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Abstract

The need for improving the operation and control of infrastructure systems has created a
demand on optimization methods applicable in the area of complex sociotechnical systems
operated by a multitude of actors in a setting of decentralized decision making. This paper
briefly presents main classes of optimization models applied in PSE system operation,
explores their applicability in infrastructure system operation and stresses the importance
of multi-level optimization and multi-agent model predictive control.
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1. Introduction

Our society and economy have come to rely on services that depend on networked
infrastructure systems, like highway and railway systems, electricity, water and gas
supply systems, telecommunication networks, etc. Recent events such as large-scale
power blackouts have contributed to a renewed awareness of the critical role of
infrastructures in our economies. Malfunctioning and service outages entail substantial
social costs and hamper economic productivity. Instead of installing additional capacity,
more intelligent control of the existing capacity seems a more affordable and promising
strategy to ensure efficient and reliable operation of critical infrastructures which,
moreover, stimulates the creation of innovative value-added services such as dynamic
congestion pricing.

However, the multitude and variety of nodes and links in these networks as well as the
multitude and variety of owners, operators, suppliers and users involved have created
enormously complex systems. This complexity hampers the optimization of the overall
system performance, due to our limited understanding of infrastructure systems as well
as to practical limitations in steering the actors’ operational decision making.

The process systems engineering (PSE) area defined by Grossmann and Westerberg
(2000) is concerned with the improvement of decision making for the creation and
operation of the chemical supply chain. As chemical process systems are networked
systems and the PSE field has enabled tremendous advances in their optimization, it is
intersting to explore to what extent the methods from PSE may be applied to
infrastructure system operations. The urgent need for improving the performance of
infrastructures creates a great demand for innovative optimization and control methods.
This is the focus of this paper.

2. Infrastructure definition

The physical network of an infrastructure system and the social network of actors
involved in its operation collectively form an interconnected complex network where
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the actors determine the development and operation of the physical network, and the
physical network structure and behavior affect the behavior of the actors. An
infrastructure can thus be seen as a complex socio-technical system, the complexity of
which is defined by its multi-agent/multi-actor character, the multi-level structure of the
system, the multi-objective optimization challenge, and the adaptivity of agents and
actors to changes in their environment. Their non-linear response functions in
combination with the complex system structure often lead to unpredictable dynamic
behavior of the system.

Similar to the hierarchical decomposition of, e.g., the operation of an industrial plant in
planning, scheduling, and processing functions, infrastructure systems can be viewed as
multi-level systems, whether hierarchically interconnected or decentralized, with a
number of operational regimes at the various system levels. Usually, at each level of the
decomposed system local performance objectives are defined which should, preferably,
not be restricted to the optimization of local goals, but rather aim at optimally
contributing to the overall goal. However, the relation between local and overall system
performance objectives may be rather fuzzy, especially since the overall objective is
often not defined in detail and concerned with a longer time horizon. The local
objectives are generally more detailed, concerned with a shorter time horizon and often
with the specific interests of an individual actor. To facilitate an overall optimization of
the performance of the system as a whole, a kind of coordinator may be required to
supervise local decision making in its relation to the overall goal. In the practical
situation of many infrastructure industries in liberalised markets, however, such central
co-ordination or supervision no longer exists. Especially in these situations it is a
challenging task to develop a method for decentralized optimisation that can be
implemented, e.g., by a regulatory authority, to influence local decision making by
individual actors in respect of societal interests.

As a conceptual model of infrastructures as socio-technical systems we will use the
concept of multi-agent systems composed of multiple interacting elements (Weiss,
1999). The term agent can represent actors in the social network (e.g. travelers taking
autonomous decisions on which route to follow to avoid road congestion or companies
involved in the generation, transmission and distribution of electricity)as well as a
component (e.g. a production plant, an end-use device, a transformer station) in the
physical network. In all these cases we see that the overall system — considered as a
multi-agent system — has its own overall objective, while the agents have their own
individual objectives.

3. Decentralized Decision Systems

In a decentralized decision system the objectives and constraints of any decision maker
may be determined in part by variables controlled by other agents. In some situations, a
single agent may control all variables that permit him to influence the behavior of other
decision makers as in traditional hierarchical control. The extent of the interaction may
depend on the particular environment and time dimension: in some cases agents might
be tightly linked, while in others they have little effect on each other, if any at all. For
decision making in such systems two important aspects can be distinguished: a set of
individual goals and ways of how to reach them, and a set of linkages allowing agents to
interact. The individual decision-making step usually takes the form of single-criterion
optimization as often applied in PSE. Optimization is one of the most frequently used
tools in PSE decision-making to determine, e.g., operational and maintenance
schedules, the sizing of equipment, pricing mechanisms, allocation of capacity or
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resources among several units, etc. For a detailed review of optimization methods, see
e.g. Edgar (2001).

