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Abstract

This paper gives an overview of the thermodynamics and kinetics background to the
silicon cell (SiC!) approach. SiC! makes precise mathematical models of components
of systems inclusive of their interaction properties. It then puts these component

models together into a computer program and integrates the behavior.  For metabolic
pathways, SiC! takes the ensembles of enzyme molecules as the components. It takes
the ensemble averaged metabolite concentrations as the dependent variables these
components work on. We show how this approach depends on principles of non
equilibrium thermodynamics and kinetics.

Metabolic control analysis is an early and characteristic approach to systems biology.
Using silicon cells one can do this control analysis in silico. Also this analysis also has
a number of theoretical foundations, which are again close to those of non equilibrium
thermodynamics. We propose that Metabolic Control Analysis is in fact the extension
from equilibrium thermodynamics to non equilibrium systems that so many searched for
in the second half of the previous century.

1. Non-equilibrium thermodynamics

In 1931 (1,2) Onsager published two seminal papers. They revealed that there should
be a remarkable symmetry in cross-cause effects relationships in coupled processes. To
obtain the symmetry property, coupled processes have to be described in a certain way,
a way that has since been called non equilibrium thermodynamics (3). Describing each
process in terms of a driving force equal to the free energy difference across that
process, and a flow equal to the steady state rate of the process, the cross dependence of
the two processes on the two forces had to be equal in the limit to equilibrium.

The proof given was based on kinetics or a probabilistic version thereof, and therewith
married mass-action kinetics with thermodynamics. Yet, it depended on the generic
rather than the specific aspects of the kinetics and was therewith mechanism
independent. Because this was also true for equilibrium thermodynamics, this
mechanism independence was long thereafter considered an essential property, also of
non equilibrium thermodynamics.

This non equilibrium thermodynamics (NET) was often formulated as a
systems of linear equations relating all steady state fluxes in the system to all
thermodynamic forces through proportionality relations, for which the matrix of
proportionality constants then had to be symmetrical for the Onsager reciprocity
relations to be satisfied. Because Biology tends to look at functional processes that
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involve a number of coupled molecular processes, many biologists and biophysicists
were attracted to this non equilibrium thermodynamics (4).

Non equilibrium thermodynamics was also useful to Biology because it helped
resolve the Schroedinger paradox (5). This paradox held the development of the order
and structure of well developed biological organisms out of unordered food supplies, to
be in conflict with the second law of thermodynamics. The usual formulation of this
law in physics is that entropy can only increase, never decrease, where entropy s a
measure of chaos. Non equilibrium thermodynamics then served to resolve this
paradox, by reformulating that really the entropy production needed to be positive; by
exporting lots of entropy, an organism could actually increase its order (3, 5).

The entropy production function then became object of additional searches for
general thermodynamic principles. Prigogine and coworkers showed that in the limit to
equilibrium entropy production should be minimal at steady states (3). The minimum
was with respect to variation of the independently variable thermodynamic forces.
Entropy production was not minimal with respect to systems parameters (6), but again
there was little interest in those systems parameters as they would carry mechanism
specific information. These derivatives were thought not to lead to general results
therefore.

Understanding the coupling between processes in bioenergetics was an area
where NET had some additional useful contributions. It enabled the definition of a
coefficient that could quantify the degree of coupling between distinct biochemical
processes (7). Defining this coefficient increased the awareness that coupling would not
have to be complete, and that uncoupling or slippage should be a possibility. Up to that
time and also subsequently, the unfounded notion that biological systems were
necessarily ideal and therefore would not waste any free energy, made biologists only
consider networks where coupling would be complete. Here the emergence of the
chemiosmotic coupling mechanism was important. In this mechanism a membrane that
was likely to have at least some passive permeability for protons was supposed to
sustain the relevant free energy intermediate, i.e. the transmembrane electrochemical
potential difference for protons (8). This mechanism was one of the early examples of
systems biology, where only through the integration of at least two completely different
types of processes (i.e. transport and chemistry) free energy could be transduced,
between two chemical processes.

Further consideration of the degree of coupling in terms of how its magnitude
could contribute to the partly coupled process being optimal for certain functions, led to
the conclusion that neither the degree of coupling nor the thermodynamic efficiency
needed to be maximal for a number of relevant output functions to be optimal (9).
Indeed it was calculated that many biological processes, including microbial growth
(10) were highly inefficient, where some of the observed efficiencies could be
understood in terms of the system being optimal with respect to both growth rate and
power production in terms of biomass.

