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Abstract 

This paper describes a computational approach for performing structural 
optimization in process flowsheets that are described by implicit models in a 
sequential modular process simulator or in a third party program. The key 
points are how to select the design variables, how to deal with implicit 
equations and variables, and how to generate a Master MILP problem including 
all the relevant information. 
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1. Introduction 

Generalized Disjunctive Programming is becoming increasingly popular as a 
solution technique for optimization problems involving discrete decisions, and 
it has been widely applied in design or retrofit of chemical processes both at the 
level of structural design (a given equipment appear or not in the final 
configuration) or at the level of equipment (i.e. discontinuous cost functions 
defined over the design variables sizes, etc).  
In order to avoid solving very large problems, it is common to use shortcut or 
aggregated models, which try to capture the ‘main’ aspects of the process. 
However this is also a limitation that could produce important deviations from 
the actual process behavior. 
On the other hand, Modular Process Simulators include reliable and robust 
models for almost any unit operation, with huge databases that include, physical 
properties, correlations in order to estimate unknown properties or other 
parameter like the transport coefficients and a large variety of thermodynamic 
models that cover almost any known application. But even more important, 
Modular Simulators include especially tailored numerical methods specifically 
developed for each unit operation instead of a generic solver, which greatly 
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improves the numerical robustness of these simulators (maybe at the expense of 
slowing down the convergence of the system). 
Nowadays practically all modular process simulators include optimization 
capabilities; however, they are constrained to optimize only operational 
conditions for a fixed flowsheet topology with only smooth external constraints. 
Capabilities like structural optimization, or the possibility of using 
discontinuous external constrains like costs functions defined in terms of size 
variables or in general any conditional or discrete constrain are not included.  
In this paper we show different algorithms to integrate GDP and Process 
simulators, not only at the level of structural decisions, but with any conditional 
constraint as for example discontinuous costs functions. The use of process 
simulators in a modular environment for solving MINLP has been addressed by 
Diwekar et al. (1992) Reneaume et al.(1995) and Díaz and Bandoni (1996). All 
these works are based on the augmented penalty/equality relaxation outer-
approximation algorithm. Kravanja and Grossmann (1996) followed a similar 
approach, adapting the modeling/decomposition (M/D) strategy developed by 
Kocis and Grossmann (1987) that can be considered a precursor of generalized 
disjunctive programming.  

2. GDP formulation in a Modular Process Simulator Environment. 

When we defined an optimization model with conditional equations in a 
modular environment we can differentiate three kinds of variables: 1. the design 
or independent variables (x). These are equal to the degrees of freedom of the 
problem and form the set of variables over which the optimizer has full control. 
2. Variables that are calculated by the simulator (u) and that in general can only 
be read. 3. Variables that must be fixed for a given topology in the flowsheet –
for example number of trays in a distillation column, binary or integer variables, 
etc- but that can be manipulated by the solver in each iteration. In the same way, 
we can differentiate two classes of equations: 1. implicit equations that are all 
the equations solved by each of the modules in the process simulator (or any 
other external module added to the program). These equations are usually 
considered “black box input-output” relationships because we have not access 
either the equations or the way in which those equations are internally treated. 
However, there is an important danger hidden in the equations introduced in a 
gradient based optimization environment: They could include points in where 
some of these equations are non differentiable, therefore we cannot consider 
these systems like completely black boxes but we should have at least a general 
knowledge of the system of equations in order to anticipate this behavior and 
correctly model the process. 2. External or explicit equations over which we 
have a complete control. The disjunctive formulation of the problem can then be 
written as follows: 
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Where the index I makes reference to implicit equations and the index E makes 
reference to the explicit ones.  
Starting with the problem formulated in equation (1) it is possible to follow 
different alternatives.  
1. - If there are no implicit equations inside the disjunctions then the problem 
can be directly reformulated to an MINLP using a big-M or a convex hull 
reformulation, Grossmann, (2002). If the resulting MINLP (or even the original 
GDP) is solved using a branch and bound strategy then no major problems are 
expected because the problem is reduced to solve a set of NLPs with some 
subset of binary (Boolean) variables fixed at each branch of the tree during the 
search. However, this approach could be very time consuming due to the 
potential large number of NLPs that must be solved (remember that each NLP 
include the convergence of the flowsheet inside the process simulator and 
although it is ‘acyclic’ because all the recycles are specify as external 
constrains, it could take an important amount of time). If an algorithm like outer 
approximation is used then we must generate a Master MILP problem. In this 
case, it is necessary to perform equation linearizations in terms of independent 
variables. In the case of explicit equations it can be done analytically if the 
functional relationship between x and u variables is known, but usually that 
relationship is not known and then a numerical approach in where the value of 
the output variables (u) are calculated for an adequate perturbation of the input 
variables (x) must be used. 
2.- If the implicit equations appear also in the disjunctions then the direct 
reformulation to an MI(N)LP problem has very bad performance. The reason is 
that zero flows in non-existing units could prevent the simulator to converge 
and then the entire optimization procedure fail as well. The best option in this 
case is developing an initialization strategy in order to get information for the 
first master problem. Two options are available: 1 solving a ‘set covering’ 
problem to get the minimum number of feasible flowsheets that include all the 
alternatives (Turkay and Grossmann, 1996) or develop a sub-Lagrangian 
optimization (Kravanja and Grossmann, (1996)). 
In both alternatives, the Master problem is solved in the projection space of 
independent variables, where the relation between implicit and independent 
variables can be obtained directly from the simulator if the jacobian matrix is 
available or by an adequate numerical perturbation in other case. 
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3. Example 

