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Abstract 
In this paper a hierarchical multiscale simulation framework is outlined and 
experimental data injection into this framework is discussed. Specifically, we discuss 
multiscale model-based design of experiments to optimize the chemical information 
content of a detailed reaction mechanism in order to improve the fidelity and accuracy 
of reaction models. Extension of this framework to product (catalyst) design is briefly 
touched upon. Furthermore, we illustrate the use of such detailed and reduced kinetic 
models in reactor optimization as an example toward more conventional process design. 
The ammonia decomposition on Ruthenium to produce hydrogen and the water-gas 
shift reactions on Platinum for converting syngas to hydrogen serve as illustrative fuel 
processing examples of various topics. Finally, opportunities for process design and 
control in portable microchemical devices (lab-on-a chip) are discussed. 
 
Keywords: Multiscale, Process and Product Engineering, Model-Based Design of 
Experiments, Reactor Optimization, Microreactors. 

1. Introduction 
There is an ever increasing number of portable electronic devices, such as cellular 
phones, laptops, personal data assistants, personal transportation, night vision goggles, 
GPS, unmanned aerial vehicles, etc. that necessitate portable power generation. 
Traditional battery technology often results in power supply systems that either are too 
heavy, do not last long enough, or both. For military applications, the power 
requirements for special missions can often exceed the capacity of the dismounted 
soldier’s batteries [1]. Single-use batteries are often disposed of, resulting in heavy 
metals and other toxic substances being released. Hence, hydrocarbon-fuelled systems 
are envisioned to be replacements of current battery technology for civilian and military 
applications [2,3]. 
Table 1 shows different power sources and their mass-based energy densities. In 
general hydrocarbons possess two orders of magnitude higher energy densities than 
lithium ion batteries. Conversion of chemical energy of hydrocarbons into electricity 
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can then result in lighter or longer lasting portable devices. If greater than 1% of 
chemical energy could be converted into electricity, an improvement over batteries 
could be achieved. Additionally, hydrocarbons, if used properly, only release water and 
carbon dioxide. Often times it takes hours to recharge batteries, whereas hydrocarbon-
based devices can be refueled quickly by simply adding more fuel. Successful 
commercialization of portable power systems depends on the development of robust 
fuel processing schemes that enable safe, efficient, economic, and convenient operation. 
Table 1: Energy densities of different sources. The energy density of combustion-based sources is 
based on complete combustion to carbon dioxide and liquid water at 25 ºC and 1 atm. 

Source Energy Density [MJ/kg] 

Lead acid Batteries 0.0792 

Nickel cadmium batteries 0.158 

Lithium ion batteries 0.468 

Methanol combustion 22.7 

Heating oil combustion 42.5 

Gasoline combustion 45.8 

Propane combustion 50.3 

Methane combustion 55.5 

Hydrogen combustion 142 

In this paper, we first present an overview on multiscale simulation focusing on the idea 
of hierarchical multiscale modeling of chemical reactors that has recently been 
proposed for model development and/or parameter estimation [4,5]. Then we present 
examples of using these models for model-based design of experiments with the 
objectives of (1) maximizing the information content of a reaction model, (2) reduction 
of model complexity, (3) carry out catalyst design, and (4) optimal reactor design. 
These are some of the first demonstrations toward the direction of multiscale model-
based product and process engineering in the area of fuel processing for H2 production, 
which could, in conjunction with fuel cells, be used for portable power generation. 
Alternative routes of harvesting energy from fuels, such as thermoelectrics [6], thermo-
photovoltaics [7], or micro-engines [8,9] are not discussed here. 

2. Multiscale Modeling: Process vs. Product Engineering 
Multiscale modeling is the enabling science that seamlessly and dynamically links 
models and phenomena across multiple length and time scales, spanning from quantum 
scales to macroscopic scales, in a two-way information traffic manner (see Fig. 1) [10-
14]. Macroscopic scales may include a process or an entire plant. The typical objective 
of multiscale modeling is to predict macroscopic behavior, such as selectivity, 
conversion, pollutant levels, hot spots, etc. from first principles. Multiscale modeling 
involves computing information at smaller scales and moving towards the top of the 
“simulation ladder” by coarsening degrees of freedom as one goes from finer to coarser 
scales. Prediction of large-scale process performance based on small-scale information 
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is termed bottom-up approach or upscaling. Since it can be easily assimilated with 

process alternatives, it is congruent with the traditional objective of process 
engineering. Recent reviews on multiscale modeling of chemical reactors, systems 
biology, and materials highlighting this view are given in [14-16] and references 
therein. 
A probably more important but relatively unexplored role of multiscale modeling is in 
product engineering. Coupling of models between scales provides a ‘descriptor’ or a 
‘ladder’ linking atomistic scale information of materials with macroscopic scale 
processing. Such a descriptor provides a unique opportunity for product engineering. In 
the context of multiscale simulation, product engineering can be viewed as the 
possibility to define desirable performance (objective functions) at the macroscopic 
scale and then come up with better materials of suitable atomistic structure and possible 
synthesis protocols via the use of multiscale modeling. Examples can entail the 
identification of better (cheaper, more stable, more active and selective, etc.) catalysts, 
of optimal pore size distribution, of templates that produce a desirable zeolite, etc. 
Combined process-product engineering is obviously also very important. In particular 
one is often interested in manipulating variables at the macroscopic scale, e.g., change 
flow rates and composition, but achieve control at the nanoscopic length scale either by 
optimum design or model-based on-line control [17-19]. An example is the ability to 
control the particle size distribution, the particle shape, and the atomistic packing of 
materials in crystallization of proteins. Atomistic details of intermolecular forces and 
templating effects along with more traditional variables, such as local pH and 
supersaturation, significantly impact polymorphism and thus whether one gets the right 
material. Yet, macroscopically manipulated variables control the local (i.e., at the 
nanoparticle scale) supersaturation, concentration of templates, and pH, and therefore 
the local gradient in chemical potential that in turn affects growth rate and packing. 
Multiscale model-based control is currently plagued by the tremendous computational 
cost of multiscale simulation and the difficulty of having numerous nanoscopic sensors 
and actuators distributed in a system. The former can be handled using suitable reduced 
models. Model reduction of complex multiscale models is an important research 