Non equilibrium thermodynamics continued to be successful in non biological
sciences where it helped explain cross-correlations between different types of
phenomena, such as heat conductance and volume flow. Notwithstanding its apparent
ability to function as an early systems biology approach being able to integrate
multitudes of processes in its symmetrical linear equations, NET did not develop much
further however. The reason was that much of what had been accomplished was valid
only for processes that were less than a couple of kJoules per mole displaced from
equilibrium. Biological reality is that the free energy of hydrolysis of ATP exceeds 40
kJ/mol, and the dissipation of free energy in many processes exceeds 10 kJ/mol (10).



Systems Biology and the Silicon Cell: Order out of Chaos 83

Therewith none of the proofs of the above principles derived by non equilibrium
thermodynamics holds for many realistic biological systems and indeed there is some
evidence that the relations themselves do not hold either (10).

Rottenberg (11) and subsequently we (12, 10) then retraced some steps of NET
and realized that one could translate well-accepted kinetic relationships into non
equilibrium flow-force relationships. This led to the discovery that there was a basis
for the linear flow-force relations often postulated for non equilibrium thermodynamics.
That linearity was likely to be at a range away from equilibrium that was most relevant
for the regulation of processes. However, in that range there needed be no Onsager
reciprocity (10), continuing to take away the basis of the validity of the minimum
entropy production principle (6).

Importantly, here the paradigm was left that by definition non equilibrium
thermodynamics should be devoid of mechanisms; the coefficients relating flows and
forces were expressed into enzyme kinetic properties. And, using this new, ‘Mosaic
Non Equilibrium Thermodynamics (MNET)’, the systemic implications for failing
mechanisms of coupling could be predicted (10). A systems Biology approach, relating
important systems function to molecular action and properties, had been born, avant la
lettre.

Paradoxically, another, in fact older, branch of non equilibrium
thermodynamics thrived on the non-linearities in and amongst the processes in biology,
and certainly on the substantial distance of many biological systems from equilibrium.
The self organization addressed by this type of non equilibrium thermodynamics cannot
occur in the Onsager domain where flow-force relations are symmetrical (3, 13). The
resolution of the Schrédinger paradox described above merely stated that export of
entropy could resolve that paradox, but it had not yet been clarified how that entropy
export would be coupled to the entropy decrease held characteristic of developmental
biology. Mechanisms were sought for pattern formation from initially symmetrical
conditions, and found, e.g. by Turing (14, 3, 15). Symmetry breaking in time was also
found to occur in chemical reaction schemes and held as model for the cell cycle in
living organisms. Further developments included the discovery and analysis of sets of
equations that could generate even more complex phenomena such as aperiodic self-
excitation and deterministic chaos (16). These analyses brought home the message that
for some of these phenomena to occur quite special parameter values were needed. This
reinforced the question whether indeed in biological reality those parameter values
would reign, or if alternatively completely different mechanisms might be responsible
for the observed complex phenomena to occur.

In the mechanisms proposed by the fields of non equilibrium thermodynamics
and nonlinear dynamics, there was frequently another limitation, i.e. lack of robustness.
Symmetry breaking could occur but the precise version of the asymmetry (e.g. left-right
versus right-left) depended on fluctuations and would therefore be random. Yet the
observation that our right foot is usually on our right-hand side is quite convincing in
showing that actual developmental biology is more robust than this. The argument then
became that instead of a fluctuation, a well-controlled external condition would set the
symmetry breaking in motion, now reproducibly.

The requirement of such an external ordering factor was in line with the more general
observation that the structures of living cells do not arise completely anew in every
generation: the replication of DNA is semi-conservative, the plasma membrane of
newborns cells are pinched off parts of the plasma membrane of their mother cells, and
most of their proteins have been and are being made by ribosomes inherited from the
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mother cell. A view, in which biological structure was nothing but a perpetration of a
complex dynamic structure that once got into existence, became an option.

