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Abstract

Statistical process monitoring and control are now widely accepted in various
industries. In recent years, statistical techniques are expected to solve quality-related
problems. The issue of how to improve product quality and yield in a brief period of
time becomes more critical in many industries where the product life cycle becomes
shorter. Examples include steel processes and semiconductor processes. These
processes are totally different in appearance, but the problems to solve are highly
similar: how to build a reliable model from a limited data, how to analyze the model and
optimize operating condition, and how to realize an on-line monitoring and control
system and maintain it. In this paper, the problems and solutions are described with our
application results in steel facilities.
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1. Introduction

How can we improve product quality and yield? More than ever, the answer to this
question is vital as product life cycles are getting shorter and international competition
is getting keener. Since this question arises repeatedly when a new product is
developed, quality improvement should be achieved faster and in a more systematic
way. Statistical quality control (SQC) has been widely used to address this issue and to
search for an operating condition that can achieve the desired quality through designed
experiments. However, designed experiments are impractical in more than a few
industrial processes, because they require considerable time and cost. Jaeckle and
MacGregor (1998) proposed a data-based method for determining the operating
condition that can achieve the desired product quality. Kano et al. (2004) extended the
method to cope with qualitative quality as well as quantitative quality and applied it to
steel making and finishing processes. The proposed method is referred to as Data-
Driven Quality Improvement (DDQI). On the other hand, in various industries, run-to-
run (R2R) control has been widely used to control the product quality by manipulating
operating conditions between batches (Castillo and Huriwitz, 1997), and multivariate
statistical process control (MSPC) has been widely used to detect and diagnose faults
(Kourti and MacGregor, 1995).

In this paper, a newly developed process control and monitoring system for
product quality and yield improvement, referred to as hierarchical quality improvement
system (HiQIS), is presented. HiQIS consists of DDQI, R2R control, local control, and
MSPC. Among these elements, DDQI, which is based on a statistical model, plays the
most important role. It can cope with qualitative as well as quantitative variables, build
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a partially nonlinear model, determine the operating conditions that can achieve the
desired product quality, optimize operating condition under various constraints, select
manipulated variables suitable for R2R control, and thus can provide useful information
to improve product quality. This paper aims to give an outline of DDQI and HiQIS and
to show their usefulness via industrial case studies.

2. Hierarchical Quality Improvement System (HiQIS)

In the process industry, a hierarchical control system has been widely accepted. The
most famous one would be a model predictive control system which is integrated with a
steady-state optimizer and local controllers. Qin et al. (2004) proposed a hierarchical
fab-wide control framework in the semiconductor industry. The fab-wide control
system is analogous to the model predictive control system. The hierarchical quality
improvement system (HiQIS) is also an analogue to them. A schematic diagram of
HiQIS is shown in Fig. 1. DDQI is a process analysis system located at the top of the
hierarchy. It constructs a statistical model from operation data, analyzes the cause of
inferior quality and low yield, selects manipulated variables, and optimizes the
operating conditions that can achieve the desired quality. R2R control updates
operating conditions or operation profiles for the next batch and gives set-points to local
controllers on the basis of information provided by DDQI. In addition, MSPC detects
and diagnoses faults on the basis of the statistical model built in DDQI. In this section,
R2R control and MSPC are briefly reviewed.
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Figure 1. A schematic diagram of hierarchical quality improvement system (HiQIS).
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2.1. Run-to-Run Control

Run-to-Run (R2R) control is a form of discrete control in which the product recipe is
modified ex situ, i.e., between runs, so as to minimize process drift, shift, and variability.
There are several R2R control algorithms. One widely used R2R controller is based on
the exponentially weighted moving average (EWMA) statistic to estimate process
disturbances. Although EWMA has been used for a long time for quality monitoring,
its use for R2R control is relatively recent. Since the early 1990's, R2R control
techniques have been developed and used to control various semiconductor
manufacturing processes (Castillo and Huriwitz, 1997).
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2.2. Multivariate Statistical Process Control

For the successful operation of any process, it is important to detect process upsets,
equipment malfunctions, or other special events as early as possible and then to find and
remove the factors causing those events. In industrial processes, data-based process
monitoring methods, referred to as statistical process control (SPC), have been widely
used. To improve the monitoring performance, multivariate statistical process control
(MSPC) has been developed. The original Shewhart-type control chart for correlated
variables is the Hotelling T? control chart. Later, PCA was used as a tool of MSPC, and
the control charts were introduced for the sum of squared errors (SPE) as well as T° of
principal components retained in a PCA model. In the last decade or so, various
extensions of MSPC have been proposed (Kourti and MacGregor, 1995). When an out-
of-control signal is detected, it is necessary to identify the process variables that cause
the out-of-control signal. This information helps operators to further diagnose the
actual cause of a fault. For this purpose, contribution plots are widely used.

