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Abstract

In this paper a hierarchical multiscale simulation framework is outlined and
experimental data injection into this framework is discussed. Specifically, we discuss
multiscale model-based design of experiments to optimize the chemical information
content of a detailed reaction mechanism in order to improve the fidelity and accuracy
of reaction models. Extension of this framework to product (catalyst) design is briefly
touched upon. Furthermore, we illustrate the use of such detailed and reduced kinetic
models in reactor optimization as an example toward more conventional process design.
The ammonia decomposition on Ruthenium to produce hydrogen and the water-gas
shift reactions on Platinum for converting syngas to hydrogen serve as illustrative fuel
processing examples of various topics. Finally, opportunities for process design and
control in portable microchemical devices (lab-on-a chip) are discussed.

Keywords: Multiscale, Process and Product Engineering, Model-Based Design of
Experiments, Reactor Optimization, Microreactors.

1. Introduction

There is an ever increasing number of portable electronic devices, such as cellular
phones, laptops, personal data assistants, personal transportation, night vision goggles,
GPS, unmanned aerial vehicles, etc. that necessitate portable power generation.
Traditional battery technology often results in power supply systems that either are too
heavy, do not last long enough, or both. For military applications, the power
requirements for special missions can often exceed the capacity of the dismounted
soldier’s batteries [1]. Single-use batteries are often disposed of, resulting in heavy
metals and other toxic substances being released. Hence, hydrocarbon-fuelled systems
are envisioned to be replacements of current battery technology for civilian and military
applications [2,3].

Table 1 shows different power sources and their mass-based energy densities. In
general hydrocarbons possess two orders of magnitude higher energy densities than
lithium ion batteries. Conversion of chemical energy of hydrocarbons into electricity
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can then result in lighter or longer lasting portable devices. If greater than 1% of
chemical energy could be converted into electricity, an improvement over batteries
could be achieved. Additionally, hydrocarbons, if used properly, only release water and
carbon dioxide. Often times it takes hours to recharge batteries, whereas hydrocarbon-
based devices can be refueled quickly by simply adding more fuel. Successful
commercialization of portable power systems depends on the development of robust
fuel processing schemes that enable safe, efficient, economic, and convenient operation.

Table 1: Energy densities of different sources. The energy density of combustion-based sources is
based on complete combustion to carbon dioxide and liquid water at 25 °C and 1 atm.

Source Energy Density [MJ/kg]
Lead acid Batteries 0.0792

Nickel cadmium batteries 0.158

Lithium ion batteries 0.468

Methanol combustion 22.7

Heating oil combustion 425

Gasoline combustion 45.8

Propane combustion 50.3

Methane combustion 55.5

Hydrogen combustion 142

In this paper, we first present an overview on multiscale simulation focusing on the idea
of hierarchical multiscale modeling of chemical reactors that has recently been
proposed for model development and/or parameter estimation [4,5]. Then we present
examples of using these models for model-based design of experiments with the
objectives of (1) maximizing the information content of a reaction model, (2) reduction
of model complexity, (3) carry out catalyst design, and (4) optimal reactor design.
These are some of the first demonstrations toward the direction of multiscale model-
based product and process engineering in the area of fuel processing for H, production,
which could, in conjunction with fuel cells, be used for portable power generation.
Alternative routes of harvesting energy from fuels, such as thermoelectrics [6], thermo-
photovoltaics [7], or micro-engines [8,9] are not discussed here.

2. Multiscale Modeling: Process vs. Product Engineering

Multiscale modeling is the enabling science that seamlessly and dynamically links
models and phenomena across multiple length and time scales, spanning from quantum
scales to macroscopic scales, in a two-way information traffic manner (see Fig. 1) [10-
14]. Macroscopic scales may include a process or an entire plant. The typical objective
of multiscale modeling is to predict macroscopic behavior, such as selectivity,
conversion, pollutant levels, hot spots, etc. from first principles. Multiscale modeling
involves computing information at smaller scales and moving towards the top of the
“simulation ladder” by coarsening degrees of freedom as one goes from finer to coarser
scales. Prediction of large-scale process performance based on small-scale information
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is termed bottom-up approach or upscaling. Since it can be easily assimilated with
Q O
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Figure 1: Schematic of multiscale simulation ladder with main scales and typical tools.
Information flows up (bottom-up) and down (top-down) the ladder. The step narrowing
indicates the loss or coarse graining of information as one moves from lower to upper scales.
For more discussion, see [14]. DFT=Density function theory; CFD=Computational fluid
dynamics; MD=Molecular dynamics; KMC=Kinetic Monte Carlo; TST=Transition state
theory.

Mesoscopic:
Coarse-grained models

Atomistic: MD,
KMC, TST

process alternatives, it is congruent with the traditional objective of process
engineering. Recent reviews on multiscale modeling of chemical reactors, systems
biology, and materials highlighting this view are given in [14-16] and references
therein.

A probably more important but relatively unexplored role of multiscale modeling is in
product engineering. Coupling of models between scales provides a ‘descriptor’ or a
‘ladder’ linking atomistic scale information of materials with macroscopic scale
processing. Such a descriptor provides a unique opportunity for product engineering. In
the context of multiscale simulation, product engineering can be viewed as the
possibility to define desirable performance (objective functions) at the macroscopic
scale and then come up with better materials of suitable atomistic structure and possible
synthesis protocols via the use of multiscale modeling. Examples can entail the
identification of better (cheaper, more stable, more active and selective, etc.) catalysts,
of optimal pore size distribution, of templates that produce a desirable zeolite, etc.
Combined process-product engineering is obviously also very important. In particular
one is often interested in manipulating variables at the macroscopic scale, e.g., change
flow rates and composition, but achieve control at the nanoscopic length scale either by
optimum design or model-based on-line control [17-19]. An example is the ability to
control the particle size distribution, the particle shape, and the atomistic packing of
materials in crystallization of proteins. Atomistic details of intermolecular forces and
templating effects along with more traditional variables, such as local pH and
supersaturation, significantly impact polymorphism and thus whether one gets the right
material. Yet, macroscopically manipulated variables control the local (i.e., at the
nanoparticle scale) supersaturation, concentration of templates, and pH, and therefore
the local gradient in chemical potential that in turn affects growth rate and packing.
Multiscale model-based control is currently plagued by the tremendous computational
cost of multiscale simulation and the difficulty of having numerous nanoscopic sensors
and actuators distributed in a system. The former can be handled using suitable reduced
models. Model reduction of complex multiscale models is an important research
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direction [14] that will only be discussed briefly later in this paper. The prospect of
using a small number of mobile sensors and actuators that can collect information from
‘optimal’ spatial and temporal locations is a promising avenue to overcome the latter
and enable product-process system engineering.

