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Abstract 
This paper gives an overview of the thermodynamics and kinetics background to the 
silicon cell (SiC!) approach.  SiC! makes precise mathematical models of components 
of systems inclusive of their interaction properties.  It then puts these component 
models together into a computer program and integrates the behavior.     For metabolic 
pathways, SiC! takes the ensembles of enzyme molecules as the components.  It takes 
the ensemble averaged metabolite concentrations as the dependent variables these 
components work on.  We show how this approach depends on principles of non 
equilibrium thermodynamics and kinetics. 
Metabolic control analysis is an early and characteristic approach to systems biology.  
Using silicon cells one can do this control analysis in silico.  Also this analysis also has 
a number of theoretical foundations, which are again close to those of non equilibrium 
thermodynamics.  We propose that Metabolic Control Analysis is in fact the extension 
from equilibrium thermodynamics to non equilibrium systems that so many searched for 
in the second half of the previous century. 
 

1. Non-equilibrium thermodynamics 
In 1931 (1,2) Onsager published two seminal papers.  They revealed that there should 
be a remarkable symmetry in cross-cause effects relationships in coupled processes.   To 
obtain the symmetry property, coupled processes have to be described in a certain way, 
a way that has since been called non equilibrium thermodynamics (3).  Describing each 
process in terms of a driving force equal to the free energy difference across that 
process, and a flow equal to the steady state rate of the process, the cross dependence of 
the two processes on the two forces had to be equal in the limit to equilibrium. 
The proof given was based on kinetics or a probabilistic version thereof, and therewith 
married mass-action kinetics with thermodynamics.  Yet, it depended on the generic 
rather than the specific aspects of the kinetics and was therewith mechanism 
independent.  Because this was also true for equilibrium thermodynamics, this 
mechanism independence was long thereafter considered an essential property, also  of 
non equilibrium thermodynamics.   
 This non equilibrium thermodynamics (NET) was often formulated as a 
systems of linear equations relating all steady state fluxes in the system to all 
thermodynamic forces through proportionality relations, for which the matrix of 
proportionality constants then had to be symmetrical for the Onsager reciprocity 
relations to be satisfied.  Because Biology tends to look at functional processes that 
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involve a number of coupled molecular processes, many biologists and biophysicists 
were attracted to this non equilibrium thermodynamics (4). 

Non equilibrium thermodynamics was also useful to Biology because it helped 
resolve the Schroedinger paradox (5).  This paradox held the development of the order 
and structure of well developed biological organisms out of unordered food supplies, to 
be in conflict with the second law of thermodynamics.  The usual formulation of this 
law in physics is that entropy can only increase, never decrease, where entropy s a 
measure of chaos.  Non equilibrium thermodynamics then served to resolve this 
paradox, by reformulating that really the entropy production needed to be positive; by 
exporting lots of entropy, an organism could actually increase its order (3, 5).   
 The entropy production function then became object of additional searches for 
general thermodynamic principles.  Prigogine and coworkers showed that in the limit to 
equilibrium entropy production should be minimal at steady states (3). The minimum 
was with respect to variation of the independently variable thermodynamic forces.  
Entropy production was not minimal with respect to systems parameters (6), but again 
there was little interest in those systems parameters as they would carry mechanism 
specific information. These derivatives were thought not to lead to general results 
therefore. 
 Understanding the coupling between processes in bioenergetics was an area 
where NET had some additional useful contributions.  It enabled the definition of a 
coefficient that could quantify the degree of coupling between distinct biochemical 
processes (7).  Defining this coefficient increased the awareness that coupling would not 
have to be complete, and that uncoupling or slippage should be a possibility.  Up to that 
time and also subsequently, the unfounded notion that biological systems were 
necessarily ideal and therefore would not waste any free energy, made biologists only 
consider networks where coupling would be complete.   Here the emergence of the 
chemiosmotic coupling mechanism was important.  In this mechanism a membrane that 
was likely to have at least some passive permeability for protons was supposed to 
sustain the relevant free energy intermediate, i.e. the transmembrane electrochemical 
potential difference for protons (8).  This mechanism was one of the early examples of 
systems biology, where only through the integration of at least two completely different 
types of processes (i.e. transport and chemistry) free energy could be transduced, 
between two chemical processes. 
 Further consideration of the degree of coupling in terms of how its magnitude 
could contribute to the partly coupled process being optimal for certain functions, led to 
the conclusion that neither the degree of coupling nor the thermodynamic efficiency 
needed to be maximal for a number of relevant output functions to be optimal (9).  
Indeed it was calculated that many biological processes, including microbial growth 
(10) were highly inefficient, where some of the observed efficiencies could be 
understood in terms of the system being optimal with respect to both growth rate and 
power production in terms of biomass. 
 Non equilibrium thermodynamics continued to be successful in non biological 
sciences where it helped explain cross-correlations between different types of 
phenomena, such as heat conductance and volume flow.  Notwithstanding its apparent 
ability to function as an early systems biology approach being able to integrate 
multitudes of processes in its symmetrical linear equations, NET did not develop much 
further however.  The reason was that much of what had been accomplished was valid 
only for processes that were less than a couple of kJoules per mole displaced from 
equilibrium.  Biological reality is that the free energy of hydrolysis of ATP exceeds 40 
kJ/mol, and the dissipation of free energy in many processes exceeds 10 kJ/mol (10).  

