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Abstract 
The need for improving the operation and control of infrastructure systems has created a 

demand on  optimization methods applicable in the area of complex sociotechnical systems 
operated by a multitude of actors in a setting of decentralized decision making. This paper 
briefly presents main classes of optimization models applied in PSE system operation, 
explores their applicability in infrastructure system operation and stresses the importance 
of multi-level optimization and multi-agent model predictive control.  
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1. Introduction 
Our society and economy have come to rely on services that depend on networked 
infrastructure systems, like highway and railway systems, electricity, water and gas 
supply systems, telecommunication networks, etc. Recent events such as large-scale 
power blackouts have contributed to a renewed awareness of the critical role of 
infrastructures in our economies. Malfunctioning and service outages entail substantial 
social costs and hamper economic productivity. Instead of installing additional capacity, 
more intelligent control of the existing capacity seems a more affordable and promising 
strategy to ensure efficient and reliable operation of critical infrastructures which, 
moreover, stimulates the creation of innovative value-added services such as dynamic 
congestion pricing.  
However, the multitude and variety of nodes and links in these networks as well as the 
multitude and variety of owners, operators, suppliers and users involved have created 
enormously complex systems. This complexity hampers the optimization of the overall 
system performance, due to our limited understanding of infrastructure systems as well 
as to practical limitations in steering the actors’ operational decision making.  
The process systems engineering (PSE) area defined by Grossmann and Westerberg 
(2000) is concerned with the improvement of decision making for the creation and 
operation of the chemical supply chain. As chemical process systems are networked 
systems and the PSE field has enabled tremendous advances in their optimization, it is 
intersting to explore to what extent the methods from PSE may be applied to 
infrastructure system operations. The urgent need for improving the performance of 
infrastructures creates a great demand for innovative optimization and control methods. 
This is the focus of this paper. 

2. Infrastructure definition 
The physical network of an infrastructure system and the social network of actors 
involved in its operation collectively form an interconnected complex network where 
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the actors determine the development and operation of the physical network, and the 
physical network structure and behavior affect the behavior of the actors. An 
infrastructure can thus be seen as a complex socio-technical system, the complexity of 
which is defined by its multi-agent/multi-actor character, the multi-level structure of the 
system, the multi-objective optimization challenge, and the adaptivity of agents and 
actors to changes in their environment. Their non-linear response functions in 
combination with the complex system structure often lead to unpredictable dynamic 
behavior of the system. 
Similar to the hierarchical decomposition of, e.g., the operation of an industrial plant in 
planning, scheduling, and processing functions, infrastructure systems can be viewed as 
multi-level systems, whether hierarchically interconnected or decentralized, with a 
number of operational regimes at the various system levels. Usually, at each level of the 
decomposed system local performance objectives are defined which should, preferably, 
not be restricted to the optimization of local goals, but rather aim at optimally 
contributing to the overall goal. However, the relation between local and overall system 
performance objectives may be rather fuzzy, especially since the overall objective is 
often not defined in detail and concerned with a longer time horizon. The local 
objectives are generally more detailed, concerned with a shorter time horizon and often 
with the specific interests of an individual actor. To facilitate an overall optimization of 
the performance of the system as a whole, a kind of coordinator may be required to 
supervise local decision making in its relation to the overall goal. In the practical 
situation of many infrastructure industries in liberalised markets, however, such central 
co-ordination or supervision no longer exists. Especially in these situations it is a 
challenging task to develop a method for decentralized optimisation that can be 
implemented, e.g., by a regulatory authority, to influence local decision making by 
individual actors in respect of societal interests.  
As a conceptual model of infrastructures as socio-technical systems we will use the 
concept of multi-agent systems composed of multiple interacting elements (Weiss, 
1999). The term agent can represent actors in the social network (e.g. travelers taking 
autonomous decisions on which route to follow to avoid road congestion or companies 
involved in the generation, transmission and distribution of electricity)as well as a 
component (e.g. a production plant, an end-use device, a transformer station) in the 
physical network. In all these cases we see that the overall system – considered as a 
multi-agent system – has its own overall objective, while the agents have their own 
individual objectives.  

