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Abstract 

Mathematical description of metabolic systems allows the calculation of the expected 
responses of metabolism to genetic modifications and the identification of the most promising targets 
for the engineering of cellular processes. Metabolic control analysis (MCA) provides such a description 
in the form of sensitivity coefficients, called control coefficients. These indices are determined by 
perturbation experiments, or through (log)linear analysis of nonlinear mathematical models, around a 
reference steady state, and, therefore, the predictive power of MCA is limited to small changes in the 
metabolic parameters. We present here the Nonlinear Metabolic Control Analysis (NMCA), a 
framework that allows accurate description of the metabolic responses over wide range of changes in 
the metabolic parameters. The performance and capabilities of NMCA are illustrated using a model of 
the yeast glycolysis. 
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Introduction
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Complex systems are composed of interacting elements that give rise to properties which cannot be predicted by knowing 
the properties of their constituting elements alone (Ottino 2003). Metabolic pathways are such complex systems, where 
many different enzymes and proteins interact through common reactants, substrates, cofactors, and regulators to yield 
properties which cannot be described simply by the knowledge of the individual enzymes in the pathways. However, 
understanding the emerging properties of metabolic pathways is central to problems and questions in several life sciences 
disciplines, such as medicine, evolutionary biology, systems biology, and metabolic engineering. On the other hand, there 
is an exponential growth in the development of new technologies that provide a very good qualitative and quantitative 
description of metabolic systems. Genome sequencing and metabolic reconstruction allow the identification of the 
stoichiometry and pathway topology, and metabolic flux analysis (MFA) methodologies, developed within the field of 
metabolic engineering, provide with estimates of the fluxes (reaction rates) in metabolic networks (Forster et al. 2003; 
Varma and Palsson 1993a; Varma and Palsson 1993b). In this article we employ a mathematical and computational 
framework that allows the integration of the available information from these fields and the prediction of the responses of 
metabolic networks to changes in metabolic parameters. 

From a systems perspective, metabolite concentrations and reaction rates are the metabolic variables, stoichiometry, 
enzyme kinetic parameters, and environmental conditions are the metabolic parameters. In studying the systemic origins 
of disease, or in identifying targets for genetic and metabolic engineering, we are interested in understanding how changes 
in metabolic parameters impact the variables of a metabolic system. Such an understanding will require a quantitative 
characterization of these effects, and the identification of the most important parameters, e.g., the parameters that have the 
highest impact on certain metabolic variables. The latter is what is in many cases called the rate-limiting steps in a 
metabolic pathway. 

Quantitative characterization of this kind can be achieved either through sophisticated experiments that involve 
perturbation of the metabolic parameters and precise measurements of possibly every metabolic variable, or through 
simulations of detailed kinetic models of the metabolic pathways. However, both of these approaches have certain 
drawbacks. Namely, the experimental approach requires not only a large number of experiments, but also many advanced 
analytical techniques. Yet still, they are subject to a great degree of uncertainty. And for the computational approach, 
construction of such models entails a large amount of information, including but not limited to kinetics of the enzymes of 
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the pathway and metabolite concentrations. Therefore a quantification framework that requires a minimum amount of 
information about enzyme kinetics and takes into account of the inherent uncertainty will significantly improve our 
understanding of the functions of metabolic pathways. 

Among the developed mathematical frameworks, Metabolic Control Analysis (MCA) quantifies the link between 
genetic modifications or environmental changes and cellular process responses. MCA introduces the control coefficients, 
similar to the concept of transfer function in the system control theory, to quantify the fractional change of cellular output 
(metabolite concentrations and metabolic fluxes) in response to a fractional change of system parameters (e.g. enzymatic 
activities and growth conditions) (Fell and Sauro 1985; Hatzimanikatis and Bailey 1996; Hatzimanikatis and Bailey 1997; 
Heinrich and Rapoport 1974; Kacser and Burns 1973; Kholodenko and Westerhoff 1993; Reder 1988). An immediate 
application of MCA on rational metabolic engineering design is the ranking of potential targets based on the values of the 
control coefficients of the flux leading to the desired cellular product (Bowden 1999; Cascante et al. 2002; Schuster 1999; 
Westerhoff and Kell 1996). However, MCA, being a “local sensitivity” analysis framework, does not guarantee an 
accurate estimation of the system responses to large changes in enzyme activities and growth environment. 