H.V. Westerhoff82



Therewith none of the proofs of the above principles derived by non equilibrium 
thermodynamics holds for many realistic biological systems and indeed there is some 
evidence that the relations themselves do not hold either (10). 
 Rottenberg (11) and subsequently we (12, 10) then retraced some steps of NET 
and realized that one could translate well-accepted kinetic relationships into non 
equilibrium flow-force relationships.   This led to the discovery that there was a basis 
for the linear flow-force relations often postulated for non equilibrium thermodynamics.  
That linearity was likely to be at a range away from equilibrium that was most relevant 
for the regulation of processes.  However, in that range there needed be no Onsager 
reciprocity (10), continuing to take away the basis of the validity of the minimum 
entropy production principle (6).   
Importantly, here the paradigm was left that by definition non equilibrium 
thermodynamics should be devoid of mechanisms;  the coefficients relating flows and 
forces were expressed into enzyme kinetic properties.  And, using this new, ‘Mosaic  
Non Equilibrium Thermodynamics (MNET)’, the systemic implications for failing 
mechanisms of coupling could be predicted (10).  A systems Biology approach, relating 
important systems function to molecular action and properties, had been born, avant la 
lettre. 
 Paradoxically, another, in fact older, branch of non equilibrium 
thermodynamics thrived on the non-linearities in and amongst the processes in biology, 
and certainly on the substantial distance of many biological systems from equilibrium.  
The self organization addressed by this type of non equilibrium thermodynamics cannot 
occur in the Onsager domain where flow-force relations are symmetrical (3, 13).  The 
resolution of the Schrödinger paradox described above merely stated that export of 
entropy could resolve that paradox, but it had not yet been clarified how that entropy 
export would be coupled to the entropy decrease held characteristic of developmental 
biology.  Mechanisms were sought for pattern formation from initially symmetrical 
conditions, and found, e.g. by Turing (14, 3, 15).  Symmetry breaking in time was also 
found to occur in chemical reaction schemes and held as model for the cell cycle in 
living organisms.  Further developments included the discovery and analysis of sets of 
equations that could generate even more complex phenomena such as aperiodic self-
excitation and deterministic chaos (16).   These analyses brought home the message that 
for some of these phenomena to occur quite special parameter values were needed.  This 
reinforced the question whether indeed in biological reality those parameter values 
would reign, or if alternatively completely different mechanisms might be responsible 
for the observed complex phenomena to occur. 
 In the mechanisms proposed by the fields of non equilibrium thermodynamics 
and nonlinear dynamics, there was frequently another limitation, i.e. lack of robustness.  
Symmetry breaking could occur but the precise version of the asymmetry (e.g. left-right 
versus right-left) depended on fluctuations and would therefore be random.  Yet the 
observation that our right foot is usually on our right-hand side is quite convincing in 
showing that actual developmental biology is more robust than this.  The argument then 
became that instead of a fluctuation, a well-controlled external condition would set the 
symmetry breaking in motion, now reproducibly.   
The requirement of such an external ordering factor was in line with the more general 
observation that the structures of living cells do not arise completely anew in every 
generation: the replication of DNA is semi-conservative, the plasma membrane of 
newborns cells are pinched off parts of the plasma membrane of their mother cells, and 
most of their proteins have been and are being made by ribosomes inherited from the 
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mother cell.  A view, in which biological structure was nothing but a perpetration of a 
complex dynamic structure that once got into existence, became an option.   
Meanwhile molecular biology found more and more factors that co-determine molecular 
biology, and important predictions of the simplest versions of the self-organization 
theory of segmental organization in Drosophila turned out to be wrong:  proteins 
alternating their expression between segments were not directed by precisely the same 
promoter elements in the stripe in which they were expressed (17).  Self-organization 
may still play a partial role in developmental biology, but it will be a partial role only. 
These developments have taught us that the attractiveness of a concept such as self 
organization should not lead to the non-critical implicit assumption that a process is 
self-organized.  Even though self-organization may be the simplest mechanism for 
pattern formation in early development, that by itself has no value; there is no place for 
Occam’s razor in Biology.  Critical experimental testing is required, probably through 
detailed modeling and checking whether the predictions made by the model for 
experimentally determined actual parameters values, are in actual agreement with the 
behavior of the system.  Likewise, hypotheses that developmental processes are due to 
pre-specification will need to be so concrete as to be testable, or falsifiable in Popper’s 
sense (18). 
 