Meanwhile molecular biology found more and more factors that co-determine molecular
biology, and important predictions of the simplest versions of the self-organization
theory of segmental organization in Drosophila turned out to be wrong: proteins
alternating their expression between segments were not directed by precisely the same
promoter elements in the stripe in which they were expressed (17). Self-organization
may still play a partial role in developmental biology, but it will be a partial role only.
These developments have taught us that the attractiveness of a concept such as self
organization should not lead to the non-critical implicit assumption that a process is
self-organized. Even though self-organization may be the simplest mechanism for
pattern formation in early development, that by itself has no value; there is no place for
Occam’s razor in Biology. Critical experimental testing is required, probably through
detailed modeling and checking whether the predictions made by the model for
experimentally determined actual parameters values, are in actual agreement with the
behavior of the system. Likewise, hypotheses that developmental processes are due to
pre-specification will need to be so concrete as to be testable, or falsifiable in Popper’s
sense (18).

2. Silicon cells

The suggestion that hypotheses in Biology should be testable and indeed be tested
would seem to be superfluous. Would any biologists accept that her/his science should
not adhere to the criteria devised for the natural sciences? On the other hand Biology is
a complex science and this has had the effect that at the truly biological level, few
theories have actually been testable. Because of the complexity and nonlinearity of the
networks in biology, the behavior of their components is a strong function of the
molecules around them. Accordingly, failure of a set of molecules to act precisely as
predicted by a theory, could always be attributed to the presence of an as yet
unidentified additional factor, somewhat altering the mechanisms that would otherwise
work as proposed. Accordingly many biologists working at the physiological level, are
satisfied with theories that allow for exceptions even when if these are not made
explicit. Other biologists took the opposite stance. They decided that if at the
physiological level theories could not be falsified, they should refrain from working at
that level and turn to model systems that were completely controlled, notably in vitro
systems with purified molecules. There the hard scientific criteria could be met in
principle.

Genomics has altered the situation. Now, living systems such as some
unicellular organisms, are completely characterizable in terms of the sequence of all
their genes, and the concentrations of all mRNAs, proteins and (soon) metabolites.
These concentrations can also be manipulated, enabling a large number of independent
experimental tests. The physiologist can no longer propose that failure of the system to
behave according to his hypothesis is due to an unidentified molecules; if there is such a
failure, he should either reject the hypothesis or identify the perturbing molecule and
extend his model to incorporate that molecule. The molecular biologist need no longer
refrain from studying the actual functioning of his molecules, in the intact system or
suitable models thereof. This new interface between molecular biology and physiology
is called Systems Biology (19).
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Systems Biology focuses on the functional properties that arise in the
interactions between the components of biological systems (20). The cell cycling and
the self-organization discussed above are examples: none of their molecules cycles or
forms spatial patterns in the absence of interaction with the other molecules. Systems
biology also realizes that it should reach beyond mathematical biology in that it should
not devise models that might explain biological function: it should devise models that
do explain those phenomena, for the parameter values that are real.

The silicon cell program (cf. www.siliconcell.net) is an epitome of this systems
biology (21). It puts together the actual kinetic and interaction properties of the
components of the biological system into a computer replica and then uses a computer
program to calculate the system’s behavior of that replica. If that behavior corresponds
with the experimentally observed functional behavior of the biological system, then the
mechanisms present in the replica should be the explanations of the emergent functional
behavior.

Other than what their name may suggest, these silicon cells do not yet
correspond to replica of entire cells. They correspond to replica of hopefully
sufficiently autonomous parts of (pathways in) living cells to be testable. The strictness
with which they adhere to the principle of the silicon cell that all component properties
should have been determined experimentally, is also variable, but this is to improve in
the future. The models in the silicon-cell program have gone through the quality control
of international journals, some of which collaborate explicitly with the program.

3. At what level should one pitch the silicon cell?

When pronouncing to make precise models of functioning systems of the living cell in
terms of their components, it is not immediately obvious what the components should
be. The silicon cell focuses on the whole cell as the ultimate system but begins with the
limited focus of pathways in those cells as the systems. The components are the
catalysts in the pathway, mostly the proteins, and the ‘micro-molecules’ (‘metabolites’)
through which they communicate. This does not completely specify yet the level of
modelling however. To pitch the right level, both siliconcell and systems biology learn
from non equilibrium thermodynamics and kinetics.