3.1. (Multi-criteria) Optimization problem

Each optimization problem contains two elements: at least one objective function, or
criterion, to be optimized, and constraints. The type of the ultimate optimization
function(s) together with the specified constraints determines the type of optimization
problem. The individual goals of each agent often represent a variety of criteria that,
more often than not, turn out to be conflicting: an improvement in any one of them may
be accompanied by a worsening in others. For the sake of simplicity it is assumed here
that there is only one decision maker (i.e., one agent), which is actually searching for a
satisfactory compromise rather than for a hypothetical numerical optimum. In principle,
a multi-objective optimization problem can be formulated as follows:

min J (x) = min(J, (), 5(x),.... /. (x)’

where:
Ji: 9" — I is an individual objective, i=1,2,...,k,
X={xe 9': gyx) =0, j=1,...,m} is the feasible area determined by constraints.

Four classes of solution methods for multi-objective optimisation problems can be
distinguished, see Verwater-Lukszo (1996):

e Methods based on some measure of optimality,

e Interactive methods,

e Methods searching for Pareto-optimal solutions,

e Lexicographic methods.

Methods based on a measure of optimality make an attempt to measure alternatives in
one way or another, by weighting each objective and then optimizing their weighted
sum, or by replacing multi-objective optimization by optimizing only one criterion with
the greatest preference. Therefore, methods of this category translate a multi-criteria
problem into a single criterion. The second group of methods uses the information
obtained from the decision maker in an iterative process to assign appropriate priority
levels, e.g., weights, to all individual objectives. Pareto methods of the third group use
the notion of Pareto optimality to achieve a balance between objectives. Here the
optimal solution appears to be the natural extension of optimizing a single criterion, in
the sense that in multi-objective optimization any further improvement in any one
objective requires a worsening of at least one other objective. Finally, the lexicographic
methods assume that the individual objectives may be ranked by their importance, so
that a sequential optimization of the ordered set of single criteria is possible. In this way
a multi-objective problem is translated into a multi-level optimization problem. This
brings us to another important optimization approach applicable for decision problems
in the world of infrastructure system operation: multi-level optimization.

3.2. Multi-level optimization

In a multi-level optimization problem several decision makers control their own degrees
of freedom, each acting in a sequence to optimize own objective function. This problem
can be represented as a kind of leader-follower game in which two players try to
optimize their own utility function F(x,y) and f{x,y) taking into account a set of
interdependent constraints. Solving multi-level problems may pose formidable
mathematical and computational challenges. In recent years, however, remarkable
progress was made in developing efficient algorithms for this class of decision problems
(see Bard, 1998). Interesting applications from the world of energy infrastructure
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operation concern the supplier-household interaction resulting from an introduction of
micro CHP, see Houwing (2006). Another example concerned with dynamic road
pricing aimed at better use of road capacity is described by Lukszo (2006); the upper
level describes the overall road performance and the lower level the user-specific
objective function.

The simplest problem representation of a hierarchical optimization problem is the bi-
level programming problem concerning the linear version of hierarchical optimisation,
alternatively known as the linear Stackelberg game.

min F(x,y)=c;x+dy x=/x;..x,]"
xe X

y=0raynl’

subjectto: 4;x+ B,y <b,
min £(x, ) = ¢y x+d,
yeY

subjectto: A,x+B,y<b,

It should be stressed, that even in the linear case the bi-level programming problem is a
non-convex optimization problem which is NP-hard. Generally, infrastructure systems
pose multi-level programming problems with an arbitrary number of levels, in which
the criteria of the leader and the follower can be nonlinear and/or discrete, which are
even more challenging to solve.

3.3. Optimal Control

Optimal control is another important, though hard to apply, technique to be used in
infrastructure system operation. When modeling a system by a set of differential
equations, an interesting type of dynamic optimization problem can be formulated, also
referred to e.g. by Leonard (1992) as an optimal control problem. An optimal control
problem is formulated and solved by an agent to find those inputs to the system that
minimize the objective function over the running time of the system.

A general optimal control problem is formulated as:

tr
min 1 = [/ (), ), )t + (7). 7p)
u(t)

ty

subject to : dx(¢)/dt = g(x(t), u(t),t)
Qo (u®)20  i=12..p
Ki(x®)20  j=12...q
Vi(Tg,Tp)20 k=12.,r
where:

x(t)=[x;1),x,5(0),....x, ()]"  is the state vector

ut)=[u;(0),uy(),....u, (t)]T is the control vector

Ty = [ty %1ty ). X5 (tg ) X, (19 )] T

T
z-F' =[tp,xl(tp),xZ(tF),...,xn(tF)]
O(7,,7;) aretheinitial cost/ final value function.