2. Silicon cells 
The suggestion that hypotheses in Biology should be testable and indeed be tested 
would seem to be superfluous.  Would any biologists accept that her/his science should 
not adhere to the criteria devised for the natural sciences?  On the other hand Biology is 
a complex science and this has had the effect that at the truly biological level, few 
theories have actually been testable.  Because of the complexity and nonlinearity of the 
networks in biology, the behavior of their components is a strong function of the 
molecules around them.  Accordingly, failure of a set of molecules to act precisely as 
predicted by a theory, could always be attributed to the presence of an as yet 
unidentified additional factor, somewhat altering the mechanisms that would otherwise 
work as proposed.  Accordingly many biologists working at the physiological level, are 
satisfied with theories that allow for exceptions even when if these are not made 
explicit.  Other biologists took the opposite stance.  They decided that if at the 
physiological level theories could not be falsified, they should refrain from working at 
that level and turn to model systems that were completely controlled, notably in vitro 
systems with purified molecules.  There the hard scientific criteria could be met in 
principle. 
 Genomics has altered the situation.  Now, living systems such as some 
unicellular organisms, are completely characterizable in terms of the sequence of all 
their genes, and the concentrations of all mRNAs, proteins and (soon) metabolites.  
These concentrations can also be manipulated, enabling a large number of independent 
experimental tests.  The physiologist can no longer propose that failure of the system to 
behave according to his hypothesis is due to an unidentified molecules; if there is such a 
failure, he should either reject the hypothesis or identify the perturbing molecule and 
extend his model to incorporate that molecule.  The molecular biologist need no longer 
refrain from studying the actual functioning of his molecules, in the intact system or 
suitable models thereof.  This new interface between molecular biology and physiology 
is called Systems Biology (19). 
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 Systems Biology focuses on the functional properties that arise in the 
interactions between the components of biological systems (20).  The cell cycling and 
the self-organization discussed above are examples: none of their molecules cycles or 
forms spatial patterns in the absence of interaction with the other molecules.  Systems 
biology also realizes that it should reach beyond mathematical biology in that it should 
not devise models that might explain biological function: it should devise models that 
do explain those phenomena, for the parameter values that are real.    