In order to address this issue we have previously developed a method called Nonlinear Metabolic Control Analysis 
(NMCA) that allows prediction of metabolic responses to large changes in metabolic parameters based on information 
about the properties of the system around a reference steady state (Hatzimanikatis 1999). We apply here this method on 
yeast glycolysis and illustrate how this method is applicable to the cases where partial information about the kinetics of 
the system is available.  

Generalized (Log)linear MCA Formalism 

For cells growing in a batch culture, the mass balances of intracellular metabolites can be described as 

( )se ppxNvx ,,=
dt
d

, (1) 

where x  is the metabolite concentration vector, N is the stoichiometric matrix, v is the metabolic flux vector, ep is the 

enzyme activity parameter vector, which includes both kinetic parameters and enzyme concentrations, and sp  is the 

vector of other system parameters such as temperature and pH. 
Due to the presence of conserved moieties in the cellular metabolism, i.e. groups of compounds such as ATP, ADP, 

and AMP, whose total amount is assumed to remain invariant over the characteristic response time of the metabolic 
network, we can divide the original set of metabolite concentrations x  into two categories: an independent metabolite 

concentration vector, ix , and a dependent metabolite concentration vector, dx  (Reder 1988). A third parameter set, 

mp , is also introduced into the system to represent the total concentration of the metabolites in each moiety group (Wang 

et al. 2004). The reduced form of mass balances with respect to independent metabolites can be represented as 

( )( )semidiR
i p,p,pxxxvNx

,,=
dt

d
, (2) 

where RN  consists of the rows in N corresponding to the independent metabolites. 

In the previous work, we have demonstrated the calculation of control coefficients in a intracellular metabolic system 
based on the (log)linear model formalism (Hatzimanikatis and Bailey 1996; Hatzimanikatis and Bailey 1997; 
Hatzimanikatis et al. 1996; Wang et al. 2004). Assuming a stable steady state for the system in Equation (2), and after 
linearization and scaling we obtain the following equations for the control coefficients: 

( ) [ ]sReRmRidRiR
x
p VΠNVΠNVΠNQVENVENC i 1−+−= , (3) 

( ) [ ]sem
x
pidi

v
p ΠΠΠCQEEC i ++= . (4) 

Concentration control coefficients, x
pC , and flux control coefficients, v

pC , are defined as the fractional change of 

metabolite concentrations and metabolic fluxes, respectively, in response to fractional changes of system parameters. In 

this formalism, V  is the diagonal matrix whose elements are the steady state fluxes; iE  and dE  are the matrices of the 

elasticities with respect to metabolites, defined as the local sensitivities of metabolic fluxes to independent and dependent 

metabolite concentrations, respectively; mΠ , eΠ , and sΠ  are the matrices of the elasticities with respect to 

parameters, defined as the local sensitivities of metabolic fluxes to system parameters, mp , ep , and sp , 

correspondingly; and iQ  is a weight matrix that represents the relative abundance of dependent metabolites with respect 
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to the abundance of the independent ones. A second weight matrix, mQ , is also defined, for the relative abundance of 

dependent metabolites with respect to the levels of their corresponding total moieties, which leads to the following 

expression for the matrices of elasticities with respect to parameters, mΠ : 

mdm QEΠ =  (5) 

It is worth mentioning that the estimation of control coefficients using this framework does not require explicit 
knowledge of the values of the concentration of metabolites.  

Nonlinear Metabolic Control Analysis (NMCA) 

In the previous work (Hatzimanikatis 1999), we have demonstrated how we can use the “local” information from 
MCA (Equations (3)-(5) above) to calculate responses to large changes in metabolic parameters. The method is based on 
the observation that the dependency of metabolite concentrations and metabolic fluxes can be formulated as the following 
ordinary differential equation problem: 

( )( ), ,i

k

xi
p

k

dz C f
dq

= = x v E x  (6) 

( )( ), ,j

k

vj
p

k

dw
C g

dq
= = x v E x  (7) 

where: 