The following features can make an optimal control problem extra hard to solve:
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e Besides a final value function the criterion may contain an initial cost function.

e Final time can be a free variable, which in many cases may have to be chosen
optimally;

e not only final states, but also initial states can be free variables, which must be
chosen optimally.

e The optimization problem usually involves constraints on state variables, which are
notoriously difficult to handle.

e Constraints may be imposed (lower/upper bounds, linear and non-linear constrains)
on initial and final states variables.

o Integral constraints may be imposed on control variables; these constraints may also
involve initial and final states, and possible final time.

Optimal control methods can be solved by variational methods or, alternatively, by

discretization converting the original problem into a large-scale static LP or NLP

optimization problem. Variational methods use the optimality conditions given by the

Maximum Principle of Pontryagin resulting in a so-called two-point boundary value

problem, which is often hard to solve. If discretization methods are applied to an

optimal control problem, then standard static NLP solvers may be used, e.g., the

conjugate gradient method, or the sequential quadratic programming algorithm SQP,

see Edgar (2001). In the following section we consider a particular control scheme that

approximates the dynamic control problem with static control problems.

3.4. Model Predictive Control

A particular approach to solve optimal control problems as introduced in Section 3.3 is
Model Predictive Control (MPC), see e.g. Maciejowski (2002), Morari (1999). This
method from the PSE area has become an important technology for finding optimization
policies for complex, dynamic systems. MPC has found wide application in the process
industry, and recently has also started to be used in the domain of infrastructure
operation, e.g., for the control of road traffic networks, power networks, and railway
networks.MPC approximates the dynamic optimal control problem with a series of
static control problems, removing the dependency on time. Advantages of MPC lie in
the fact that the framework handles operational input and state constraints explicitly in a
systematic way. Also, an agent employing MPC can operate without intervention for
long periods, due to the prediction horizon that makes the agent look ahead and
anticipate undesirable future situations. Furthermore, the moving horizon approach in
MPC can in fact be considered to be a feedback control strategy, which makes it more
robust against disturbances and model errors.

3.4.1. Multi-Agent Model Predictive Control

The main challenge when applying MPC to infrastructure operation stems from the

large-scale of the control problem. Typically infrastructures are hard to control by a

single agent. This is due to technical issues like communication delays and

computational requirements, but also to practical issues like unavailability of

information from one subsystem to another and restricted control access. The associated

dynamic control problem is therefore typically broken up into a number of smaller

problems. However, since the sub-problems are interdependent, communication and

collaboration between the agents is a necessity. A typical multi-agent MPC scheme

therefore involves for each agent the following steps, see Camponogara (2002):

1. Obtain information from other agents and measure the current sub-system state.

2. Formulate and solve a static optimization problem of finding the actions over a
prediction horizon N from the current decision step & until time step £+N. Since the
sub-network is influenced by other sub-networks, predictions about the behavior of
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the sub-network over a horizon are more uncertain. Communication and cooperation
between agents is required to deal with this.
3. Implement the actions found in the optimization procedure until the beginning of the
next decision step. Typically this means that only one action is implemented.
4. Move on to the next decision step k+1, and repeat the procedure.
In particular determining how agents have to communicate with one another to ensure
that the overall system performs as desired is a huge challenge that still requires a
substantial amount of research. Negenborn describes many possible approaches (2006).

4. Conclusions

In this paper we have considered challenges for process system engineering in
infrastructure system operation and control. The relevance of optimization models as
decision-supporting tools is very high for many players in the world of infrastructure. In
all systems that exhibit interactions and interdependencies between subsystems, where
multiple functionality plays a role, where capacity allocation in a complex and dynamic
environment is an issue, feasible concepts of decentralized optimization are called for.
As a particular challenge we pointed out the application of multi-level optimization and
model predictive control in a multi-agent setting of decentralized decision making on
infrastructure system operation. Besides computational complexity, a formidable
challenge here is posed by the design of communication and cooperation schemes that
enable agents to come to decisions that are both acceptable locally and ensure an overall
system performance in respect of social and economic public interests. The design of
markets and an appropriate legislative and regulatory framework to steer individual
actors’ decision making towards public goals and to enforce adequate communication
and collaboration schemes may be beyond the world of PSE, but will certainly be
inspired by applicable PSE optimization strategies.
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