2.1. Hierarchical Multiscale Simulation: Building on Ideas from Conceptual Process
Design for Model Development

The above multiscale science vision, while stimulating, is currently too ambitious to be
of practical value for the design and control of complex systems, such as those
encountered in microchemical systems for portable fuel processors. There are numerous
reasons rationalizing this fact. Consider the example of quantum mechanics at the
smallest scale. Density functional theory (DFT) is breaking new grounds in the
parameter estimation front. Recent work sets a paradigm for DFT-based parameter
estimation on single crystals [20-26]. While DFT is the only truly founded theoretical
technique of practical interest for catalysis that has great potential, it is practically
limited to small molecules, to single crystals, and to specific coverages and is semi-
quantitative (at best) in nature. First, even most of the best DFT calculations have an
accuracy of % 5 kcal/mol in predicting activation energies. As a result, reaction rates are
not as accurate and this uncertainty is important in predicting activity and selectivity
especially at low temperatures. Second, DFT simulations are carried out on idealized
single crystals that are of interest in surface science studies but can be irrelevant for
practical catalysts that are polycrystalline or defected nanoparticles spread on a support.
Third, DFT calculations are carried out at certain coverages. The multicomponent
nature of complex fuel processing reactions and the drastic variation of dominant
coverages of surface species with varying operating conditions make parameterization
of surface kinetics (as a function of coverages) a combinatorial problem of large
dimension that is currently beyond the reach of computational capabilities. Forth, the
number of reactions needed to describe the chemistry of complex reactions is large. For
example for the water-gas shift (WGS) reaction discussed below, 46 elementary-like
reactions may be considered [4,27], whereas for the partial oxidation of methane more
than 100 reactions are employed [28]. These large reaction networks hint to the inability
of expensive DFT calculations to deliver these many parameters. Fifth, it has been
recognized that the active sites in many reactions involve steps, kinks, and other defects
whose size and/or density is such that it is impossible to even fit them in the unit cell of
a DFT calculation. Sixth, DFT is inaccurate for weak, e.g., van der Waals, interactions
and cannot treat well small activation barriers. Some of these limitations are known as
materials gap (inability of DFT to deal with multiple scales shown in Fig. 1); the rest
are associated with the CPU intensive nature of DFT.

At the mesoscopic scale, kinetic Monte Carlo (KMC) simulation with large kinetic
mechanisms is still in embryonic stages [21,29]. KMC is seriously plagued by fast
diffusion and more generally stiffness and the inability of reaching large length scales
[30]. Coarse-grained KMC is a new tool that could overcome these problems [31].

At the reactor scale, computational fluid dynamics (CFD) simulations are employed
when the continuum approximation is valid. Yet, CFD simulations are very intensive
especially when flows are turbulent, when reaction networks are large, and when
geometries are complicated. Process engineers use computationally efficient software,
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such as ASPEN and HYSYS, to carry out optimization and process control studies. This
task is obviously impossible to achieve using CFD.

Theor. parameter estimation
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Figure 2. Hierarchy of chemical kinetic and reactor models at various scales. UBI-QEP: Unity
Bond Index Quadratic Exponential Potential. See Fig. 1 for other abbreviations.

Instead of trying to simulate all phenomena at all scales with the highest accuracy, one
realizes that only certain reactions, species, phenomena, and some of the scales are in
reality crucial for accurate prediction of macroscopic properties. The idea of
hierarchical multiscale modeling and simulation is then to start with the simplest
possible “sound” model at each scale and identify the important scales and (‘active’)
model parameters at each scale. Once this is accomplished, one assesses the model
accuracy by comparison with data and potentially improves the model of the important
scale(s) and the associated active parameters using a higher-level model or theory. For
example, the simplest identification tool employed extensively and successfully in
chemical kinetics is local sensitivity analysis [32]. Upon improvement of models and
parameters, another iteration is taken until convergence is achieved, i.e., the important
scales and parameters do not change between successive iterations. This approach is
reminiscent of conceptual process design used for chemical flow sheets, where detailed
design is done only after several iterations of calculations of increasing complexity are
done [33]. Specific tools employed in hierarchical multiscale chemical reactor model
development are depicted in Fig. 2. The model predictions at each scale become more
accurate as one goes from the left to the right of the figure, at the expense of increasing
computational intensity.
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2.2. Data Injection into Multiscale Models for Parameter Refinement or Scale-Model
Replacement

Irrespective of the power of multiscale modeling, model parameters, such as
diffusivities and activation energies, and measured quantities, such as catalyst surface
area, have always an uncertainty. As a result, models are almost never in perfect
agreement with experimental data. In other instances the computational requirements
are so large that one may have to completely bypass the modeling of a scale, typically
of the quantum one. It is therefore desirable to estimate or refine the active parameters
or fill in a missing model of a particular scale using experimental data instead of higher-
level theory/model discussed above. This injection of data into a multiscale model is
needed to increase its predictive capabilities and can be done using data at one or more
scales of the ladder (see Fig. 1).

