NII,NIII,NIV)=(2,2,2,2) 

Some optimization techniques have been found to be useful in finding successful 
designs of SMB systems. Newton-based nonlinear programming approaches as well as 
meta-heuristic optimization approaches have been applied to SMB systems. In our 
previous work [1], we reported advantages of optimization with a spatial and temporal 
discretization using interior-point methods for SMB and PowerFeed processes, but did 
not consider optimal configuration of zones. Zhang et al. [2] reported the multi-
objective optimization of SMB and VARICOL processes of up to 6 columns with 
finding optimal zone configurations. They employed a genetic algorithm to explore 
every possible zone configuration. In addition, superstructure formulations have been 
considered in Karlsson [3], where system of up to three columns system were optimized, 
and Toumi [4], where a relaxed Nonlinear Programming (NLP) formulation was 
developed for SMB and VARICOL. Nevertheless, the general problem of optimal zone 
configuration, determined for multiple columns with a fast NLP algorithm, still remains. 
In this work, we develop such an optimization approach for zone configuration by using 
a superstructure of SMB alternative systems. We apply a full discretization formulation, 
where a central finite difference is used for the spatial discretization and Radau 
collocation on finite elements is used for the temporal discretization [1]. The discretized 
equations are incorporated within a large-scale NLP problem, which is solved using an 
interior-point solver, IPOPT [5]. The reliability and efficiency of our approach are 
demonstrated with several case studies in Section 4. 

2. Mathematical model 
We employ the following model: 
Mass balance in the liquid: 
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Mass balance in the adsorbent: 
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Figure 2. Examples of different zone configurations; with 8 columns, there are 35 configurations. 
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where bε  is the void fraction, ),(, txC in  is the concentration in the liquid phase of 

component i in column n, ),(, txq in  is the concentration in the solid phase,   mu is the 

superficial liquid velocity in Zone m, ),(, txC eq
in is the equilibrium concentration in the 

liquid phase, ),(, txqeq
in  is the equilibrium concentration in the solid phase, Kapps,i and 

Kappl,i are the solid-phase based and liquid-phase based mass transfer coefficient, 
respectively. The subscripts i correspond to chemical components, n the index of 
columns, and m the zone number, I, II, III, and IV, as shown in Fig. 1. Ncolumn is the 
number of columns, Nm is the number of columns in Zone m with 
NI+NII+NIII+NIV=NColumn. The cyclic steady state is given by: 
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11  ),()0,( ,1, -,..., Nntxqxq Columnstepinin == + ,         ),()0,( ,1, stepiiN txqxq
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Also continuity constraints of concentrations and velocities between columns are 
enforced. For further details of the modeling, refer [1].  
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3. Problem formulation 
We construct a superstructure of SMB that covers all possible zone configurations with 
the assumption that there is at least one column in each zone (Fig. 3). Then the 
following optimization problem is considered: 
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ul ≤ uj(t) ≤ uu , ColumnNj ...1=           (11) 
where tstep  is the valve switching interval, or step time, Purmin and Recmin are the purity 
and recovery requirements of the desired product which should be recovered in the 
extract stream respectively. The desired product is denoted by the index k. CF,k is  feed 
concentration of component k, and CEj,k(t) is concentrations of component k in the j-th 
extract stream. uu and ul are the upper and lower bounds on the zone velocities, 
respectively. The variables are constrained by the model equations discussed in Section 
1. We now extend the approach in [1] to the more extensive problem stated above and 
shown in Fig. 3. 

4. Case studies 
As the first case study, we consider the separation of fructose and glucose, which is 
typically modeled by the linear isotherm [6]: 
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In this example, the total length of columns LNColumn ×  is set to 8 m, and we choose 
ul=0 m/h, uu=8 m/h, PurMin=0.9, and RecMin=0.8. Also, as a more challenging example,  
we consider the bi-Langumuir isotherm which is suitable for modeling of enantiomer 
separations [7]: 
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Figure 3. 8 column superstructure for optimal zone configuration problem. 

 
Table1.  Feed velocity maximization of 1,1'-bi-2 naphthol enantiomeric separation (bi-Langmuir 
isotherm) for 12 columns with different feed compositions. For uFj, only the dominant flow is 
shown in each case. The discretized NLP formulation has 27139 variables and 27110 equalities. 

Feed composition (fructose:glucose) 80:20 % 50:50 % 20:80 % 

uFj  [m/h] uF6=1.9008 uF6=1.2366 uF6=0.8712 

(NI, NII, NIII, NIV)   (3,4,4,1) (2,5,4,1) (2,5,4,1) 

Number of iterations 61 74 115 

CPU time [min] 3.28 3.80 6.92 

 
with 84.0=× LNColumn m, ul=0 m/h, uu=6.424 m/h, PurMin=0.97, and RecMin=0.8. 
After discretization, we implement the above optimization problems within  the AMPL 
modeling environment. The optimization problem is solved using IPOPT. All 
computations are carried out on a 3.2 GHz Xeon processor. 
As our first case study, we consider maximizing the sum of all feed streams, ∑ j Fju . 

The results of the nonlinear isotherm with different feed compositions are tabulated in 
Table 1.  As can be seen in the table, the optimal zone configuration is dependent on the 
feed composition. It is interesting that only one stream of each kind (uFj, uEj, and uRj) has 
a dominant nonzero flow and the rest have negligible values, typically less than 0.01% 
of the dominant flow. This is observed throughout our case studies, as long as 
appropriate tolerance and scaling are chosen. Therefore we are able to obtain the 
optimal zone configuration with an NLP formulation and without the addition of logic 
constraints or integer variables. This follows because streams of different types should 
be placed as far away as possible from each other to prevent contamination; the 
optimizer successfully finds such configurations.  
We also investigate how the objective function influences the optimal solution. (Table 
2). As the minimization of the desorbent velocity is introduced in the objective function, 
NIV increases. This is because reducing the desorbent velocity requires a corresponding 
increase of the recycle stream, which could lead to elimination of the faster component 
at the downstream end of Zone IV that would contaminate the extract. To compensate, 
the optimizer also increases NIV to prevent the elimination of the faster component. 
Again, only one stream of each kind is dominant and the rest are negligible. 
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Table  2. Optimization of fructose and glucose separation (linear isotherm) for 8 columns with 
different objective functions. For uFj, only the dominant flow is shown in each case. The 
discretized NLP formulation has 34731 variables and 34714 equalities. 

Objective function  F ∑−
j Fju  ∑ +−

j DFj uu 5.0  Du * 

uFj  [m/h] uF3=1.1584 uF3=0.6233 uF3=0.5000 

uD  [m/h] 3.50 (fixed) 0.6878 0.4773 

(NI, NII, NIII, NIV ) (1,3,3,1) (2,2,2,2) (2,2,2,2) 

CPU time [min] 1.73 2.81 4.00 

Number of iterations 57 88 113 

     (* constrained with∑ =
j Fju 5.0 ) 

5. Conclusions and future work 
A fully-discretized NLP formulation with an SMB superstructure and interior-point 
solver has been found to be efficient and reliable for the optimal zone configuration 
problem. Moreover, discrete variables seem not to be required.  In our future work, 
multi-component separations and more complex operations will be investigated. 
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