3. Decentralized Decision Systems 
In a decentralized decision system the objectives and constraints of any decision maker 
may be determined in part by variables controlled by other agents. In some situations, a 
single agent may control all variables that permit him to influence the behavior of other 
decision makers as in traditional hierarchical control. The extent of the interaction may 
depend on the particular environment and time dimension: in some cases agents might 
be tightly linked, while in others they have little effect on each other, if any at all. For 
decision making in such systems two important aspects can be distinguished: a set of 
individual goals and ways of how to reach them, and a set of linkages allowing agents to 
interact. The individual decision-making step usually takes the form of single-criterion 
optimization as often applied in PSE. Optimization is one of the most frequently used 
tools in PSE decision-making to determine, e.g., operational and maintenance 
schedules, the sizing of equipment, pricing mechanisms, allocation of capacity or 
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resources among several units, etc. For a detailed review of optimization methods, see 
e.g. Edgar (2001).  
3.1. (Multi-criteria) Optimization problem 
Each optimization problem contains two elements: at least one objective function, or 
criterion, to be optimized, and constraints. The type of the ultimate optimization 
function(s) together with the specified constraints determines the type of optimization 
problem. The individual goals of each agent often represent a variety of criteria that, 
more often than not, turn out to be conflicting: an improvement in any one of them may 
be accompanied by a worsening in others. For the sake of simplicity it is assumed here 
that there is only one decision maker (i.e., one agent), which is actually searching for a 
satisfactory compromise rather than for a hypothetical numerical optimum. In principle, 
a multi-objective optimization problem can be formulated as follows: 
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where: 
Ji: ℜn → ℜ  is an individual objective, i=1,2,…,k, 

 X={x∈ ℜn:  gj(x) ≥ 0, j=1,…,m} is the feasible area determined by constraints. 
 
Four classes of solution methods for multi-objective optimisation problems can be 
distinguished, see Verwater-Lukszo (1996): 
• Methods based on some measure of optimality, 
• Interactive methods, 
• Methods searching for Pareto-optimal solutions, 
• Lexicographic methods. 
Methods based on a measure of optimality make an attempt to measure alternatives in 
one way or another, by weighting each objective and then optimizing their weighted 
sum, or by replacing multi-objective optimization by optimizing only one criterion with 
the greatest preference. Therefore, methods of this category translate a multi-criteria 
problem into a single criterion. The second group of methods uses the information 
obtained from the decision maker in an iterative process to assign appropriate priority 
levels, e.g., weights, to all individual objectives. Pareto methods of the third group use 
the notion of Pareto optimality to achieve a balance between objectives. Here the 
optimal solution appears to be the natural extension of optimizing a single criterion, in 
the sense that in multi-objective optimization any further improvement in any one 
objective requires a worsening of at least one other objective. Finally, the lexicographic 
methods assume that the individual objectives may be ranked by their importance, so 
that a sequential optimization of the ordered set of single criteria is possible. In this way 
a multi-objective problem is translated into a multi-level optimization problem. This 
brings us to another important optimization approach applicable for decision problems 
in the world of infrastructure system operation: multi-level optimization.  
3.2. Multi-level optimization 
In a multi-level optimization problem several decision makers control their own degrees 
of freedom, each acting in a sequence to optimize own objective function. This problem 
can be represented as a kind of leader-follower game in which two players try to 
optimize their own utility function F(x,y) and f(x,y) taking into account a set of 
interdependent constraints. Solving multi-level problems may pose formidable 
mathematical and computational challenges. In recent years, however, remarkable 
progress was made in developing efficient algorithms for this class of decision problems 
(see Bard, 1998). Interesting applications from the world of energy infrastructure 
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operation concern the supplier-household interaction resulting from an introduction of 
micro CHP, see Houwing (2006). Another example concerned with dynamic road 
pricing aimed at better use of road capacity is described by Lukszo (2006); the upper 
level describes the overall road performance and the lower level the user-specific 
objective function.  
The simplest problem representation of a hierarchical optimization problem is the  bi-
level programming problem concerning the linear version of hierarchical optimisation, 
alternatively known as the linear Stackelberg game. 
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It should be stressed, that even in the linear case the bi-level programming problem is a 
non-convex optimization problem which is NP-hard. Generally, infrastructure systems 
pose multi-level programming problems with an arbitrary number of levels, in which 
the criteria of the leader and the follower can be nonlinear and/or discrete, which are 
even more challenging to solve.   
3.3. Optimal Control 
Optimal control is another important, though hard to apply, technique to be used in 
infrastructure system operation. When modeling a system by a set of differential 
equations, an interesting type of dynamic optimization problem can be formulated, also 
referred to e.g. by Leonard (1992) as an optimal control problem. An optimal control 
problem is formulated and solved by an agent to find those inputs to the system that 
minimize the objective function over the running time of the system.   
A general optimal control problem is formulated as: 
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The following features can make an optimal control problem extra hard to solve: 
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• Besides a final value function the criterion may contain an initial cost function. 
• Final time can be a free variable, which in many cases may have to be chosen 