Parameter estimation or refinement and model replacement become then an integral part
of multiscale model development. A complication is that multiscale models are typically
complex and computationally intensive and involve discrete, often stochastic, models at
some scales. Therefore parameter estimation can be very time consuming and with
noisy models in comparison to traditional parameter estimation of deterministic models.
Response surface methods (RSM) could be invaluable in achieving this objective at
minimal computational cost [34]. Development of more accurate and efficient RSMs
should be an important objective of the systems community.

Hierarchical multiscale modeling can be extremely valuable also when parameters are
completely unknown. For example, one uses a mean-field, continuum model (such a
model assumes spatial homogeneity at the microscopic scale) to estimate parameters
and then uses these parameters as a good initial guess in a KMC model (this model can
naturally account for microscopic heterogeneity, surface diffusion, defects, etc.) [5,35].
As another example, one uses a deterministic continuum model to estimate parameters
and these parameters are then refined using the corresponding stochastic simulation that
considers fluctuations and correlations in species populations.

The hierarchical multiscale modeling should be exercised with caution. Its success
relies in the various models of a scale being ‘structurally’ the same. For example, a
linear lower level model may not capture the behavior, such as bifurcations, of a
nonlinear higher-level model. In these instances one may hope to be successful only
locally or needs to develop better lower level models.

2.3. An example of NH; decomposition on Ru for H, production

The specific hierarchical multiscale framework for chemical reactors is depicted in Fig.
2. At the lowest theoretical level (left column), detailed microkinetic models are
developed for the surface chemistry consisting of elementary-like reaction steps. Pre-
exponentials are set based on Transition State Theory (TST) and activation energies are
computed using the semi-empirical Unity Bond Index-Quadratic Exponential Potential
(UBI-QEP) theory [36], using heats of chemisorption as inputs. These inputs can be
obtained from experiments (preferred), DFT, or estimated using the UBI-QEP method.
The output of the UBI-QEP method is activation energies of all surface reactions as a
function of surface coverages.

Reaction rates are determined using the mean-field approximation and are passed into a
suitable, simple reactor scale model that accounts for transport via standard mass and
heat transfer correlations. The entire framework is an automatic ‘wrapper’ of Surface
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Figure 3. Comparison of predictions for NH; decomposition on Ru with (solid line) and
without (dashed line) adsorbate-adsorbate interactions in a CFD simulation, shown as inset
[39], against data (symbols) of [40].

Chemkin [37] and allows users to simulate pseudo-homogeneous reactors, such as a
fixed bed reactor, and compare different catalysts. At this stage one can inject data to
refine parameters or use more advanced theoretical tools, such as DFT, KMC, or CFD
depicted in the right column of Fig. 2, to improve the model and parameters at the
scale(s) that appears most critical. In our work we have used data injection to refine
pre-exponentials only and DFT to refine energetics. The latter has mainly been used to
account for surface coverage effects that are nearly impossible to obtain experimentally
but can be crucial in affecting reactivity and selectivity [38]. Instead of solving the
combinatorial problem of computing all interactions between all species in a brute-force
manner, we identify the most abundant surface species (typically 1 or 2) by running
simulations and carry out only a small number of DFT calculations for those relevant
interactions.

Advantages of this theoretical framework include: (a) its high speed (sub-seconds), (b)
reasonable predictive capabilities in most cases, (¢) easy exploration of alternative
reaction paths (this is important to ensure that most relevant chemistry is included), and
(d) creation of insights into the important chemistry. An example of performance of a
detailed kinetic model of NH; decomposition on Ru, consisting of 6 reversible
reactions, against data from a post microreactor is shown in Fig. 3.

3. Model Reduction

The models obtained using the hierarchical multiscale framework are often very
complex and computationally demanding. The aim of these models is the accurate
prediction of macroscale properties, such as conversion. Ideal reactors (lower hierarchy
at the reactor scale in Fig. 2) seldom represent the actual system accurately, and hence,
more realistic CFD models need to be used. Using complex kinetic models (higher
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hierarchy at the kinetics scale) with complex CFD models (higher hierarchy at the
reactor scale) represent a large computational burden. As a result, model reduction is
required to obtain computationally tractable, physically meaningful models.
Mathematical tools such as principal component analysis (PCA), approximate inertial
manifold (AIM), etc. have been used for model reduction at various scales (for
example, see [39]). Additionally, scaling analysis has been used to simplify the
complexity of reactor models, whereas identification of the rate determining step (RDS)
or the use of small scale asymptotics is useful at the kinetics scale [40]. For example,
[41] simplified a transient CFD model using scaling laws, and solved a pseudo-steady
1D model in the gas phase and a transient 3-D model in the solid phase. [42] used
boundary layer approximation and scaling analysis to reduce a 2D elliptic model into a
more computationally tractable parabolic model, whereas, [43] reduced the kinetic
model consisting of 6 reversible reactions (discussed in the previous section) for
ammonia decomposition and used the resulting 1-step chemistry in CFD reactor
modeling for design of integrated microdevices for hydrogen production [44]. These are
just some examples of model reduction but model reduction is unquestionably an
essential step in multiscale model development (Fig. 1) and in linking complex models
to process and product optimization and control.

4. Model-Based Design of Experiments: Maximizing Chemical Information
Content

Experiments are typically carried out at certain conditions and it is often found that only
a small number of kinetic parameters are active under those conditions. A natural
question is whether one could design experiments based on a model, rather than
statistical design, in order to increase the number of active model parameters and the
accuracy of parameter estimation from data. The benefit of increasing the number of
active parameters is that one could either validate or extract additional and possibly
more accurate kinetic parameters. A parameter p; is most active when the response R; of
the model with respect to this parameter is highest, i.e., when the absolute value of a
sensitivity coefficient |dInR;/ alnpj| is largest. During the estimation of kinetic

parameters, identifiability analysis [45] could determine the extractable ones.

