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Abstract

This paper describes a computational approach for performing structural
optimization in process flowsheets that are described by implicit models in a
sequential modular process simulator or in a third party program. The key
points are how to select the design variables, how to deal with implicit
equations and variables, and how to generate a Master MILP problem including
all the relevant information.

Keywords: Disyuntive Programming, Process Synthesis, Process Simulators.
1. Introduction

Generalized Disjunctive Programming is becoming increasingly popular as a
solution technique for optimization problems involving discrete decisions, and
it has been widely applied in design or retrofit of chemical processes both at the
level of structural design (a given equipment appear or not in the final
configuration) or at the level of equipment (i.e. discontinuous cost functions
defined over the design variables sizes, etc).

In order to avoid solving very large problems, it is common to use shortcut or
aggregated models, which try to capture the ‘main’ aspects of the process.
However this is also a limitation that could produce important deviations from
the actual process behavior.

On the other hand, Modular Process Simulators include reliable and robust
models for almost any unit operation, with huge databases that include, physical
properties, correlations in order to estimate unknown properties or other
parameter like the transport coefficients and a large variety of thermodynamic
models that cover almost any known application. But even more important,
Modular Simulators include especially tailored numerical methods specifically
developed for each unit operation instead of a generic solver, which greatly
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improves the numerical robustness of these simulators (maybe at the expense of
slowing down the convergence of the system).

Nowadays practically all modular process simulators include optimization
capabilities; however, they are constrained to optimize only operational
conditions for a fixed flowsheet topology with only smooth external constraints.
Capabilities like structural optimization, or the possibility of using
discontinuous external constrains like costs functions defined in terms of size
variables or in general any conditional or discrete constrain are not included.

In this paper we show different algorithms to integrate GDP and Process
simulators, not only at the level of structural decisions, but with any conditional
constraint as for example discontinuous costs functions. The use of process
simulators in a modular environment for solving MINLP has been addressed by
Diwekar et al. (1992) Reneaume et al.(1995) and Diaz and Bandoni (1996). All
these works are based on the augmented penalty/equality relaxation outer-
approximation algorithm. Kravanja and Grossmann (1996) followed a similar
approach, adapting the modeling/decomposition (M/D) strategy developed by
Kocis and Grossmann (1987) that can be considered a precursor of generalized
disjunctive programming.

2. GDP formulation in a Modular Process Simulator Environment.

When we defined an optimization model with conditional equations in a
modular environment we can differentiate three kinds of variables: 1. the design
or independent variables (x). These are equal to the degrees of freedom of the
problem and form the set of variables over which the optimizer has full control.
2. Variables that are calculated by the simulator (u) and that in general can only
be read. 3. Variables that must be fixed for a given topology in the flowsheet —
for example number of trays in a distillation column, binary or integer variables,
etc- but that can be manipulated by the solver in each iteration. In the same way,
we can differentiate two classes of equations: 1. implicit equations that are all
the equations solved by each of the modules in the process simulator (or any
other external module added to the program). These equations are usually
considered “black box input-output” relationships because we have not access
either the equations or the way in which those equations are internally treated.
However, there is an important danger hidden in the equations introduced in a
gradient based optimization environment: They could include points in where
some of these equations are non differentiable, therefore we cannot consider
these systems like completely black boxes but we should have at least a general
knowledge of the system of equations in order to anticipate this behavior and
correctly model the process. 2. External or explicit equations over which we
have a complete control. The disjunctive formulation of the problem can then be
written as follows:
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min : z = f(x,u, p) - q

Yi,j
st rp(xu,p)=0 hy; j(x.u,p) =0 Q(Y)=TRUE
rg(x,u,p) =0 V| hg (xu,p)=0|V jeJ xe X cR”; (1)
<0 ieD| " m
sg(x,u,p)< gEij(x’u’p)SO Ye{True, False}
P=Di

Where the index I makes reference to implicit equations and the index E makes
reference to the explicit ones.

Starting with the problem formulated in equation (1) it is possible to follow
different alternatives.

1. - If there are no implicit equations inside the disjunctions then the problem
can be directly reformulated to an MINLP using a big-M or a convex hull
reformulation, Grossmann, (2002). If the resulting MINLP (or even the original
GDP) is solved using a branch and bound strategy then no major problems are
expected because the problem is reduced to solve a set of NLPs with some
subset of binary (Boolean) variables fixed at each branch of the tree during the
search. However, this approach could be very time consuming due to the
potential large number of NLPs that must be solved (remember that each NLP
include the convergence of the flowsheet inside the process simulator and
although it is ‘acyclic’ because all the recycles are specify as external
constrains, it could take an important amount of time). If an algorithm like outer
approximation is used then we must generate a Master MILP problem. In this
case, it is necessary to perform equation linearizations in terms of independent
variables. In the case of explicit equations it can be done analytically if the
functional relationship between x and u variables is known, but usually that
relationship is not known and then a numerical approach in where the value of
the output variables (u) are calculated for an adequate perturbation of the input
variables (x) must be used.

2.- If the implicit equations appear also in the disjunctions then the direct
reformulation to an MI(N)LP problem has very bad performance. The reason is
that zero flows in non-existing units could prevent the simulator to converge
and then the entire optimization procedure fail as well. The best option in this
case is developing an initialization strategy in order to get information for the
first master problem. Two options are available: 1 solving a ‘set covering’
problem to get the minimum number of feasible flowsheets that include all the
alternatives (Turkay and Grossmann, 1996) or develop a sub-Lagrangian
optimization (Kravanja and Grossmann, (1996)).