One could take the point of view that a precise replica model of what happens
in a metabolic pathway in the living cell should consider each individual molecule
explicitly in terms of its position, state, appearance and disappearance, and these as
functions of time. However, the complexity accompanying such a point of view is
unmanageable. Let us consider just 20 types of molecule such as ATP in the living cell.
At concentrations of approximately 10 mM these would each number 6 million
molecules per E. coli cell. Supposing that each of these molecules could be in either of
two states and each at any of 500 locations, then the entire systems would have some
10007 possible states. Modeling how such a system proceeds its biased random
walk through these states is not only impossibly time consuming, but it is also useless in
terms of the detailed information it would give. We are simply not interested in the
particular behavior of such a system; we would not even know whether it corresponds
to a particular experimental system we are studying, because we could not know in what
precise state that system is. Inevitably we are interested in trends of behavior; in
behavior that is reproducible between incarnations of a system of interest, which may all
be different in terms of their precise microscopic states but are expected to behave
similarly macroscopically. Lack of direct interest is however insufficient
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reason not to engage in detailed modeling. The average trend of behavior of a system
might depend crucially on the detailed processes and in this case one would need to
model in complete detail to obtain the average behavior of interest (22).

What then is the level of detail at which we need to enter the components into
the silicon cell? Here statistical mechanics and kinetics have shown the way. Consider
the simplest possible reaction i.e. the degradation of a molecule A. The probability that
the degradation occurs at some location in the cell should be proportional to the
probability to find molecule A at that location and the rate should again be proportional
to that probability:

v=k'"P(A|N=n)=k-n

Here P(1|N=n) represents the probability to find a molecule A within a given small time
interval at the location of interest, if the total number N of molecules A equals n. For
the average rate of the process this implies:
v=k-n=k-n
which corresponds to the deterministic rate equation for this situation. With this the
average behavior of the system is described in terms of the ensemble average
concentration (if one also divides by the volume) of molecules of the same type. If the
mixing in the system is much faster than the reactions, then that ensemble averaged
concentration is the same for the entire cell (or compartment thereof) and this leads to
an enormous simplification. Now the state of the system can be described by only 40
state variables, i.e. the ensemble averaged concentrations of the 20 molecules in their
two internal states.

The situation becomes more complicated in essence whenever the kinetics is
nonlinear. We here take quadratic kinetics as the example:

O —n

(nf

n
where 6” is the variance in the particle number. This equation shows that only under
certain conditions the deterministic rate equation is followed. One is the case where the
variance equals the mean, which occurs when the particle number follows a Poisson
distribution. Poisson distributions occur in cases with unit stoichiometries (10) and
should not be expected to be standard in biological systems. In most systems the

variance may not be equal to the average number of particles, but is nevertheless of the
same order of magnitude (10). Then:

v=k-(n)?- 1i0i_

n

v=k'PA|N=n)-PA|N=n-1)=k-n-(n—1)=k-(n)*-| 1+

This leads to the second condition, which should apply more frequently: deterministic
kinetics applies whenever the number of particles exceeds 100.

The above argumentation is classical. Yet we repeat it here for two reasons.
First, one now often encounters research programs where modeling is done
stochastically rather than by using the deterministic equations, but without
rationalization of why the former approach is chosen. At least one should ensure that
the particle number is low or the distribution is vastly different from Poisson. Second, a
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number of cases have been noted meanwhile where variances have indeed been much
larger than the average particle number and some of these cases carry a truly biological
signature. An exemplary case is that of the expression of a gene through mRNA to the
protein level. Because a single mRNA readily leads to the synthesis of hundreds of
protein molecules, a variance in mRNA close to the mean number of mRNAs may
translate into variance and average also being similar at the protein level. Then kinetics
at the protein level (or for similar reasons at the metabolic level) may differ highly from
that predicted by the deterministic rate equation. Ehrenberg and colleagues have been
working of highly relevant such cases of extremely large variance (23).

A highly relevant case is of course dictated by the digital encoding of genetic
information, allowing one or two copies of a gene per cell only. When mutations occur
in the haplotype, the variance is of the order of magnitude of the mean. Then
nondeterministic kinetics should be used, not only at the DNA level but also at the
mRNA, protein and metabolic levels, when the mutating gene is an enzyme.