Once optimum operating conditions for maximizing the sensitivity coefficients of the
responses with respect to the identifiable parameters in the mechanism have been
determined, experiments need to be conducted to test the model. Correct prediction of
the best operating conditions depends on how good the initial values of parameters of a
model are. Therefore, an iterative approach may be needed. Given that lower level
models are used to estimate parameters, model predictions are reasonable even in the
first iteration and the search leading to better models and parameters is physically
constrained, i.e., convergence is usually attained in 1-2 iterations. Next, we outline the
elements of the proposed approach. Then we illustrate the procedure using our
microkinetic mechanism for NH; decomposition on Ru [38] as an example.

4.1. Identifiability Analysis
One performs a sensitivity analysis with respect to the mechanism parameters to obtain
a sensitivity matrix g
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Figure 4. (a) Schematic of global Monte Carlo search in experimental parameter space
(represented as a 3D cube for graphical purposes; each (yellow) sphere represents a point
randomly picked in space) to identify conditions that sensitize kinetics parameters. (b) and
(c) Examples of an actual sensitivity analysis carried out under different conditions. The
sensitive (active) parameters can vary considerably in parameter space.

e=[aR; /dp; ], (1)

where R; is the vector of measured model response (e.g., NH;3 conversion), p is the
vector of parameters (e.g., pre-exponentials), n is the number of model responses, and
m is the number of parameters. Then the Fisher Information Matrix (FIM) is calculated

FIM=g! *g. )

If the determinant of FIM is zero, some parameters are interdependent and not
identifiable. These parameters have to be removed and the computation of the FIM
repeated.

Subsequently, one calculates a correlation coefficient (cc) to judge whether any two
identifiable parameters can be estimated within the measurement error in the
experiments. cc is given as

FIM! (i)

c

Cij= 3)
: \/FIM'I (i,i)xFIM ! (j.,)

and can vary from —1 to +1. Larger absolute values (away from 0) indicate higher
correlation between parameters. Every parameter is self-correlated (cci; = 1). Even
though some parameters are identifiable, based on the determinant criterion, they could
be highly correlated, so it may be difficult to estimate them separately given
measurement error. Such parameters should be removed and the analysis repeated, so
that only the identifiable, less correlated parameters are estimated from the experimental
data.

4.2. Global Stochastic Search

We perform model-based design of experiments to maximize the number of active
parameters and the values of sensitivity coefficients. In particular, a global search in
experimentally feasible parameter space is conducted on the computer, using a Monte
Carlo (MC) global search algorithm (see Fig. 4a). At each point in parameter space, a
reactor simulation is run using the current detailed kinetic model along with a local
sensitivity analysis of experimentally measured responses with respect to kinetic
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parameters. Our objective is to identify suitable combinations of experimental variables
that sensitize the maximum number of kinetic steps, i.e., identify experimental
conditions where the most abundant reactive intermediate (MARI) and the rate
determining step (RDS) change, providing additional kinetic information. Herein the
FIM is employed, following the methods of [46], to systematically screen and organize
the results of the global MC search.

4.3. Illustration Using the NH; Decomposition Reaction on Ru

The microkinetic model of [38] for NH; decomposition on Ru has 12 pre-exponentials.
Using a continuous stirred tank reactor (CSTR) model, we carry out sensitivity analysis
of the NHj exit mass fraction with respect to the pre-exponentials at 700 randomly
selected operating conditions within the ranges shown in Table 2. It is found that the
determinant of FIM is non-zero. Therefore, all pre-exponentials are identifiable over the
operating ranges. However, calculation of the correlation matrix shows that the
backward pre-exponentials are highly correlated with the forward ones (an expected
result since the forward and backward ones are related to each other via thermodynamic
constraints). Therefore, the backward pre-exponentials are eliminated and the analysis
is repeated.

Table 2. Range and scaling type of operating variables used to convert them into the [0,1]
interval.

Operating variable Min Max Scaling
Temperature, T [K] 500 1000 Linear
Pressure, P [atm] 0.1 10 Log
Residence time, T [s] 0.05 5 Log

Catalyst area per unit reactor

volume, A/V [Cm'l] 150 15000 Log

Inlet H, mole fraction 0.0 1.0 Linear
Inlet NH; mole fraction 0.0 1.0 Linear
Inlet N, mole fraction 0.0 1.0 Linear

With only the forward pre-exponentials, the determinant of FIM is non-zero and the
correlations are not very high either; therefore, all six pre-exponentials are identifiable.
Fig. 5 shows the correlation coefficients for all reactions based on 700 operating
conditions. As expected, each parameter is completely correlated with itself (cc;=1). H,
adsorption and NH; adsorption (cci¢ and ccg;) have ~80% correlation, indicating that
independent extraction of pre-exponentials could be difficult and higher experimental
accuracy might be required.

The sensitivity coefficients change drastically within the parameter space, as shown in
Figs. 4b, 4c, and 6 and so does the RDS (see Fig. 6). This implies that sufficient
sampling of parameter space can indeed provide new chemical insights.

Within parameter space, conditions with the largest normalized sensitivity coefficient
for each identifiable parameter are found, simply by sorting the global search sensitivity
data. To avoid non-interesting conditions of low NH; conversion and to minimize
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microkinetic mechanism for NH; decomposition on Ru. Some reaction pairs are
labeled for ease of visualization.

experimental uncertainties, a threshold of 5% conversion is applied while selecting best
operating conditions. Values of optimal operating conditions are depicted in Fig. 6.

Subsequently, experiments must be conducted at the identified conditions to test
predictions and further refine model parameters (if needed one can take another
iteration to refine parameters). At this stage refinement of heats of chemisorption
(another model input) and most sensitive pre-exponentials could simultaneously be
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Figure 6. Absolute values of normalized sensitivity coefficients (NSC) from global MC search in
parameter space vs. ammonia conversion. The values of optimum parameters of T [K], P [atm],
1 [s], A/V [em™'], and inlet mole fractions of H,, NHj;, and N, are displayed in this order at each
maximum NSC.