The silicon cell program (cf. www.siliconcell.net) is an epitome of this systems 
biology (21).  It puts together the actual kinetic and interaction properties of the 
components of the biological system into a computer replica and then uses a computer 
program to calculate the system’s behavior of that replica.  If that behavior corresponds 
with the experimentally observed functional behavior of the biological system, then the 
mechanisms present in the replica should be the explanations of the emergent functional 
behavior. 
  Other than what their name may suggest, these silicon cells do not yet 
correspond to replica of entire cells.  They correspond to replica of hopefully 
sufficiently autonomous parts of (pathways in) living cells to be testable.  The strictness 
with which they adhere to the principle of the silicon cell that all component properties 
should have been determined experimentally, is also variable, but this is to improve in 
the future.  The models in the silicon-cell program have gone through the quality control 
of international journals, some of which collaborate explicitly with the program. 
  

3. At what level should one pitch the silicon cell? 
When pronouncing to make precise models of functioning systems of the living cell in 
terms of their components, it is not immediately obvious what the components should 
be.  The silicon cell focuses on the whole cell as the ultimate system but begins with the 
limited focus of pathways in those cells as the systems.  The components are the 
catalysts in the pathway, mostly the proteins, and the ‘micro-molecules’ (‘metabolites’) 
through which they communicate.  This does not completely specify yet the level of 
modelling however.  To pitch the right level, both siliconcell and systems biology learn 
from non equilibrium thermodynamics and kinetics. 
 One could take the point of view that a precise replica model of what happens 
in a metabolic pathway in the living cell should consider each individual molecule 
explicitly in terms of its position, state, appearance and disappearance, and these as 
functions of time.  However, the complexity accompanying such a point of view is 
unmanageable.  Let us consider just 20 types of molecule such as ATP in the living cell.  
At concentrations of approximately 10 mM these would each number 6 million 
molecules per E. coli cell.  Supposing that each of these molecules could be in either of 
two states and each at any of 500 locations, then the entire systems would have some 
100020000000  possible states.  Modeling how such a system proceeds its biased random 
walk through these states is not only impossibly time consuming, but it is also useless in 
terms of the detailed information it would give.  We are simply not interested in the 
particular behavior of such a system; we would not even know whether it corresponds 
to a particular experimental system we are studying, because we could not know in what 
precise state that system is.  Inevitably we are interested in trends of behavior; in 
behavior that is reproducible between incarnations of a system of interest, which may all 
be different in terms of their precise microscopic states but are expected to behave 
similarly macroscopically.   Lack of direct interest is however insufficient 
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reason not to engage in detailed modeling.  The average trend of behavior of a system 
might depend crucially on the detailed processes and in this case one would need to 
model in complete detail to obtain the average behavior of interest (22). 
 What then is the level of detail at which we need to enter the components into 
the silicon cell?  Here statistical mechanics and kinetics have shown the way.  Consider 
the simplest possible reaction i.e. the degradation of a molecule A.  The probability that 
the degradation occurs at some location in the cell should be proportional to the 
probability to find molecule A at that location and the rate should again be proportional 
to that probability: 
 

nknNPkv ⋅==⋅= )|1('  
 