In case a population of cells is genetically homogeneous, and the number of
mRNA molecules encoding the enzymes is large or quasi-Poisson distributed, cellular
processes will follow deterministic kinetics. It is these cases that the silicon cell
approach has been limiting itself to until now (21). Hence the silicon cell approach
describes the processes in the cell as processes that are carried out by enzymes the
activity of which can be described by their ensemble-averaged activity, and their
ensemble averaged kinetic properties which depend on the ensemble averaged
concentrations of micromolecules (‘metabolites’). This limiting case is the same as the
one proposed by non equilibrium thermodynamics (15) for the description in terms of
average concentrations, or in fact chemical potentials:

4" +R-T-1 ﬁj
H= U n(V

Here the rate equations becomes

D=k ez-(yf,u”' ) rT

where the number 2 refers to the case of quadratic kinetics, and should be replaced by 1
in the case of linear kinetics. Deterministic kinetics and non-equilibrium
thermodynamics that is not restricted to the near equilibrium domain are really two
expressions of the same thing.

The advantage of the deterministic kinetics/non-equilibrium thermodynamic
approach is the tremendous simplification. For the 20 types of molecules that can each
occur in two states and at 500 locations in the cell, the number of state variables is now
20 000, which although large is no longer unmanageably large. In practice a further
simplification is possible provided the situation is that of a reasonable homogeneous
space, diffusion being much more rapid than reactions, or the enzymes being distributed
homogeneously over space. Then only 40 state variables suffice. The ensemble-
averaged concentrations or the corresponding chemical potentials, correspond to the
functions of state of thermodynamics, adding to energy content and volume for
isothermal, isobaric systems (10).

Indeed, at this moment all silicon cells are spatially homogeneous within well-
defined compartments and the following simple description is used (www.siliconcell.net
). For each process that occurs in a cellular compartment, one formulates what it
actually does. This is the transformation of molecules of one chemical nature to



88 H.V. Westerhoff

molecules of a different chemical nature, as indicated by the reaction equation. In the
case of transport, the molecules can be of the same chemical nature but in different
explicit compartments. The reaction equation can also be encoded as a set (vector) of
stoichiometries (positive for products and negative for substrates). This vector becomes
a column of the stoichiometry matrix N, of which each column corresponds to a process
in the cell. Often the stoichiometry matrix is formulated from the alternative point of
view of the time dependence of the metabolite concentrations as a balance between of
all the process rates. The end result is the same, but the former method is more in
keeping with the silicon cell philosophy that the process should be independent of any
knowledge about the system.

Processes are not only characterized by what they do, but also by the rate at
which they do it, and by the dependence of that rate on the state of the system, i.e. the
concentrations of the molecules. For each process therefore an enzyme kinetic rate
equation is formulated, which is typically of the form:

v=g(e) f(S, XY, K, k..Ks,Kp,Ky,)

eq? “cat?
Where g(e) is often a mere proportionality, indicating that the rate is proportional to the
concentration of the catalyst. Often g(e) and ke, are combined into the single parameter
Vimax. Usually, X and Y are variable metabolite concentrations, corresponding to
functions of state of the system, as discussed above.

When the list of all processes in the system has been compiled with heir
stoichiometric and rate equations, the lists of the arguments of the functions in the rate
equations contain two types of properties. The one type is that of the variables. These
also occur in the lists of molecules produced or consumed by the processes. For these
variable properties balance equations are then written using the expression:

X _ Ny

dt
Where N is again the stoichiometry matrix, v is a vector of the process rates, and X is a
vector of all the concentration variables. The other type of properties in the lists of the
arguments of the rate equations is called parameters. The parameters are not altered by
actions of the processes in the system studied, but set by external conditions or by
properties that cannot be changed by the systems (e.g. the Michaelis constants of the
enzymes, and sometimes the pathway substrate and product, S).

This is almost (see below) all the biologist/biochemist formulating a siliconcell
does: characterize the components of the system. The computer program does the rest,
which importantly includes the computation of the system behavior. It integrates the set
of differential equations:

X
8~ N-diag(g(e) (5, X,V K
Where the biologists still has to specify the initial conditions. The specification of these
is actually something that requires some knowledge about the system, but not
knowledge on how and why it behaves. Alternatively, one is interested in the steady
state and asks the computer to solve equations for time independence of the metabolite
concentrations. These two options are available for just a click on the siliconcell model
base of live models: http://www.jjj.bio.vu.nl A third option of this silicon cell live
‘modelbase’ calculates control coefficients, i.e. the dependence of steady state
properties on all the process activities. Through the world-wide web anyone can now
engage in in silico experimentation with refereed silicon-cell models of pathways of
living organisms.

k

cat®

K, K,,Ky,...)

eq?
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With this the silicon cell comes to predictions and descriptions of systems
behavior at the functional state, i.e. away from equilibrium, in terms of its
thermodynamic properties, i.e. chemical potentials or ensemble-averaged
concentrations, and ensemble averaged fluxes. This was one of the aims of non
equilibrium thermodynamics.