With the growing success of high-throughput experimentation, the above framework
could be applied for faster and more reliable development of microkinetic mechanism
parameters that contain valuable chemical information about the adsorbates and the
catalysts.

5. Toward Model-Based Catalyst Design

By carrying out the above procedure for many catalysts, a library of kinetics models can
be developed. We propose that this library can assist in catalyst design. This would then
be an example of product design mentioned above. At the simplest level, the catalyst
composition becomes a manipulated variable and optimization can lead to better
catalysts formulations that can guide high throughput experiments by narrowing down
the huge parameter space. This idea awaits experimental validation.

6. Use of Microkinetic Models for Reactor Optimization

The design of any chemical system involves tradeoffs, and hence optimizing a process
flow sheet is a frequently studied problem [47]. For microreactors, the objective
function is cast as maximization of performance, such as yield or selectivity, or as a
complex economic function. One of the more conceptually straightforward goals is to
use the hierarchical multiscale reactor models to determine the optimal reactor network
and operating conditions that optimize the objective function subject to new constraints
arising at the microscale (see next section).

The methods for reaction network synthesis can broadly be classified into two main
types: attainable region (AR) methods and superstructure optimization methods. [48]
defined the AR as a set of all physically realizable reactor outcomes for a given feed,
and presented a geometric method to determine the AR in the concentration space. The
reactor network that yields the maximum achievable performance can then be chosen in
this AR. [49] presented an excellent overview of this method, while [50] have extended
its applicability by proposing an optimization-based targeting method. On the other
hand, superstructure methods consider a set of process design alternatives, which
includes reactors, such as stirred tank reactors (CSTRs), plug flow reactors (PFRs),
cross flow reactors (CFRs), with additional units, such as mixers, splitters, separators,
etc. Given a reaction mechanism, kinetic data and physical properties, a mathematical
model of the system is formulated and optimization is carried out in order to obtain the
sizing and interconnections between the various units, inlet feed rates, stream
compositions, and reactor temperatures. The resulting formulation is usually non-
convex, due to bilinearities arising from the mass balances and nonlinearities of the
reaction kinetics, and hence, a method guaranteeing global optimum currently does not
exist. Application of simulated annealing [51], genetic algorithms [52,53], or global
optimization techniques, such as the oBB algorithm [54] can increase the chance of
reaching a global optimum.

Another issue in reactor network optimization using microkinetic models is the
computational burden, as the model consists of tens to hundreds of reactions involving
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several species. While a solution for an idealized reactor (CSTR, PFR or CFR) requires
a computational time less than 1 second, the overall optimization is computationally
very demanding. Therefore, model reduction techniques described in the previous
section can be vital in optimization. Additionally, the optimal reactor network and
operating conditions should be physically realizable in the microreactor. Herein lies
another opportunity for systems engineering researchers in areas of optimal sensor and
actuator placement, and integration of system-wise design and control.

6.1. Example: Water Gas Shift (WGS) reaction

WGS is an important reaction because it reduces the amount of CO — a fuel cell catalyst
poison — as well as increases the amount of hydrogen in the reformed gas stream. The
overall WGS reaction is:

CO+H,0 == CO, +H, (4)

WGS is a reversible, exothermic reaction; as a result, the CO conversion is equilibrium-
limited at high temperatures and kinetically limited at low temperatures. The aim is to
determine the optimal temperature profile and feed conditions to minimize the CO
content in the effluent. In industrial practice, this is achieved through a two-stage WGS
process: a high temperature WGS reactor converts most of the CO to CO, (and H,O to
H,), whereas a low temperature WGS reactor further reduces the CO content and
increases the H, content of the exit gases.

While the two-stage design of WGS system is a standard practice, not much work has
focused on actual optimization of this system, especially in the context of determining
an optimum temperature profile. Recently, [55] used the AR method to geometrically
determine the optimal reactor design. [56] extended this work to numerically generate
the AR, specifically for the WGS reactor. [57], on the other hand, applied the
superstructure-based approach to formulate the design problem and used a quasi-
Newton technique for optimizing the temperature.

Here, we consider optimization of the temperature and the feed profile for a reaction
network shown in Fig. 7. The reactor network consists of n-PFRs in series. The CO-
rich stream is the feed, steam is fed as the side stream, and an optional recycle is
possible. The microkinetic model developed by [27] for WGS on Pt catalyst is used.
[58] performed a similar superstructure-based reactor network synthesis for methane
acetylization using gas-phase chemistry consisting of 36 reversible reactions and 19
species; however, we are not aware of any reactor optimization work involving catalytic
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Figure 7: A schematic of the reactor network superstructure consisting of n-PFRs in series.
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microkinetic models.

One of the critical aspects in optimization of WGS using microkinetic model is to
accurately capture the reaction equilibrium. In the absence of thermodynamic data for
the surface-adsorbed species, the scheme proposed in [59] is used to ensure that all our
models are thermodynamically consistent. The full model consists of 46 elementary-like
reactions. [4] used PCA (principal component analysis) to reduce the model to 18 key
reactions. The 18-reaction system was simulated for a wide range of operating
conditions; the most abundant reaction intermediate (MARI) and the RDS were
identified. Then, small parameter asymptotics was used to derive a 1-step global rate
expression. In comparison to commonly postulated Langmuir-Hinshelwood rate
expressions, an advantage of this a posteriori model reduction strategy is that the rate
parameters are physically meaningful, no a priori assumptions were made in obtaining
the model, the “loss of information” is well characterized and the model, being
developed from a microkinetic model, is applicable over a wide range of operating
conditions. As the simulation time for the reduced order expression is significantly
lower than that for the 46-step mechanism, the reduced mechanism was used for
optimization results presented here. Comparison of the results of the full and reduce
chemistry models will be presented elsewhere. Note that the reduced expression still
accounts for all the important surface phenomena, such as temperature and coverage-
dependent activation energies.