This example is a modification of the problem proposed by Seider et al, (1999) 
and consists of the design of a natural gas plant. It is required to process a 
natural gas stream at 5000 kmol/h, 20ºC and 1000 kPa. The gaseous product is 
required at 1500 kPa with at least 4900 kmol/h of nC4 and lighter products and a 
combined mole porcentage of at least 99.5%.  
In this example the process simulator, HYSYS.Plant©, performs the basic 
calculations at the flowsheet level, including all mass and energy balances and 
properties estimation. However, size and cost calculations, that depend on the 
type of equipment are calculated as implicit external functions developed in 
Matlab©, but with all basic data extracted from HYSYS through its COM 
communication capability. All the process is controlled from Matlab that 
contain the disjunctive formulation and controls all the solution procedure. The 
optimizer is also external to the process simulator and controlled by Matlab as 
well. 
Note that although in the process simulator some equipments are represented by 
a general unit operation (i.e. heat exchanger) the cost and size of those 
equipments depend on actual equipment; an air cooler is different from a 
floating head tube and shell exchanger. Therefore there are two kinds of implicit 
equations over which we have different control. The implicit equations 
associated to the basic flowsheet and the size and cost equations over which we 
have full control. The reasons of using these equations as implicit are : 1. They 
decrease the dimensionality of the problem at the optimization level and 2. the 
numerical behavior is better when the model is solved with a decomposition 
algorithm because linearizations are constrained to the input-output variables 
and not to all the intermediate non-convex equations reducing the possible 
effects of cutting parts of the feasible region due to linearizations. 
A Disjunctive conceptual representation of the model showing the different 
alternatives is as follow: 
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Figure 1. Basic flowsheet of the Gas Natural Plant in the example  
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Previous problem was solved using a mixed big-M convex hull (for the linear 
equations) reformulation to a MINLP problem. Cost correlations were taken 
from Turton el al (1998). Data for utiliy costs and heat transfer coefficients was 
taken from the Database of the program DISTILL©. 
The relaxed problem initial problem produce an objective value of 102.15·104 
$/year, only a 12.7% lower than the optimal value 117.01·104 $/year. 
Convergence is obtained in only one major iteration. 
The optimal solution include driver of the compressor must be a combustion 
engine. Refrigeration in coolers must be done with cool water and R1 
refrigerant respectively. Hot water is used as heating media in heater 1. The 
condenser in the distillation column should use refrigerant R3 and the reboiler 
must be heated with medium pressure vapor steam.  
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