Here P(1|N=n) represents the probability to find a molecule A within a given small time 
interval at the location of interest, if the total number N of molecules A equals n.  For 
the average rate of the process this implies: 

nknkv ⋅=⋅=  
which corresponds to the deterministic rate equation for this situation.  With this the 
average behavior of the system is described in terms of the ensemble average 
concentration (if one also divides by the volume) of molecules of the same type.  If the 
mixing in the system is much faster than the reactions, then that ensemble averaged 
concentration is the same for the entire cell (or compartment thereof) and this leads to 
an enormous simplification.  Now the state of the system can be described by only 40 
state variables, i.e. the ensemble averaged concentrations of the 20 molecules in their 
two internal states.   
 The situation becomes more complicated in essence whenever the kinetics is 
nonlinear.  We here take quadratic kinetics as the example: 
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where σ2 is the variance in the particle number.   This equation shows that only under 
certain conditions the deterministic rate equation is followed.  One is the case where the 
variance equals the mean, which occurs when the particle number follows a Poisson 
distribution.   Poisson distributions occur in cases with unit stoichiometries (10) and 
should not be expected to be standard in biological systems.  In most systems the 
variance may not be equal to the average number of particles, but is nevertheless of the 
same order of magnitude (10).  Then: 
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This leads to the second condition, which should apply more frequently:  deterministic 
kinetics applies whenever the number of particles exceeds 100. 
 The above argumentation is classical.  Yet we repeat it here for two reasons.  
First, one now often encounters research programs where modeling is done 
stochastically rather than by using the deterministic equations, but without 
rationalization of why the former approach is chosen.  At least one should ensure that 
the particle number is low or the distribution is vastly different from Poisson.  Second, a 
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number of cases have been noted meanwhile where variances have indeed been much 
larger than the average particle number and some of these cases carry a truly biological 
signature.  An exemplary case is that of the expression of a gene through mRNA to the 
protein level.  Because a single mRNA readily leads to the synthesis of hundreds of 
protein molecules, a variance in mRNA close to the mean number of mRNAs may 
translate into variance and average also being similar at the protein level.  Then kinetics 
at the protein level (or for similar reasons at the metabolic level) may differ highly from 
that predicted by the deterministic rate equation.  Ehrenberg and colleagues have been 
working of highly relevant such cases of extremely large variance (23). 

A highly relevant case is of course dictated by the digital encoding of genetic 
information, allowing one or two copies of a gene per cell only.  When mutations occur 
in the haplotype, the variance is of the order of magnitude of the mean.  Then 
nondeterministic kinetics should be used, not only at the DNA level but also at the 
mRNA, protein and metabolic levels, when the mutating gene is an enzyme. 
 In case a population of cells is genetically homogeneous, and the number of 
mRNA molecules encoding the enzymes is large or quasi-Poisson distributed, cellular 
processes will follow deterministic kinetics.  It is these cases that the silicon cell 
approach has been limiting itself to until now (21).  Hence the silicon cell approach 
describes the processes in the cell as processes that are carried out by enzymes the 
activity of which can be described by their ensemble-averaged activity, and their 
ensemble averaged kinetic properties which depend on the ensemble averaged 
concentrations of micromolecules (‘metabolites’).  This limiting case is the same as the 
one proposed by non equilibrium thermodynamics (15) for the description in terms of 
average concentrations, or in fact chemical potentials: 
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Here the rate equations becomes  
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where the number 2 refers to the case of quadratic kinetics, and should be replaced by 1 
in the case of linear kinetics.  Deterministic kinetics and non-equilibrium 
thermodynamics that is not restricted to the near equilibrium domain are really two 
expressions of the same thing. 
 The advantage of the deterministic kinetics/non-equilibrium thermodynamic 
approach is the tremendous simplification.  For the 20 types of molecules that can each 
occur in two states and at 500 locations in the cell, the number of state variables is now 
20 000, which although large is no longer unmanageably large.  In practice a further 
simplification is possible provided the situation is that of a reasonable homogeneous 
space, diffusion being much more rapid than reactions, or the enzymes being distributed 
homogeneously over space.   Then only 40 state variables suffice.  The ensemble-
averaged concentrations or the corresponding chemical potentials, correspond to the 
functions of state of thermodynamics, adding to energy content and volume for 
isothermal, isobaric systems (10).   
 Indeed, at this moment all silicon cells are spatially homogeneous within well-
defined compartments and the following simple description is used (www.siliconcell.net  
).  For each process that occurs in a cellular compartment, one formulates what it 
actually does.  This is the transformation of molecules of one chemical nature to 
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molecules of a different chemical nature, as indicated by the reaction equation.  In the 
case of transport, the molecules can be of the same chemical nature but in different 
explicit compartments.  The reaction equation can also be encoded as a set (vector) of 
stoichiometries (positive for products and negative for substrates).  This vector becomes 
a column of the stoichiometry matrix N, of which each column corresponds to a process 
in the cell.  Often the stoichiometry matrix is formulated from the alternative point of 
view of the time dependence of the metabolite concentrations as a balance between of 
all the process rates.    The end result is the same, but the former method is more in 
keeping with the silicon cell philosophy that the process should be independent of any 
knowledge about the system. 