Using the reduced-order model, we undertook reactor network optimization in two
steps. First, we assumed an isothermal system and performed optimization using a
gradient-based (quasi-Newton) optimizer. Based on these results, we were able to
simplify the reactor network, as follows: recycle stream was not required since the
recycle ratio was equal to or close to 0; the CO-rich stream is fed only at the inlet or
PFR-1 (i.e., m; =0 fori>1); steam may be split over the #n-PFRs; no intermediate

side-draw.

The reactor network optimization problem was thus simplified to the one of optimizing
the total reactor length, the temperature, and the feed rate of the side streams for each of
the n PFRs. The resulting optimal temperature (a local minimum) profile with » = 10
reactors, shown in Fig. 8, indicates the expected trend: the temperature is high in the
initial reactors, where the CO concentration is higher, and drops significantly as the CO
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Figure 8: Optimum temperature profile for a reactor network consisting of 10-PFRs in series
obtained using a quasi-Newton scheme. The dotted line represents one isothermal reactor and
the dashed line represents two-stage WGS reactors. In all cases, total reactor length was 2.0
cm
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conversion increases due to the system getting equilibrium limited.

It is interesting to compare the optimization results with that used in industrial practice,
and the ones obtained using AR by [56]. There are two different stages in WGS: high
temperature stage with 7~ 700 K and the low temperature stage with 7 ~ 450 K. The
higher limit represents a “break-off” point: an increase in temperature does not result in
any significant increase in the reaction rate, but adversely affects the equilibrium
conversion. The lower temperature limit is a trade-off between higher equilibrium
conversion and a lower rate of reaction. Fig. 8 also provides a comparison between the
non-isothermal system, a two-stage system described above, and an isothermal system.
In all cases, the total reactor length was 2 cm and 40 sccm feed (dry basis) and 40 sccm
steam. The optimized non-isothermal system results in significant improvement over
two-stage and isothermal systems.

7. Integrated Microchemical Devices: Opportunities for Systems
Engineering

In the preceding section, discussion focused on reaction kinetics and on design and
optimization of single microreactor(s). Production of power requires integration of
reactors, heat exchangers, and separation units, much like in a chemical plant. The
characteristic length scales of typical microscale devices are on the order of several
hundred microns, and as a result, at high pressures the continuum approximation still
holds for the reactor itself. Therefore, the conventional equations of motion and
transport are still applicable for the device. Yet, at the catalyst scale, reaction and
transport within pores require smaller scale, often non-continuum models, as shown in
Figs. 2 and 1 and discussed in the previous sections. So one may ask the question of
whether there are any differences between microscale devices and their large-scale
counterparts even at the reactor scale. The answer to this is affirmative.

First, due to their small scale the flows in microdevices are laminar and so mixing is
slow. Yet one needs to achieve high performance in shorter residence times. This leads
to the potential of break through and/or incomplete conversion. Furthermore, small
particulates needed to fill a microdevice in order to give high surface area catalyst,
cause huge pressure drops, and as a result the fixed bed paradigm for separation or
reaction cannot be employed. Moveable, small parts break and can cause bypassing due
to settling. These aspects point to the realization that different structures, possibly
monolithic-like, need to be explored to overcome issues of mixing, high catalyst area,
and pressure drop [60]. Operation is often transient, e.g., turning on and off a laptop,
and thus, the catalyst must be active not only at steady state (common industrial
situation). In addition, heat transfer must be sufficiently fast (orders of seconds or
smaller) to achieve reasonable operation. Hybrid systems, where a small battery is used
for start up, followed by a device converting chemical energy to electricity is a process
alternative with most promise.

Second, the increase in surface area per unit volume resulting from miniaturization
results in an increase of transport rates, and thus, a microreactor has the potential to
operate under kinetically controlled conditions. This is a major advantage in terms of
process intensification (high throughput with small devices) and the ability to extract
intrinsic kinetics from experimental data. However, hot spots could form due to higher
rates. Furthermore, surface reactions are favored over gas-phase reactions. This fact has
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interesting implications for radical quenching of gas-phase combustion chemistry
leading to inherent device safety, regarding flame propagation, but also to the inability
of making workable gaseous microburners [42]. Heat losses become large, and thus
designs that ‘trap’ energy inside the system [61] are highly desirable. The proximity of
gas-phase chemistry to walls makes surfaces not only important for carrying out
chemistry but the main conduits of heat transfer. As a result, the material makeup of the
walls is crucial [62].

Miniaturization, in conjunction with heat losses requires compact, well-integrated
designs with a very different layout (flow-sheet) than their large-scale counterparts. The
different chemical and heat transfer characteristics found at microscales may render
conventional wisdom originating from large scales inapplicable to the design of
microdevices [63]. For example, co-currently and counter-currently coupled
microreactors (multifunctional devices of carrying endothermic and exothermic
reactions on opposite sides of a wall) hardly have any difference in their stability and
maximum hydrogen produced when materials are highly conductive [64]. Thus, process
design and control of microdevices (lab-on-a chip) need substantial rethinking [65]
keeping in mind the aforementioned pros and cons of microchemical devices. Due to
the strong coupling of various components, design and control of individual units is
unlikely to work; interactions between various units need to be accounted for. This
issue is further acerbated because these systems often run in transient operation. This is
currently a relatively uncharged territory.

Modeling of these systems needs PDEs, leading to infinite dimensional systems that are
not easily amenable for control. Hence, model reduction methods are required to obtain
control-relevant models. With the development of novel MEMS sensors and actuators,
their optimal placement for estimation and fault diagnostics, and for improving flow
and/or temperature control will receive more attention [66,67]. Finally, the shorter time
scales, of the order of minutes to hours, make them suitable for "plant-wide"
optimization and control schemes.

