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Abstract 
Statistical process monitoring and control are now widely accepted in various 
industries.  In recent years, statistical techniques are expected to solve quality-related 
problems.  The issue of how to improve product quality and yield in a brief period of 
time becomes more critical in many industries where the product life cycle becomes 
shorter.  Examples include steel processes and semiconductor processes.  These 
processes are totally different in appearance, but the problems to solve are highly 
similar: how to build a reliable model from a limited data, how to analyze the model and 
optimize operating condition, and how to realize an on-line monitoring and control 
system and maintain it.  In this paper, the problems and solutions are described with our 
application results in steel facilities. 
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1. Introduction 
How can we improve product quality and yield?  More than ever, the answer to this 
question is vital as product life cycles are getting shorter and international competition 
is getting keener.  Since this question arises repeatedly when a new product is 
developed, quality improvement should be achieved faster and in a more systematic 
way.  Statistical quality control (SQC) has been widely used to address this issue and to 
search for an operating condition that can achieve the desired quality through designed 
experiments.  However, designed experiments are impractical in more than a few 
industrial processes, because they require considerable time and cost.  Jaeckle and 
MacGregor (1998) proposed a data-based method for determining the operating 
condition that can achieve the desired product quality.  Kano et al. (2004) extended the 
method to cope with qualitative quality as well as quantitative quality and applied it to 
steel making and finishing processes.  The proposed method is referred to as Data-
Driven Quality Improvement (DDQI).  On the other hand, in various industries, run-to-
run (R2R) control has been widely used to control the product quality by manipulating 
operating conditions between batches (Castillo and Huriwitz, 1997), and multivariate 
statistical process control (MSPC) has been widely used to detect and diagnose faults 
(Kourti and MacGregor, 1995). 
 In this paper, a newly developed process control and monitoring system for 
product quality and yield improvement, referred to as hierarchical quality improvement 
system (HiQIS), is presented.  HiQIS consists of DDQI, R2R control, local control, and 
MSPC.  Among these elements, DDQI, which is based on a statistical model, plays the 
most important role.  It can cope with qualitative as well as quantitative variables, build 

 and 9th International Symposium on Process Systems Engineering
W. Marquardt, C. Pantelides (Editors)  
© 2006 Published by Elsevier B.V.

16th European Symposium on Computer Aided Process Engineering

57



a partially nonlinear model, determine the operating conditions that can achieve the 
desired product quality, optimize operating condition under various constraints, select 
manipulated variables suitable for R2R control, and thus can provide useful information 
to improve product quality.  This paper aims to give an outline of DDQI and HiQIS and 
to show their usefulness via industrial case studies. 

2. Hierarchical Quality Improvement System (HiQIS) 
In the process industry, a hierarchical control system has been widely accepted.  The 
most famous one would be a model predictive control system which is integrated with a 
steady-state optimizer and local controllers.  Qin et al. (2004) proposed a hierarchical 
fab-wide control framework in the semiconductor industry.  The fab-wide control 
system is analogous to the model predictive control system.  The hierarchical quality 
improvement system (HiQIS) is also an analogue to them.  A schematic diagram of 
HiQIS is shown in Fig. 1.  DDQI is a process analysis system located at the top of the 
hierarchy.  It constructs a statistical model from operation data, analyzes the cause of 
inferior quality and low yield, selects manipulated variables, and optimizes the 
operating conditions that can achieve the desired quality.  R2R control updates 
operating conditions or operation profiles for the next batch and gives set-points to local 
controllers on the basis of information provided by DDQI.  In addition, MSPC detects 
and diagnoses faults on the basis of the statistical model built in DDQI.  In this section, 
R2R control and MSPC are briefly reviewed. 
 

 
Figure 1.  A schematic diagram of hierarchical quality improvement system (HiQIS). 

2.1. Run-to-Run Control 
Run-to-Run (R2R) control is a form of discrete control in which the product recipe is 
modified ex situ, i.e., between runs, so as to minimize process drift, shift, and variability.  
There are several R2R control algorithms.  One widely used R2R controller is based on 
the exponentially weighted moving average (EWMA) statistic to estimate process 
disturbances.  Although EWMA has been used for a long time for quality monitoring, 
its use for R2R control is relatively recent.  Since the early 1990's, R2R control 
techniques have been developed and used to control various semiconductor 
manufacturing processes (Castillo and Huriwitz, 1997). 
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2.2. Multivariate Statistical Process Control 
For the successful operation of any process, it is important to detect process upsets, 
equipment malfunctions, or other special events as early as possible and then to find and 
remove the factors causing those events.  In industrial processes, data-based process 
monitoring methods, referred to as statistical process control (SPC), have been widely 
used.  To improve the monitoring performance, multivariate statistical process control 
(MSPC) has been developed.  The original Shewhart-type control chart for correlated 
variables is the Hotelling T2 control chart.  Later, PCA was used as a tool of MSPC, and 
the control charts were introduced for the sum of squared errors (SPE) as well as T2 of 
principal components retained in a PCA model.  In the last decade or so, various 
extensions of MSPC have been proposed (Kourti and MacGregor, 1995).  When an out-
of-control signal is detected, it is necessary to identify the process variables that cause 
the out-of-control signal.  This information helps operators to further diagnose the 
actual cause of a fault.  For this purpose, contribution plots are widely used. 