Processes are not only characterized by what they do, but also by the rate at 
which they do it, and by the dependence of that rate on the state of the system, i.e. the 
concentrations of the molecules.  For each process therefore an enzyme kinetic rate 
equation is formulated, which is typically of the form: 

,...),,,,,,,()( XPScateq KKKkKYXSfegv ⋅=  
Where g(e) is often a mere proportionality, indicating that the rate is proportional to the 
concentration of the catalyst.  Often g(e) and kcat are combined into the single parameter 
Vmax.  Usually, X and Y are variable metabolite concentrations, corresponding to 
functions of state of the system, as discussed above. 
 When the list of all processes in the system has been compiled with heir 
stoichiometric and rate equations, the lists of the arguments of the functions in the rate 
equations contain two types of properties.  The one type is that of the variables.  These 
also occur in the lists of molecules produced or consumed by the processes.  For these 
variable properties balance equations are then written using the expression: 

vN
dt
dX ⋅=  

Where N is again the stoichiometry matrix, v is a vector of the process rates, and X is a 
vector of all the concentration variables.  The other type of properties in the lists of the 
arguments of the rate equations is called parameters.  The parameters are not altered by 
actions of the processes in the system studied, but set by external conditions or by 
properties that cannot be changed by the systems (e.g. the Michaelis constants of the 
enzymes, and sometimes the pathway substrate and product, S). 
 This is almost (see below) all the biologist/biochemist formulating a siliconcell 
does:  characterize the components of the system.  The computer program does the rest, 
which importantly includes the computation of the system behavior.  It integrates the set 
of differential equations: 

,...),,,,,,,())(( XPScateq KKKkKYXSfegdiagN
dt
dX ⋅⋅=  

Where the biologists still has to specify the initial conditions.  The specification of these 
is actually something that requires some knowledge about the system, but not 
knowledge on how and why it behaves. Alternatively, one is interested in the steady 
state and asks the computer to solve equations for time independence of the metabolite 
concentrations.   These two options are available for just a click on the siliconcell model 
base of live models: http://www.jjj.bio.vu.nl    A third option of this silicon cell live 
‘modelbase’ calculates control coefficients, i.e. the dependence of steady state 
properties on all the process activities.  Through the world-wide web anyone can now 
engage in in silico experimentation with refereed silicon-cell models of pathways of 
living organisms.  
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 With this the silicon cell comes to predictions and descriptions of systems 
behavior at the functional state, i.e. away from equilibrium, in terms of its 
thermodynamic properties, i.e. chemical potentials or ensemble-averaged 
concentrations, and ensemble averaged fluxes.  This was one of the aims of non 
equilibrium thermodynamics.  
 

4. New non equilibrium thermodynamics? 
Yet, what the siliconcell delivers may not be quite recognized as non-equilibrium 
thermodynamics, as it is always rather specific information which depends on the 
precise magnitudes of the kinetic parameters.  No principles, no laws of general validity 
are produced by the siliconcell.  Indeed, precisely because it aims at generating a 
computer replica of the real pathways, no reduction of complexity, no generalizations 
are produced without further activities.  In addition the output is formulated in terms of 
fluxes and concentrations rather than in terms of chemical potentials.   