8. Summary and Outlook

With rapid advances in nano- and micro-systems, multiscale simulation and analysis is
emerging as a new paradigm in computational science that could facilitate a better
understanding of the underlying physics, and enable improved design, optimization and
control of these complex systems. The aim of this article was to highlight the progress
achieved in this field in the last decade. This emerging field presents new challenges as
well as new opportunities, and will benefit from an increased synergism between
reaction engineering and process systems engineering communities.

Specifically, this paper discussed the hierarchical multiscale modeling work done in our
research group. We demonstrated how the various tools at different scales of the
“multiscale simulation ladder” have been used to develop more accurate and physically
meaningful microkinetic models that can be applied over a large range of operating and
design conditions. Quantum mechanics, molecular dynamics, semi-empirical methods,
Kinetic Monte Carlo (KMC), and coarse-grained KMC methods have been put to use to
obtain those parameters that are unknown and where experimental data is lacking.
System tools, such as parameter estimation, response surface method, identifiability
analysis have been applied to improve the quality of models. Model reduction was used
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to obtain reduced-order models that are useful for tasks, such as CFD simulation/design
of reactors, reactor network synthesis, etc.

Process design and control of micro- and nano-scale systems needs careful rethinking
since on the one hand system integration, thermal management, and water management
are key, challenging issues that await solutions, and on the other hand measurements,
sensing, actuation, and control are plagued by the large disparity of scales. Aside from
modern applications, the systems community has also to offer lots to the development
of multiscale simulation itself in terms of passing optimum information between models
at various scales with minimal error, integrating data with models across scales, and
developing reduced models. Some of these issues have briefly been touched upon above
with examples from the fuel-processing arena and are also addressed in [12-14,68-70].
The low cost of Beowulf clusters renders multiscale simulation a reality. However,
multiscale modeling requires substantial intellectual infrastructure, mainly in techniques
that span a wide range of scales and is particularly demanding on students. In most
cases, such research can be accomplished at a reasonable pace only via collaboration(s).
In the long term, the creation of suitable training modules, courses, textbooks, and
summer schools is needed for broad dissemination of multiscale modeling.

Acknowledgments

This work was supported by the donors of the Petroleum Research Fund, administered
by the American Chemical Society and by the Army Research Office under contract
DAADI19-01-1-0582. Any opinions, findings, and conclusions or recommendations
expressed are those of the authors and do not necessarily reflect the views of the Army
Research Office.

References

[11NRC, Committee for the Electric Power of the Dismounted Soldier, Energy-Efficient
Technologies for the Dismounted Soldier, National Academies Press, Washington DC, 1997.

[2]J. Hallmark, in DOE Fuel Cell Portable Power Workshop, Phoenix, AZ, 2002.

[3] A.C. Fernandez-Pello, Proc. Combust. Inst. 29 (2003) 883.

[4] A.B. Mhadeshwar, D.G. Vlachos, Journal of Catalysis 234 (2005) 48.

[STM.A. Snyder, D.G. Vlachos, Mol. Sim. 30 (2004) 561.

[6] D.G. Norton, K.W. Voit, T. Briiggemann, D.G. Vlachos, E.D. Wetzel, in Army Science

Conference, 2004, p. accepted.

[7TW.M. Yang, S.K. Chou, C. Shu, Z.W. Li, H. Xue, Applied Physics Letters 84 (2004) 3864.

[8]J. Peirs, D. Reynaerts, F. Verplaetsen, Sensors and Actuators A 113 (2004) 86-93.

[9].A. Waitz, G. Gauba, Y. Tzeng, J. Fluids Eng. 120 (1998) 109.

[10] 1.G. Kevrekidis, C.W. Gear, G. Hummer, AIChE Journal 50 (2004) 1346.

[11] D. Maroudas, in Challenges for the chemical sciences in the 21st century: Information

and communications report, National Academies, Washington, D.C., 2003, p. 133.

[12] R.D. Braatz, R.C. Alkire, E. Seebauer, E. Rusli, R. Gunawan, T.O. Drews, X. Li, Y.
He, in International Symposium on Dynamics and Control of Process Systems, Cambridge,
MA, 2004, p. Paper 96.

3] P.D. Christofides, AIChE Journal 47 (2001) 514.

4] D.G. Vlachos, Adv. Chem. Eng. (2005) in press.

5] S. Raimondeau, D.G. Vlachos, Chemical Engineering Journal 90 (2002) 3.

6] S. Raimondeau, P. Aghalayam, D.G. Vlachos, M. Katsoulakis, in Foundations of
Molecular Modeling and Simulation, AIChE Symposium Series No. 325, 97, 155-158., 2001.



26 D.G. Viachos et al.

71 S. Raimondeau, D.G. Vlachos, Journal of Computational Physics 160 (2000) 564.

8] Y. Lou, P.D. Christofides, AIChE J. 49 (2003) 2099.

9] Y. Lou, P.D. Christofides, Computers and Chemical Engineering 29 (2004) 225-241.

0] S. Linic, M.A. Barteau, Journal of Catalysis 214 (2003) 200.

1] E.W. Hansen, M. Neurock, Journal of Catalysis 196 (2000) 241.

2] Z.-P. Liu, P. Hu, M.-H. Lee, J. Chem. Phys. 119 (2003) 6282.

3] A.A. Gokhale, S. Kandoi, J.P. Greeley, M. Mavrikakis, J.A. Dumesic, Chemical
Engineering Science 59 (2004) 4679.

[24] S. Kandoi, A.A. Gokhale, L.C. Grabow, J.A. Dumesic, M. Mavrikakis, Cat. Letters 93

(2004) 93.

[25] C.J.H. Jacobsen, A.B. S. Dahl, B.S. Clausen, H. Topsoe, A. Logadottir, J.K. Norskov,
Journal of Catalysis 205 (2002) 382.