3. Data-Driven Quality Improvement (DDQI) 
In this section, Data-Driven Quality Improvement (DDQI) is focused.  Jaeckle and 
MacGregor (1998) proposed a product design method based on linear/nonlinear 
multivariate analysis.  Although their method can derive the operating conditions that 
can achieve the desired product quality, it does not account for qualitative variables.  
DDQI can handle qualitative as well as quantitative variables in a unified framework.  
In addition, DDQI has several additional important functions. 
3.1. Modeling Quality and Operating Conditions 
DDQI is based on a statistical model that relates operating conditions with quality.  To 
cope with a collinearity problem, principal component regression (PCR) or partial least 
squares (PLS) are usually used.  The derived coefficient matrix shows the influence of 
operating conditions on product quality.  Although PCR and PLS are useful for building 
a quality model, they cannot cope with process nonlinearity.  On the other hand, 
nonlinear modeling methods such as artificial neural networks are not always desirable 
because limited samples make it difficult to build a reliable nonlinear model and also its 
interpretation is difficult.  Therefore, in DDQI, analysis of variance (ANOVA) is 
integrated with statistical modeling method.  First, a linear regression model is built by 
using PCR or PLS.  Then, ANOVA is applied to operation data after operation data of 
each input variable are classified into two or more levels.  ANOVA clarifies whether 
significant interaction exists between specific variables.  If it exists, then an interaction 
term is introduced into the quality model.  In addition, nonlinearity between prediction 
error and each input variable is analyzed, and a quadratic term is introduced if necessary.  
This approach can generate a simple quality model with minimum nonlinear terms.  As 
a result, the derived model is easy to analyze and interpret. 
3.2. Optimizing Operating Condition 
To determine the operating conditions that can achieve desired product quality, an 
inverse problem of the statistical model is solved.  In general, the number of quality 
variables is less than that of principal components, and thus, the operating condition 
cannot be determined uniquely.  However, it can be optimized when an objective 
function is provided.  The objective function is optimized under the following four 
constraints: 1) the desired product quality is achieved, 2) the operating condition exists 
in the space spanned by principal components, 3) all operating condition variables exist 
within their upper and lower bounds, and 4) T2 statistic of scores is below its upper 
control limit or approximately 4') all scores exist within their upper and lower bounds.  

Recent Developments and Industrial Applications  59



The last constraint is necessary for finding a new optimal operating condition within the 
region where the statistical model is valid.  In other words, extrapolation should be 
avoided by using the last constraint.  If there is no solution that satisfies all constraints, 
i.e., the imposed specifications on quality are too severe, the operating condition that 
achieves as desired quality as possible should be determined. 
3.3. Handling Qualitative Variables 
In the previous subsection, the method to optimize the operating condition that can 
achieve the desired product quality is explained.  However, it is applicable only to cases 
where all quality variables are quantitative.  When the quality variables are qualitative, 
e.g., good and bad, the desired product quality cannot be specified quantitatively.  To 
cope with this problem, a novel quantification method was proposed (Kano et al., 2004). 
 To build a quality model by using PCR, qualitative variables should be 
quantified.  As is well-known, for example, qualitative information such as good and 
bad can be quantified and denoted by 1 and 0, respectively.  This conventional 
quantification method is useful for building a quality model, but not for solving its 
inverse problem.  A serious problem is that the physical meaning of the quantified 
variable is not clear at all.  For example, what does 0.6 mean?  Is it acceptable or not?  
Nobody can answer this question.  For a qualitative quality variable, the yield, i.e., the 
percentage of good products to all products, can be specified instead of the quality itself 
on the basis of the histogram for each category.  Each histogram can be obtained from 
operation data, and it can be drawn as the frequency distribution of good or bad samples 
against the discriminant axis defined by PCA-LDA, which is the integration between 
principal component analysis (PCA) and linear discriminant analysis (LDA).  Then, the 
yield against the discriminant axis can be derived.  Once the desired yield is specified, 
operating conditions that can achieve the desired yield can be found by following the 
above-mentioned approach. 