optimally;  
• not only final states, but also initial states can be free variables, which must be 

chosen optimally. 
• The optimization problem usually involves constraints on state variables,  which are 

notoriously difficult to handle. 
• Constraints may be imposed (lower/upper bounds, linear and non-linear constrains) 

on initial and final states variables. 
• Integral constraints may be imposed on control variables; these constraints may also 

involve initial and final states, and possible final time. 
Optimal control methods can be solved by variational methods or, alternatively, by 
discretization converting the original problem into a large-scale static LP or NLP 
optimization problem. Variational methods use the optimality conditions given by the 
Maximum Principle of Pontryagin resulting in a so-called two-point boundary value 
problem, which is often hard to solve. If discretization methods are applied to an 
optimal control problem, then standard static NLP solvers may be used, e.g., the 
conjugate gradient method, or the sequential quadratic programming algorithm SQP, 
see Edgar (2001). In the following section we consider a particular control scheme that 
approximates the dynamic control problem with static control problems. 
3.4. Model Predictive Control 
A particular approach to solve optimal control problems as introduced in Section 3.3 is 
Model Predictive Control (MPC), see e.g. Maciejowski (2002), Morari (1999). This 
method from the PSE area has become an important technology for finding optimization 
policies for complex, dynamic systems. MPC has found wide application in the process 
industry, and recently has also started to be used in the domain of infrastructure 
operation, e.g., for the control of road traffic networks, power networks, and railway 
networks.MPC approximates the dynamic optimal control problem with a series of 
static control problems, removing the dependency on time. Advantages of MPC lie in 
the fact that the framework handles operational input and state constraints explicitly in a 
systematic way. Also, an agent employing MPC can operate without intervention for 
long periods, due to the prediction horizon that makes the agent look ahead and 
anticipate undesirable future situations. Furthermore, the moving horizon approach in 
MPC can in fact be considered to be a feedback control strategy, which makes it more 
robust against disturbances and model errors. 
3.4.1. Multi-Agent Model Predictive Control 
The main challenge when applying MPC to infrastructure operation stems from the 
large-scale of the control problem. Typically infrastructures are hard to control by a 
single agent. This is due to technical issues like communication delays and 
computational requirements, but also to practical issues like unavailability of 
information from one subsystem to another and restricted control access. The associated 
dynamic control problem is therefore typically broken up into a number of smaller 
problems. However, since the sub-problems are interdependent, communication and 
collaboration between the agents is a necessity. A typical multi-agent MPC scheme 
therefore involves for each agent the following steps, see Camponogara (2002): 
1. Obtain information from other agents and measure the current sub-system state. 
2. Formulate and solve a static optimization problem of finding the actions over a 

prediction horizon N from the current decision step k until time step k+N. Since the 
sub-network is influenced by other sub-networks, predictions about the behavior of 
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the sub-network over a horizon are more uncertain. Communication and cooperation 
between agents is required to deal with this. 

3. Implement the actions found in the optimization procedure until the beginning of the 
next decision step. Typically this means that only one action is implemented. 

4. Move on to the next decision step k+1, and repeat the procedure. 
In particular determining how agents have to communicate with one another to ensure 
that the overall system performs as desired is a huge challenge that still requires a 
substantial amount of research. Negenborn describes many possible approaches (2006). 

4. Conclusions 
In this paper we have considered challenges for process system engineering in 
infrastructure system operation and control. The relevance of optimization models as 
decision-supporting tools is very high for many players in the world of infrastructure. In 
all systems that exhibit interactions and interdependencies between subsystems, where 
multiple functionality plays a role, where capacity allocation in a complex and dynamic 
environment is an issue, feasible concepts of decentralized optimization are called for. 
As a particular challenge we pointed out the application of multi-level optimization and 
model predictive control in a multi-agent setting of decentralized decision making on 
infrastructure system operation. Besides computational complexity, a formidable 
challenge here is posed by the design of communication and cooperation schemes that 
enable agents to come to decisions that are both acceptable locally and ensure an overall 
system performance in respect of social and economic public interests. The design of 
markets and an appropriate legislative and regulatory framework to steer individual 
actors’ decision making towards public goals and to enforce adequate communication 
and collaboration schemes may be beyond the world of PSE, but  will certainly be 
inspired by applicable PSE optimization strategies. 
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