[26] J.K. Norskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H.
Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Jacobsen,
Journal of Catalysis 209 (2002) 275.

7] A.B. Mhadeshwar, D.G. Vlachos, Journal of Physical Chemistry B 108 (2004) 15246.

8] A.B. Mhadeshwar, D.G. Vlachos, Journal of Physical Chemistry B (2005) in press.

9] S. Raimondeau, D.G. Vlachos, Chemical Engineering Science 58 (2003) 657.

0] A. Chatterjee, M.A. Snyder, D.G. Vlachos, Chemical Engineering Science 59 (2004)
5559-5567.

[31] A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Journal of Chemical Physics 121

(2004) 11420.

[32] A.S. Tomlin, T. Turanyi, M.J. Pilling, Elsevier Sci. J. 35 (1997) 293.

[33] J. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, New York, 1988.

[34] S.G. Davis, A.B. Mhadeshwar, D.G. Vlachos, H. Wang, Int. J. Chem. Kinet. 36 (2004)
94,

[35] S. Raimondeau, P. Aghalayam, A.B. Mhadeshwar, D.G. Vlachos, Ind. Eng. Chem. Res.
42 (2003) 1174.

[36] E. Shustorovich, H. Sellers, Surface Science Reports 31 (1998) 1.

[37] M.E. Coltrin, R.J. Kee, F.M. Rupley, Surface Chemkin (version 4.0): A FORTRAN
package for analyzing heterogeneous chemical kinetics at a solid-surface-gas phase interface,
Sandia National Laboratories Report No. SAND90-8003B, Livermore, CA, 1991.

[38] A.B. Mhadeshwar, J.R. Kitchin, M.A. Barteau, D.G. Vlachos, Cat. Letters 96 (2004)

9] S.Y. Shvartsman, 1.G. Kevrekidis, AIChE J. 44 (1998) 1579.

0] A.B. Mhadeshwar, D.G. Vlachos, Catalysis Today 105 (2005) 162.

1] R. Jahn, D. Snita, M. Kubicek, M. Marek, Catalysis Today 38 (1997) 39.

2] S. Raimondeau, D.G. Norton, D.G. Vlachos, R.I. Masel, Proc. Combust. Inst. 29 (2003)

[43] S.R. Deshmukh, A.B. Mhadeshwar, D.G. Vlachos, Ind. Eng. Chem. Res. 43 (2004)

] S.R. Deshmukh, D.G. Vlachos, Ind. Eng. Chem. Res. 44 (2005) 4982.

P.A. Vanrolleghem, M.v. Daele, D. Dochain, Water Res. 29 (1995) 2561.

J. Delforge, A. Syrota, B.M. Mazoyer, IEEE Trans. Biomed. Eng. 37 (1990) 653.

D. Hildebrandt, L.T. Biegler, in, AIChE, New York, 1995.

F.J.M. Horn, in Third European Symposium, Permagon Press, London, UK, 1964.

M. Feinberg, D. Hildebrandt, Chemical Engineering Science 52 (1997) 1637.

L.T. Biegler, S. Balakrishna, in J.L. Anderson (Editor), Advances in Chemical
Engineering, Academic Press, New York, 1996, p. 247.

[51] J.C. Cordero, A. Davin, P. Floquet, L. Pibouleau, S. Domenech, Computers &

Chemical Engineering 21 (1997) S47.



Hierarchical Multiscale Model-based Design 27

[52] JK. Rajesh, S.K. Gupta, G.P. Rangaiah, A.K. Ray, Industrial & Engineering Chemistry
Research 39 (2000) 706.

[53] M.W. Deem, in A.K. Chakraborty (Editor), Molecular modeling and theory in chemical
engineering, Academic Press, New York, 2001, p. 81.

[54] W.R. Esposito, C.A. Floudas, Journal of Global Optimization 22 (2002) 59.

[55] W. Nicol, D. Hildebrandt, D. Glasser, Computers & Chemical Engineering 26 (2002)
803.

[56] S. Kauchali, B. Hausberger, D. Hildebrandt, D. Glasser, L.T. Biegler, Computers &
Chemical Engineering 28 (2004) 149.

[57] A. Jahanmiri, R. Eslamloueyan, Chemical Engineering Communications 189 (2002)
713.

[58] C.A. Schweiger, C.A. Floudas, Industrial & Engineering Chemistry Research 38 (1999)
744.

[59] A.B. Mhadeshwar, H. Wang, D.G. Vlachos, Journal of Physical Chemistry B 107
(2003) 12721.

[60] S.R. Deshmukh, D.G. Vlachos, AIChE Journal (2005) accepted.

[61] P.D. Ronney, Combustion and Flame 135 (2003) 421.

[62] D.G. Norton, D.G. Vlachos, Chemical Engineering Science 58 (2003) 4871.

[63] D.G. Norton, S.R. Deshmukh, E.D. Wetzel, D.G. Vlachos, in Y. Wang, J.D. Holladay
(Editors), Microreactor Technology and Process Intensification, ACS, New York, 2005, p.
179.

[64] S.R. Deshmukh, D.G. Vlachos, Chemical Engineering Science 60 (2005) 5718.

[65] A. Mitsos, I. Palou-Rivera, P.I. Barton, Ind. Eng. Chem. Res. 43 (2004) 74.

[66] L.G. Bleris, M.V. Kothare, Ieee Transactions on Control Systems Technology 13
(2005) 853.

[67] C. Antoniades, P.D. Christofides, Computers & Chemical Engineering 26 (2002) 187.

[68] A. Armaou, C.I. Siettos, L.G. Kevrekidis, International Journal of Robust and
Nonlinear Control 14 (2004) 89.

[69] M.A. Gallivan, H.A. Atwater, Journal of Applied Physics 95 (2004) 483.

[70] E. Rusli, T.O. Drews, R.D. Braatz, Chemical Engineering Science 59 (2004) 5607.