4. New non equilibrium thermodynamics?

Yet, what the siliconcell delivers may not be quite recognized as non-equilibrium
thermodynamics, as it is always rather specific information which depends on the
precise magnitudes of the kinetic parameters. No principles, no laws of general validity
are produced by the siliconcell. Indeed, precisely because it aims at generating a
computer replica of the real pathways, no reduction of complexity, no generalizations
are produced without further activities. In addition the output is formulated in terms of
fluxes and concentrations rather than in terms of chemical potentials.

For a while it seemed that perhaps biological systems lack general principles
other than the ones valid close to equilibrium and discussed above. Few if any of the
properties and principles valid near equilibrium could be extrapolated successfully to
systems displaced from equilibrium to the extent that regular biological systems are.

In the late sixties of the previous century in Edinburgh (24) and Berlin (25) a
new way of looking at biological systems came about, partly inspired by genetics and
partly by silicon cell type of modeling of metabolism. The new approach was called
metabolic control analysis (MCA). Until 1987 (10), little reference to a link between
MCA and non equilibrium thermodynamics was made, even though the latter discipline
was still in development.

Yet, even though this was not agreed on by its original progenitors, metabolic
control analysis led to new laws and principles for biological systems, and especially for
networks of biochemical reactions. We shall here discuss the summation laws of
metabolic control analysis from this perspective. To do this we shall first retrace our
steps and recall the derivation of the Gibbs equation and the Gibbs-Duhem equations of
equilibrium thermodynamics. We first recall the balance equation for ordinary energy
U, which reads as follows (15, 10):

n

dU=dU=d,0+dW+> u, -dn,

j=l1
Subscript e refers to exchange of the system with its environment. The first law of
thermodynamics has been used here so as to require that no energy U can be produced
or consumed. Accordingly energy in the system can only increase by the addition of
heat, work or chemicals from the outside, where the latter carry a partial molar energy
equal to their chemical potential. The addition of heat is equal to the reversible
addition of entropy (exclusive of the entropy carried by the molecules) and volume
(exclusive of the volume increase due to the addition of the molecules):

n
dU=T-dS—P-dV+> u dn,
Jj=1
Assuming that the system is at equilibrium no entropy is produced. Because then also
chemical reactions inside the system are absent, or their total contribution equals zero,
internal volume changes are absent, this equation becomes the Gibbs-Duhem equation:
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dU =T -dS —P-dV + > u,-dn,
j=1

This equation shows that energy U can be calculated from its initial value and the
changes in entropy, volume and molecule numbers, provided that temperature, pressure
and chemical potentials are known. We shall here consider isothermal, isobaric
systems, freely exchanging matter with their environment which has constant chemical
potentials for all molecules. T, P and chemical potential are intensive properties and
energy, entropy, volume and molecule numbers are extensive properties, meaning that
the latter do not change, and the latter do change proportionally with the size of the
system. In other words, when changing the size of the system by the factor A:

UAX-T,A-S,2-PAV,2-u,A-n)y=A-UT,S,P,V,un)
Or in other words energy U is a homogenous function of order 1 of entropy, volume and

molecule number (and of order zero of Temperature, pressure and chemical potential).
Euler’s theorem then rules that:

dlnU oJ0lnU & JdlnU
= + +>
dlnS oV <

The partial derivatives are given by the Gibbs-Duhem equation and inserting these, one
obtains the Gibbs equation:

U=S-T-P-V+>n,-u,
j=l

This inspired Gibbs to define the Gibbs free energy, as:
G=U+PV-T-S

alnnj

Which then leads to:
G= Z‘ n; U,
j=

Establishing the chemical potential also as the partial molar free energy and a the energy
function of interest for isothermal, isobaric systems exchanging matter with their
environment.