,
,

ln izi
i i i o

i o

xz x x e
x

= ⇒ = ⋅  (8) 

and 

,
,

ln jwj
j j j o

j o

v
w v v e

v
= ⇒ = ⋅  (9) 

with xi,o and vj,o the initial, reference steady-state values of metabolite xi and metabolic flux vj , respectively. 
Equations (6)-(9) can be now solved simultaneously using any ODE solver and could provide the dependency of 

steady-state values of metabolites and metabolic fluxes on large changes in the metabolic parameter pk, with 
kq

okk epp ⋅= , . For every integration point, we also check the local stability characteristic of the system in order to 

guarantee that the system transitions to new steady states through a sequence of stable steady states. In case the system 
crosses into an unstable steady state, we terminate the integration. Details of the method will be provided elsewhere 
(Wang and Hatzimanikatis, in preparation). 

Analysis of the Rate Limiting Steps in Yeast Batch Fermentation 

We applied the NMCA framework on the central carbon metabolism of yeast S. cerevisiae growing in a batch reactor 
based on the model by Teusink et al. (Teusink et al. 2000) (Figure 1). Teusink et al. provided information about the 
kinetic parameters of most of the enzymes in the system and the concentration of most of the metabolites. A total of 14 
parameter and metabolite values were missing. In order to overcome this limitation we consider the following three cases: 

I. The missing parameters and metabolites were chosen such that the corresponding enzymes were at high 
saturation at the reference, initial steady state. 

II. The missing parameters and metabolites were chosen such that the corresponding enzymes were at low 
saturation at the reference, initial steady state. 

III. The missing parameters and metabolites were chosen with all possible 214 combinations of the corresponding 
enzymes between high and low saturation at the reference, initial steady state. 

In all cases we studied the responses of the metabolites and metabolic fluxes to large changes in the activity of the 
glucose transport enzyme, HXT. 

In case I we have been able to calculate the responses of metabolites and metabolic fluxes for a 100% change in HXT 
activity (Figures 2 and 3). In case II though, beyond 40% changes in the activity of HXT the system became unstable 
going through a saddle node bifurcation (Figures 4 and 5). This transition is also demonstrated through the sharp increase 
in the relative concentrations of some of the metabolites, such as PEP and PYR (Figure 4). In both cases, we compared 
the results from NMCA analysis with the changes in the values of metabolites and metabolic fluxes if we had used the 
control coefficients from the reference steady states using the following equations: 
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Figure 1. Anaerobic glycolytic pathway model of nongrowing yeast, Saccharomyces cerevisiae, with glucose as the 
sole carbon source. Chemical species: Gin, intracellular glucose; G6P, glucose-6-phosphate; F6P, fructose-6-
phosphate; FdP, fructose 1,6-diphosphate; GAP, glyceraldehydes-3-phosphate; DHAP, dihydroxy acetone 
phosphate; BPG, bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, 
phosphoenolpyruvate; PYR, pyruvate; AcAld, acetaldehyde; ETOH, ethanol; ATP, adenosine triphosphate; ADP, 
adenosine diphosphate; AMP, adenosine monophosphate; NADH, nicotinamide adenine dinucleotide. Pathway steps 
and enzymes (in bold): trans, glucose cross-membrane transport; HK, hexokinase; PGI, phosphoglucose isomerase; 
PFK, phosphofructokinase; ALD, fructose 1,6-diphosphate aldolase; TPI, triose phosphate isomerase; GAPDH, 
glyceraldehydes-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; 
ENO, enolase; PYK, pyruvate kinase; PDC, pyruvate decarboxylase; ADH, alcohol dehydrogenase; ATPase, net 
ATP consumption; AK, adenylate kinase. 
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( ) X
HXTC

oHXTHXTo PPXX ,*,* ⋅=  (10) 

 
and 
 

( )* *, ,

V
HXTC

o HXT HXT oV V P P= ⋅  (11) 