For a while it seemed that perhaps biological systems lack general principles 
other than the ones valid close to equilibrium and discussed above.   Few if any of the 
properties and principles valid near equilibrium could be extrapolated successfully to 
systems displaced from equilibrium to the extent that regular biological systems are.    

In the late sixties of the previous century in Edinburgh (24) and Berlin (25) a 
new way of looking at biological systems came about, partly inspired by genetics and 
partly by silicon cell type of modeling of metabolism.   The new approach was called 
metabolic control analysis (MCA).  Until 1987 (10), little reference to a link between 
MCA and non equilibrium thermodynamics was made, even though the latter discipline 
was still in development.  

Yet, even though this was not agreed on by its original progenitors, metabolic 
control analysis led to new laws and principles for biological systems, and especially for 
networks of biochemical reactions.  We shall here discuss the summation laws of 
metabolic control analysis from this perspective.  To do this we shall first retrace our 
steps and recall the derivation of the Gibbs equation and the Gibbs-Duhem equations of 
equilibrium thermodynamics.  We first recall the balance equation for ordinary energy 
U, which reads as follows (15, 10): 

∑
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Subscript e refers to exchange of the system with its environment.   The first law of 
thermodynamics has been used here so as to require that no energy U can be produced 
or consumed.  Accordingly energy in the system can only increase by the addition of 
heat, work or chemicals from the outside, where the latter carry a partial molar energy 
equal to their chemical potential.   The addition of heat is equal to the reversible 
addition of entropy (exclusive of the entropy carried by the molecules) and volume 
(exclusive of the volume increase due to the addition of the molecules): 
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Assuming that the system is at equilibrium no entropy is produced.  Because then also 
chemical reactions inside the system are absent, or their total contribution equals zero, 
internal volume changes are absent, this equation becomes the Gibbs-Duhem equation: 
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This equation shows that energy U can be calculated from its initial value and the 
changes in entropy, volume and molecule numbers, provided that temperature, pressure 
and chemical potentials are known.  We shall here consider isothermal, isobaric 
systems, freely exchanging matter with their environment which has constant chemical 
potentials for all molecules.  T, P and chemical potential are intensive properties and 
energy, entropy, volume and molecule numbers are extensive properties, meaning that 
the latter do not change, and the latter do change proportionally with the size of the 
system.  In other words, when changing the size of the system by the factor λ: 

),,,,,(),,,,,( 101010 nVPSTUnVPSTU μλλμλλλλλ ⋅=⋅⋅⋅⋅⋅⋅  
Or in other words energy U is a homogenous function of order 1 of entropy, volume and 
molecule number (and of order zero of Temperature, pressure and chemical potential).  
Euler’s theorem then rules that: 
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The partial derivatives are given by the Gibbs-Duhem equation and inserting these, one 
obtains the Gibbs equation: 
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This inspired Gibbs to define the Gibbs free energy, as: 
STVPUG ⋅−⋅+≡  

Which then leads to: 
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Establishing the chemical potential also as the partial molar free energy and a the energy 
function of interest for isothermal, isobaric systems exchanging matter with their 
environment. 
 The functions of state entropy, volume and molecule number describe a system 
that is at equilibrium, and only partly systems that are away from equilibrium.  For the 
latter systems the aspect of time or fluxes is missing.  When searching for 
thermodynamic descriptions of systems away from equilibrium, it may be useful to 
consider the phenomena that keep the system away from equilibrium.  These are the 
Gibbs energy dissipating processes, and more precisely the activities of these.  In 
biochemical networks, virtually all these processes have material counterparts, i.e. the 
enzymes that catalyze them.  These are in turn encoded by genes, constituting a further 
relationship with nucleic acids. The properties of biochemical networks at steady state 
can be considered functions of all process activities (here denoted by ei) and many other 
properties.  For such a property Z we write: 