4. Applications to Industrial Iron and Steel Process 
In the iron and steel industry, process control systems have been designed by using 
mathematical models that describe the relationship between controlled product quality 
variables and manipulated variables.  However, the relationship of operating condition 
to product quality such as surface flaws and internal defects is not clear.  In general, 
these qualities have been maintained by skilled operators on the basis of their 
experience and intuition.  It is empirically known that the occurrence of surface flaws 
and internal defects is affected by operating conditions of a furnace in a rolling process 
and a continuous casting equipment in a steel making process.  However, it is not clear 
which operating condition has an influence on qualities to what extent.  In addition, 
since internal defects are checked by using ultrasonic testing after a rolling process, it 
may take a few days to get control results in a steel making process, and thus real-time 
control cannot be applied to this type of quality control problem.  To improve product 
yield, it is important to predict final product qualities.  Due to these characteristics, 
surface flaws and internal defects have not been the target of process control for many 
years.  However, business situation is changing.  To meet customers’ requirements for 
higher product quality, to realize higher product yield, and to cope with decrease in 
skilled operators (Year 2007 problem in Japan), most iron and steel companies have 
started to cope with qualities such as surface flaws and internal defects within a 
framework of process control.  Recently, the authors have investigated a statistical 
approach to address this problem and succeeded in improving product yield in iron and 
steel processes shown in Fig. 2 (Kano et al, 2005). 
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Figure 2.  Schematic diagram of iron and steel process to investigate. 
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Figure 3.  Results of PCA-LDA. (left) Discrimination between good products and bad products.  
(right) Top six regression coefficients. 

4.1. Reduction of Surface Flaws 
Reducing surface flaws is crucial for improving product yield.  Surface flaws are 
checked after cold rolling as one of the key product qualities, and their shape and size 
are varied depending on their factors and steel grades produced.  In this application, 
surface flaws frequently occurring in a specific alloy steel product are investigated.  It is 
empirically known that the occurrence of surface flaws is affected by operating 
conditions of a rolling process and a steel making process.  A large amount of defective 
steel is produced if steel making causes surface flaws, because surface flaws cannot be 
detected before the final inspection process.  Therefore, it is important to clarify the 
cause of surface flaws, to find the operating condition that can minimize them, and to 
realize setup control.  Here, application of PCA-LDA to this problem is described.  First 
of all, a model relating operating conditions in steel making and hot rolling as input 
variables to surface flaws inspection results as an output variable was developed.  Input 
variables include contents of various additive elements in a steel making process, 
temperature and residence time in each heating zone in a hot rolling process, and 
temperature at the exit of each stand in a hot rolling process.  A total number of input 
variables selected is 55.  The sample number is 138 consisting of 122 samples with 
surface flaws, classified into bad, and only 16 samples without surface flaws, classified 
into good.  The dimensionality was reduced from 55 to 6 via PCA after all variables 
were normalized.  Then, LDA was used for discriminating between two classes, i.e., 
good and bad.  The developed PCA-LDA model was able to successfully discriminate 
between good products and bad products along the discriminant axis as shown in Fig. 3.  
This PCA-LDA model can relate operating conditions with the product yield through 
the proposed quantification method.  Six variables having the largest influence on the 
product yield are listed in Fig. 3 with their regression coefficients.  On the basis of this 

61Recent Developments and Industrial Applications 



result, process engineers selected to manipulate alloy element e1 considering both 
operation cost and operability.  Figure 3 suggests that surface flaws can be reduced by 
increasing the content of alloy element e1.  It is confirmed from the verification 
experiments that surface flaws can be significantly reduced by increasing the content of 
alloy element e1. 
4.2. Reduction of Internal Defects 
The objective in this application is to minimize internal defects.  The target process 
consists of a steel making process, a blooming process, and a bar rolling process.  
Internal defects are checked by using ultrasonic testing (UST) after the bar rolling 
process.  In this application, 40 operating condition variables are selected as input 
variables.  The sample number is 740 consisting of 208 samples with internal defects 
and 532 samples without internal defects.  The number of principal components retained 
is five.  The developed PCA-LDA model was able to discriminate between good 
products and bad products along the discriminant axis.  On the basis of the PCA-LDA 
model, process engineers selected to manipulate two factors in the steel making process 
and one factor in the blooming process considering both operation cost and operability.  
The next step is to optimize operating conditions via DDQI.  The optimal operating 
condition that can improve the product yield by 20% is searched.  To verify the results, 
test experiments were performed at the operating condition close to the optimal point, 
and it was confirmed that the percentage of defective product was reduced by half. 

5. Conclusions 
To date, HiQIS and DDQI have been tested in the steel, the semiconductor, and the 
liquid crystal display industries, and have succeeded in finding new operating 
conditions to achieve higher product quality.  As the product life cycle becomes shorter, 
the issue of how to improve product quality and yield in a brief period of time becomes 
more critical in many industries.  How can we improve product quality and yield?  
From the authors' experience of applying HiQIS and DDQI to several industrial 
processes, the author hopes to develop a unified framework that can answer to this 
question on the basis of data-based methodologies.  Of course, process knowledge is the 
key to success.  Although different knowledge and models are required for coping with 
different processes, a data-based quality improvement framework could be applied to 
any process in various industries. 
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