In both cases the MCA prediction is quite accurate for up to 25% increase in the HXT activity. The MCA fails as the 
change in the activity increases, and as expected, it cannot capture the metabolite accumulation associated with the 
bifurcation observed in case II. It also appears that MCA can predict the fluxes much better in case II for up to almost 
40%, while it fails to do so for the same range in case I. This observation suggests that the accuracy of MCA depends on 
the values of the metabolites at the reference, initial steady state. This effect is also illustrated in the studies of case III 
(Figure 6). In this case we have studied all the possible combinations of the 14 unknown metabolite concentrations that 
could support stable steady states up to 100% changes in the activity of HXT. In general, it appears that the MCA 
overestimates the responses of the fluxes relative to NMCA. Probably the most interesting result is the fact that the 
propagation of the uncertainty due to the uncertainty in the reference, initial parameters is not significant and it appears 
that this uncertainty propagation is smaller in the NMCA predictions. Future studies could provide important insights on 
the conditions that reduce, or increase, the uncertainty propagation. 
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Figure 2. Relative changes in metabolite concentrations for 100% increase in the activity of HXT, case I. Chemical 
species notation same as in Figure 1. Solid (blue) line: NMCA predictions; dashed (black) line: MCA predictions. 
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Figure 3. Relative changes in metabolite fluxes for 100% increase in the activity of HXT, case I. Metabolic 
reaction notation same as in Figure 1. Solid (red) line: NMCA predictions; dashed (black) line: MCA predictions. 
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Figure 4. Relative changes in metabolite concentrations for 40% in the activity of HXT, case II. Chemical species 
notation same as in Figure 1. Solid (blue) line: NMCA predictions; dashed (black) line: MCA predictions. 
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Figure 5. Relative changes in metabolite fluxes for 40% increase in the activity of HXT, caseII. Metabolic reaction 
notation same as in Figure 1. Solid (red) line: NMCA predictions; dashed (black) line: MCA predictions. 
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Figure 6. Relative changes in metabolite fluxes for 100% increase in the activity of HXT, caseIII. Metabolic 
reaction notation same as in Figure 1. Red line: NMCA predictions; Grey line: MCA predictions. Error bars quantify 
the standard deviation over all the samples. 

It also expected that increase in the activity of an enzyme will lead to redistribution in the value of the control 
coefficients. In cases I and II, the control coefficient of ethanol production, i.e., flux through enzyme ADH, with respect 
to HXT is very small in the initial state and therefore there is no significant redistribution in the values of the control 
coefficients (Figure 7). This also explains the relative small changes in metabolic fluxes to changes in the HXT activity 
(Figures 1, 2, and 6). 
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Figure 7. Control coefficient of ethanol production with respect to the enzymes in the network. The subscript “*” 
correspond to the enzymes labeled on the Y-axis with notation same as in Figure 1. Panels (a) control coefficients at 
the reference, initial state, case I; (b) control coefficients after 100% increase in HXT activity, case I;. (c) control 
coefficients at the reference, initial state, case III; (d) control coefficients after 100% increase in HXT activity, case 
III. 

However, in case II, the initial control coefficient of ethanol production with respect to HXT activity is relative large 
(Figure 8a) and therefore the system experiences significant changes even with 40% increase in HXT activity (Figures 4 
and 5). However, after 40% increase in HXT activity, the control coefficient of ethanol production with respect to HXT 
activity has vanished, and PDC became the rate limiting step as indicated by the significant increase in control coefficient 
of ethanol production with respect to PDC activity (Figure 8b). It also appears that in the reference state ATPase, a 
process associated with energy balancing in the cell, is the second most rate limiting process. However, its control also 
vanishes after 40% increase in HXT activity (Figure 8). Therefore NMCA analysis suggests that in a strategy to further 
improve the ethanol production using the overexpression of two enzymes, HXT and PDC are the most important targets. 
However, MCA analysis would have led us to choose HXT and ATPase, a choice that would have led to lower 
improvements. 

Conclusions 

We presented an analysis of yeast glycolysis using a metabolic control analysis framework, Nonlinear Metabolic 
Control Analysis (NMCA) that takes into account large changes in enzyme activities. This analysis demonstrated the 
power of the framework in identifying targets for genetic and metabolic engineering towards improvement of cellular 
processes. We also demonstrated the ability of the method to perform metabolic control analysis even in the absence of 
complete information about the system. Future efforts will combine NMCA with our previously developed method for 
metabolic control analysis under uncertainty (Wang et al. 2004a). Finally, the method appears to be ideally suitable 
identifying multiple targets for genetic and metabolic engineering. 
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