,....),,,,,,,...,,( 21 cateqMn kKKTPSeeezZ =  
where one recognizes all the parameters of the enzyme kinetic rate equations.  Z refers 
to a function that delivers the steady state value of Z.   S refers to the concentrations of 
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external pathway substrates and products, which are parameters to the system of 
interest. 
 Above we transformed the system in terms of physical size, essentially by 
copying it lambda times, we here consider a transformation in terms of all activities:  we 
consider the situation that all processes are simultaneously accelerated by the factor λ.  
Because we are at steady state, all processes should be balancing each other, such that 
there are no changes in time anymore of any property.  As all processes are activated by 
the same factor this balance will be maintained, and nothing will change, except that all 
processes will proceed λ times faster.  If Z refers to a flux, e.g. J, this implies that Z is a 
homogenous function of order 1 of all the processes rates.  Using Euler’s theorem one 
then obtains (10, 26): 
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Where the coefficients denoted by capital C correspond to the flux control coefficients 
of MCA (10).  One may here recognize the well-known summation law for flux control 
coefficients (24, 25).  Similarly, realizing that the steady state concentrations are not 
changed, one sees that these are zero order homogeneous functions leading to the 
concentration control summation law: 
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We here have two fundamental laws of non equilibrium biochemical networks that have 
been derived in much the same way as the Gibbs equation was derived in equilibrium 
thermodynamics.  We therefore propose that the summation laws are aspects of the non 
equilibrium thermodynamic theory that was long sought after. 
 The concentration-control coefficients are the derivatives of the ensemble-
averaged concentrations of the substances in the system with respect to the process 
activities.  Because of the definition of the chemical potential, the concentration 
summation law can also be written as: 
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which now also shows as a thermodynamic law for non equilibrium steady state.  The 
logarithm of the enzyme activity could also be written as the chemical potential of the 
enzyme: 
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5. Discussion 
We here discussed fundamental aspects surrounding the silicon cell approach.  These 
are related to statistical thermodynamic properties of biological systems.  The present 
silicon cell approach is suited for biochemical, signal-transduction, and gene-expression 
networks that fulfill a number of conditions.  These entailing that the fluctuations in 
them are limited or follow the Poisson distribution.  This assumption corresponds to the 
one required for the use of deterministic rate equations and is therefore quite acceptable 
for most biochemical networks. 

Systems Biology and the Silicon Cell: Order out of Chaos 91



Interestingly, the realization that these assumptions need to be made, suggests 
that the silicon-cell approach may be one of the types of approaches that non-
equilibrium thermodynamics was looking for: it describes systems away from 
equilibrium.  It does this by inserting the details of every molecular phenomenon at the 
ensemble level of enzyme-catalyzed reactions.  The results of silicon-cell calculations 
are thereby also highly specific, i.e. they give the concentrations of all molecules as a 
function of time and all precise parameter values.  Although the silicon cell therewith 
describes non-equilibrium processes, it may not qualify as thermodynamics, because it 
lacks any aspect of generality. 

Parts of metabolic control analysis (MCA) on the other hand do describe non 
equilibrium systems in terms of generic properties.  We have here shown that important 
principles of MCA are analogous to principles derived in equilibrium thermodynamics, 
and so are the derivations of these principles.  The same may be true for the 
Hierarchical Control Analysis (27), which generalizes MCA to systems with signal 
transduction (28) and systems with variable gene expression.  MCA also has other, 
famous laws/principles, i.e. the connectivity theorems.  Also these have strong 
thermodynamic connotations including an origin in stability vis-à-vis fluctuations (10). 
 We here therefore postulate that HCA and MCA correspond to the non 
equilibrium thermodynamics that is most suited for most biological systems.  We expect 
that taking this perspective and that of the silicon cell, and combining these more with 
thermodynamic considerations, even more new systems biology principles will emerge. 
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