3. Data-Driven Quality Improvement (DDQI)

In this section, Data-Driven Quality Improvement (DDQI) is focused. Jaeckle and
MacGregor (1998) proposed a product design method based on linear/nonlinear
multivariate analysis. Although their method can derive the operating conditions that
can achieve the desired product quality, it does not account for qualitative variables.
DDQI can handle qualitative as well as quantitative variables in a unified framework.
In addition, DDQI has several additional important functions.

3.1. Modeling Quality and Operating Conditions

DDQI is based on a statistical model that relates operating conditions with quality. To
cope with a collinearity problem, principal component regression (PCR) or partial least
squares (PLS) are usually used. The derived coefficient matrix shows the influence of
operating conditions on product quality. Although PCR and PLS are useful for building
a quality model, they cannot cope with process nonlinearity. On the other hand,
nonlinear modeling methods such as artificial neural networks are not always desirable
because limited samples make it difficult to build a reliable nonlinear model and also its
interpretation is difficult. Therefore, in DDQI, analysis of variance (ANOVA) is
integrated with statistical modeling method. First, a linear regression model is built by
using PCR or PLS. Then, ANOVA is applied to operation data after operation data of
each input variable are classified into two or more levels. ANOVA clarifies whether
significant interaction exists between specific variables. If it exists, then an interaction
term is introduced into the quality model. In addition, nonlinearity between prediction
error and each input variable is analyzed, and a quadratic term is introduced if necessary.
This approach can generate a simple quality model with minimum nonlinear terms. As
a result, the derived model is easy to analyze and interpret.

3.2. Optimizing Operating Condition

To determine the operating conditions that can achieve desired product quality, an
inverse problem of the statistical model is solved. In general, the number of quality
variables is less than that of principal components, and thus, the operating condition
cannot be determined uniquely. However, it can be optimized when an objective
function is provided. The objective function is optimized under the following four
constraints: 1) the desired product quality is achieved, 2) the operating condition exists
in the space spanned by principal components, 3) all operating condition variables exist
within their upper and lower bounds, and 4) T statistic of scores is below its upper
control limit or approximately 4') all scores exist within their upper and lower bounds.
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The last constraint is necessary for finding a new optimal operating condition within the
region where the statistical model is valid. In other words, extrapolation should be
avoided by using the last constraint. If there is no solution that satisfies all constraints,
i.e., the imposed specifications on quality are too severe, the operating condition that
achieves as desired quality as possible should be determined.

3.3. Handling Qualitative Variables
In the previous subsection, the method to optimize the operating condition that can
achieve the desired product quality is explained. However, it is applicable only to cases
where all quality variables are quantitative. When the quality variables are qualitative,
e.g., good and bad, the desired product quality cannot be specified quantitatively. To
cope with this problem, a novel quantification method was proposed (Kano et al., 2004).
To build a quality model by using PCR, qualitative variables should be
quantified. As is well-known, for example, qualitative information such as good and
bad can be quantified and denoted by 1 and 0, respectively. This conventional
quantification method is useful for building a quality model, but not for solving its
inverse problem. A serious problem is that the physical meaning of the quantified
variable is not clear at all. For example, what does 0.6 mean? Is it acceptable or not?
Nobody can answer this question. For a qualitative quality variable, the yield, i.e., the
percentage of good products to all products, can be specified instead of the quality itself
on the basis of the histogram for each category. Each histogram can be obtained from
operation data, and it can be drawn as the frequency distribution of good or bad samples
against the discriminant axis defined by PCA-LDA, which is the integration between
principal component analysis (PCA) and linear discriminant analysis (LDA). Then, the
yield against the discriminant axis can be derived. Once the desired yield is specified,
operating conditions that can achieve the desired yield can be found by following the
above-mentioned approach.