The functions of state entropy, volume and molecule number describe a system
that is at equilibrium, and only partly systems that are away from equilibrium. For the
latter systems the aspect of time or fluxes is missing. When searching for
thermodynamic descriptions of systems away from equilibrium, it may be useful to
consider the phenomena that keep the system away from equilibrium. These are the
Gibbs energy dissipating processes, and more precisely the activities of these. In
biochemical networks, virtually all these processes have material counterparts, i.e. the
enzymes that catalyze them. These are in turn encoded by genes, constituting a further
relationship with nucleic acids. The properties of biochemical networks at steady state
can be considered functions of all process activities (here denoted by e;) and many other
properties. For such a property Z we write:

Z=1z(ee,,....e,,S, P, T,.K, K, k

e K carse++)

where one recognizes all the parameters of the enzyme kinetic rate equations. Z refers
to a function that delivers the steady state value of Z. S refers to the concentrations of
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external pathway substrates and products, which are parameters to the system of
interest.

Above we transformed the system in terms of physical size, essentially by
copying it lambda times, we here consider a transformation in terms of all activities: we
consider the situation that all processes are simultaneously accelerated by the factor A.
Because we are at steady state, all processes should be balancing each other, such that
there are no changes in time anymore of any property. As all processes are activated by
the same factor this balance will be maintained, and nothing will change, except that all
processes will proceed A times faster. If Z refers to a flux, e.g. J, this implies that Z is a
homogenous function of order 1 of all the processes rates. Using Euler’s theorem one
then obtains (10, 26):

dlnJ dInJ JdlnJ
1= + +
dlne, dlne, dlne,

Where the coefficients denoted by capital C correspond to the flux control coefficients
of MCA (10). One may here recognize the well-known summation law for flux control
coefficients (24, 25). Similarly, realizing that the steady state concentrations are not
changed, one sees that these are zero order homogeneous functions leading to the
concentration control summation law:

:alnX+alnX+alnX =CN+C+C .
dlne, dlne, Jdlne,

We here have two fundamental laws of non equilibrium biochemical networks that have
been derived in much the same way as the Gibbs equation was derived in equilibrium
thermodynamics. We therefore propose that the summation laws are aspects of the non
equilibrium thermodynamic theory that was long sought after.

The concentration-control coefficients are the derivatives of the ensemble-
averaged concentrations of the substances in the system with respect to the process
activities. Because of the definition of the chemical potential, the concentration
summation law can also be written as:

n n a,l«l
0=y M=% “Fx
; ! jzzllalnej

which now also shows as a thermodynamic law for non equilibrium steady state. The
logarithm of the enzyme activity could also be written as the chemical potential of the

+..=C/+C) +C] +...

enzyme:
n n a ﬂ
0=>) CHl=") X

5. Discussion

We here discussed fundamental aspects surrounding the silicon cell approach. These
are related to statistical thermodynamic properties of biological systems. The present
silicon cell approach is suited for biochemical, signal-transduction, and gene-expression
networks that fulfill a number of conditions. These entailing that the fluctuations in
them are limited or follow the Poisson distribution. This assumption corresponds to the
one required for the use of deterministic rate equations and is therefore quite acceptable
for most biochemical networks.
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Interestingly, the realization that these assumptions need to be made, suggests
that the silicon-cell approach may be one of the types of approaches that non-
equilibrium thermodynamics was looking for: it describes systems away from
equilibrium. It does this by inserting the details of every molecular phenomenon at the
ensemble level of enzyme-catalyzed reactions. The results of silicon-cell calculations
are thereby also highly specific, i.e. they give the concentrations of all molecules as a
function of time and all precise parameter values. Although the silicon cell therewith
describes non-equilibrium processes, it may not qualify as thermodynamics, because it
lacks any aspect of generality.

Parts of metabolic control analysis (MCA) on the other hand do describe non
equilibrium systems in terms of generic properties. We have here shown that important
principles of MCA are analogous to principles derived in equilibrium thermodynamics,
and so are the derivations of these principles. The same may be true for the
Hierarchical Control Analysis (27), which generalizes MCA to systems with signal
transduction (28) and systems with variable gene expression. MCA also has other,
famous laws/principles, i.e. the connectivity theorems. Also these have strong
thermodynamic connotations including an origin in stability vis-a-vis fluctuations (10).

We here therefore postulate that HCA and MCA correspond to the non
equilibrium thermodynamics that is most suited for most biological systems. We expect
that taking this perspective and that of the silicon cell, and combining these more with
thermodynamic considerations, even more new systems biology principles will emerge.
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