In both alternatives, the Master problem is solved in the projection space of
independent variables, where the relation between implicit and independent
variables can be obtained directly from the simulator if the jacobian matrix is
available or by an adequate numerical perturbation in other case.
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3. Example

This example is a modification of the problem proposed by Seider et al, (1999)
and consists of the design of a natural gas plant. It is required to process a
natural gas stream at 5000 kmol/h, 20°C and 1000 kPa. The gaseous product is
required at 1500 kPa with at least 4900 kmol/h of nC4 and lighter products and a
combined mole porcentage of at least 99.5%.

In this example the process simulator, HYSYS.Plant®, performs the basic
calculations at the flowsheet level, including all mass and energy balances and
properties estimation. However, size and cost calculations, that depend on the
type of equipment are calculated as implicit external functions developed in
Matlab®, but with all basic data extracted from HYSYS through its COM
communication capability. All the process is controlled from Matlab that
contain the disjunctive formulation and controls all the solution procedure. The
optimizer is also external to the process simulator and controlled by Matlab as
well.

Note that although in the process simulator some equipments are represented by
a general unit operation (i.e. heat exchanger) the cost and size of those
equipments depend on actual equipment; an air cooler is different from a
floating head tube and shell exchanger. Therefore there are two kinds of implicit
equations over which we have different control. The implicit equations
associated to the basic flowsheet and the size and cost equations over which we
have full control. The reasons of using these equations as implicit are : 1. They
decrease the dimensionality of the problem at the optimization level and 2. the
numerical behavior is better when the model is solved with a decomposition
algorithm because linearizations are constrained to the input-output variables
and not to all the intermediate non-convex equations reducing the possible
effects of cutting parts of the feasible region due to linearizations.

A Disjunctive conceptual representation of the model showing the different
alternatives is as follow:

min : TAC =0.2 (investment cost) + Utilities _cost

Y _electric _driver } {Y _combustion _driver }

v
| cost _driver = f(power) | | cost _driver = f(power)

Y air coolerl Y floating head coolerl
cost _coolerl= f(A4)) cost _coolerl= f(A4))
size _coolerl = f(TS0,TS1, Tinair, |v| size coolerl = f(TSO0,TS1, Tinair,
Toutair,Qcy) Toutair,Qc)
i CUc; =0 Z cool _water | |Z _water
|:CUCI =Qc;- ch} Y |:CUCI =Qc;- Cw}
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[Y cooler2 RI1 Y cooler2 R2 Y cooler2 R3
CUcy =CR1-Qc, CUcy =CR2-Qc, CUcy =CR2:Qc,
cost _cooler2 = f(A,) |v|cost_cooler2= f(A4,) V| cost _cooler2 = f(A4;)
size _cooler2 = f(TS1, size _cooler2 = f(TS1, size _cooler2 = f(TS1,

| 752, TinR1, ToutR1,0cy) | | TS2,TinR2, ToutR2,0c,) | | TS2,TinR3, ToutR3,Qc,)

Y heaterl _HotWater
CUhy =CHW - QOhy
V| cost _heaterl= f(Ap)
size _heaterl= f(TS3,TS8, TinHW ,
ToutHW ,Qhy )

Y _heaterl LP
CUhy =CLP-QOhy
cost _heaterl= f(A;)
| size _ heaterl= f(TS3,TS8,TLP,Oh; )

Y _condenserw Y condenserRl1 Y condenserR2 Y condenserR3
CUcond =Cw-Qcd CUcond =CR1-Qcd CUcond =CR2-Qcd CUcond =CR3-Qcd
cost _Cd = f(Auppa) | M| cost _Cd = f(Apppa) || cost _Co= f(Apppa) | M| cost _Cd = f(Aeppa)

size= f(TV1,TLl, size = f(TV1,TLl, size= f(TV1,TL], size= f(TV1,TLl,
| Twin, Twout, Qcd) TR1in, TR1out, Qcd) TR2in,TR20ut,Qcd) TR3in, TR3out,Qcd)
(Y _reboilerMP Y reboilerHP
CUreb = CMP-Qreb CUreb = CMP-Qreb
v
cost_Reb=f(Ap) | cost_Reb=f(4,.,)

| size_reb=f(TL2.TV2,Typ,Qreb) | | size _reb= f(TL2.TV2,Typ,Qreb)

cost _compressor = f(power)
size _ flash; = f(Volume flow and density of output streams) i=1,2
costiﬂash=f(Hi’Di) i=12

cost _column=costvessel(Hc, Dc) +costint ernals

Q_Heater1
Q_cooler1 Q_cooler2
s8 |
Heater1 GAS
Flash1 MIX-100
s1 s2
Cooler1 Cooler2 " Didilate
Q_Heater2
— — Flash2
s4 85
Heater2 ’_Q—(‘: "
Feed
1
COMP_DUTY
Compressor Nitrogen 105.5; Methane 4138.0
i I
Feed composition (kmol/h): Ethane 435.5; Propane 205.5 Q_Reb
n-C4 70.5; n-C5 28.5;n-C6 16.5 Bottoms
Column

Figure 1. Basic flowsheet of the Gas Natural Plant in the example
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Previous problem was solved using a mixed big-M convex hull (for the linear
equations) reformulation to a MINLP problem. Cost correlations were taken
from Turton el al (1998). Data for utiliy costs and heat transfer coefficients was
taken from the Database of the program DISTILL®.

The relaxed problem initial problem produce an objective value of 102.15-10*
$/year, only a 12.7% lower than the optimal value 117.01-10* $/year.
Convergence is obtained in only one major iteration.

The optimal solution include driver of the compressor must be a combustion
engine. Refrigeration in coolers must be done with cool water and RI1
refrigerant respectively. Hot water is used as heating media in heater 1. The
condenser in the distillation column should use refrigerant R3 and the reboiler
must be heated with medium pressure vapor steam.
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