4. Applications to Industrial Iron and Steel Process

In the iron and steel industry, process control systems have been designed by using
mathematical models that describe the relationship between controlled product quality
variables and manipulated variables. However, the relationship of operating condition
to product quality such as surface flaws and internal defects is not clear. In general,
these qualities have been maintained by skilled operators on the basis of their
experience and intuition. It is empirically known that the occurrence of surface flaws
and internal defects is affected by operating conditions of a furnace in a rolling process
and a continuous casting equipment in a steel making process. However, it is not clear
which operating condition has an influence on qualities to what extent. In addition,
since internal defects are checked by using ultrasonic testing after a rolling process, it
may take a few days to get control results in a steel making process, and thus real-time
control cannot be applied to this type of quality control problem. To improve product
yield, it is important to predict final product qualities. Due to these characteristics,
surface flaws and internal defects have not been the target of process control for many
years. However, business situation is changing. To meet customers’ requirements for
higher product quality, to realize higher product yield, and to cope with decrease in
skilled operators (Year 2007 problem in Japan), most iron and steel companies have
started to cope with qualities such as surface flaws and internal defects within a
framework of process control. Recently, the authors have investigated a statistical
approach to address this problem and succeeded in improving product yield in iron and
steel processes shown in Fig. 2 (Kano et al, 2005).
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Figure 2. Schematic diagram of iron and steel process to investigate.
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Figure 3. Results of PCA-LDA. (left) Discrimination between good products and bad products.
(right) Top six regression coefficients.

4.1. Reduction of Surface Flaws

Reducing surface flaws is crucial for improving product yield. Surface flaws are
checked after cold rolling as one of the key product qualities, and their shape and size
are varied depending on their factors and steel grades produced. In this application,
surface flaws frequently occurring in a specific alloy steel product are investigated. It is
empirically known that the occurrence of surface flaws is affected by operating
conditions of a rolling process and a steel making process. A large amount of defective
steel is produced if steel making causes surface flaws, because surface flaws cannot be
detected before the final inspection process. Therefore, it is important to clarify the
cause of surface flaws, to find the operating condition that can minimize them, and to
realize setup control. Here, application of PCA-LDA to this problem is described. First
of all, a model relating operating conditions in steel making and hot rolling as input
variables to surface flaws inspection results as an output variable was developed. Input
variables include contents of various additive elements in a steel making process,
temperature and residence time in each heating zone in a hot rolling process, and
temperature at the exit of each stand in a hot rolling process. A total number of input
variables selected is 55. The sample number is 138 consisting of 122 samples with
surface flaws, classified into bad, and only 16 samples without surface flaws, classified
into good. The dimensionality was reduced from 55 to 6 via PCA after all variables
were normalized. Then, LDA was used for discriminating between two classes, i.e.,
good and bad. The developed PCA-LDA model was able to successfully discriminate
between good products and bad products along the discriminant axis as shown in Fig. 3.
This PCA-LDA model can relate operating conditions with the product yield through
the proposed quantification method. Six variables having the largest influence on the
product yield are listed in Fig. 3 with their regression coefficients. On the basis of this
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result, process engineers selected to manipulate alloy element el considering both
operation cost and operability. Figure 3 suggests that surface flaws can be reduced by
increasing the content of alloy element el. It is confirmed from the verification
experiments that surface flaws can be significantly reduced by increasing the content of
alloy element el.

4.2. Reduction of Internal Defects

The objective in this application is to minimize internal defects. The target process
consists of a steel making process, a blooming process, and a bar rolling process.
Internal defects are checked by using ultrasonic testing (UST) after the bar rolling
process. In this application, 40 operating condition variables are selected as input
variables. The sample number is 740 consisting of 208 samples with internal defects
and 532 samples without internal defects. The number of principal components retained
is five. The developed PCA-LDA model was able to discriminate between good
products and bad products along the discriminant axis. On the basis of the PCA-LDA
model, process engineers selected to manipulate two factors in the steel making process
and one factor in the blooming process considering both operation cost and operability.
The next step is to optimize operating conditions via DDQI. The optimal operating
condition that can improve the product yield by 20% is searched. To verify the results,
test experiments were performed at the operating condition close to the optimal point,
and it was confirmed that the percentage of defective product was reduced by half.

5. Conclusions

To date, HiQIS and DDQI have been tested in the steel, the semiconductor, and the
liquid crystal display industries, and have succeeded in finding new operating
conditions to achieve higher product quality. As the product life cycle becomes shorter,
the issue of how to improve product quality and yield in a brief period of time becomes
more critical in many industries. How can we improve product quality and yield?
From the authors' experience of applying HiQIS and DDQI to several industrial
processes, the author hopes to develop a unified framework that can answer to this
question on the basis of data-based methodologies. Of course, process knowledge is the
key to success. Although different knowledge and models are required for coping with
different processes, a data-based quality improvement framework could be applied to
any process in various industries.
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