Atomistic

Macroscopic
Macroscopic:
CFD 

Atomistic: MD, 
KMC, TST 

Mesoscopic: 
Coarse-grained models

Quantum: 
DFT 

Figure 1: Schematic of multiscale simulation ladder with main scales and typical tools. 
Information flows up (bottom-up) and down (top-down) the ladder. The step narrowing 
indicates the loss or coarse graining of information as one moves from lower to upper scales. 
For more discussion, see [14]. DFT=Density function theory; CFD=Computational fluid 
dynamics; MD=Molecular dynamics; KMC=Kinetic Monte Carlo; TST=Transition state 
theory. 
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direction [14] that will only be discussed briefly later in this paper. The prospect of 
using a small number of mobile sensors and actuators that can collect information from 
‘optimal’ spatial and temporal locations is a promising avenue to overcome the latter 
and enable product-process system engineering. 
2.1. Hierarchical Multiscale Simulation: Building on Ideas from Conceptual Process 
Design for Model Development 
The above multiscale science vision, while stimulating, is currently too ambitious to be 
of practical value for the design and control of complex systems, such as those 
encountered in microchemical systems for portable fuel processors. There are numerous 
reasons rationalizing this fact. Consider the example of quantum mechanics at the 
smallest scale. Density functional theory (DFT) is breaking new grounds in the 
parameter estimation front. Recent work sets a paradigm for DFT-based parameter 
estimation on single crystals [20-26]. While DFT is the only truly founded theoretical 
technique of practical interest for catalysis that has great potential, it is practically 
limited to small molecules, to single crystals, and to specific coverages and is semi-
quantitative (at best) in nature. First, even most of the best DFT calculations have an 
accuracy of ± 5 kcal/mol in predicting activation energies. As a result, reaction rates are 
not as accurate and this uncertainty is important in predicting activity and selectivity 
especially at low temperatures. Second, DFT simulations are carried out on idealized 
single crystals that are of interest in surface science studies but can be irrelevant for 
practical catalysts that are polycrystalline or defected nanoparticles spread on a support. 
Third, DFT calculations are carried out at certain coverages. The multicomponent 
nature of complex fuel processing reactions and the drastic variation of dominant 
coverages of surface species with varying operating conditions make parameterization 
of surface kinetics (as a function of coverages) a combinatorial problem of large 
dimension that is currently beyond the reach of computational capabilities. Forth, the 
number of reactions needed to describe the chemistry of complex reactions is large. For 
example for the water-gas shift (WGS) reaction discussed below, 46 elementary-like 
reactions may be considered [4,27], whereas for the partial oxidation of methane more 
than 100 reactions are employed [28]. These large reaction networks hint to the inability 
of expensive DFT calculations to deliver these many parameters. Fifth, it has been 
recognized that the active sites in many reactions involve steps, kinks, and other defects 
whose size and/or density is such that it is impossible to even fit them in the unit cell of 
a DFT calculation. Sixth, DFT is inaccurate for weak, e.g., van der Waals, interactions 
and cannot treat well small activation barriers. Some of these limitations are known as 
materials gap (inability of DFT to deal with multiple scales shown in Fig. 1); the rest 
are associated with the CPU intensive nature of DFT. 
At the mesoscopic scale, kinetic Monte Carlo (KMC) simulation with large kinetic 
mechanisms is still in embryonic stages [21,29]. KMC is seriously plagued by fast 
diffusion and more generally stiffness and the inability of reaching large length scales 
[30]. Coarse-grained KMC is a new tool that could overcome these problems [31]. 
At the reactor scale, computational fluid dynamics (CFD) simulations are employed 
when the continuum approximation is valid. Yet, CFD simulations are very intensive 
especially when flows are turbulent, when reaction networks are large, and when 
geometries are complicated. Process engineers use computationally efficient software, 
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such as ASPEN and HYSYS, to carry out optimization and process control studies. This 
task is obviously impossible to achieve using CFD.  

Instead of trying to simulate all phenomena at all scales with the highest accuracy, one 
realizes that only certain reactions, species, phenomena, and some of the scales are in 
reality crucial for accurate prediction of macroscopic properties. The idea of 
hierarchical multiscale modeling and simulation is then to start with the simplest 
possible “sound” model at each scale and identify the important scales and (‘active’) 
model parameters at each scale. Once this is accomplished, one assesses the model 
accuracy by comparison with data and potentially improves the model of the important 
scale(s) and the associated active parameters using a higher-level model or theory. For 
example, the simplest identification tool employed extensively and successfully in 
chemical kinetics is local sensitivity analysis [32]. Upon improvement of models and 
parameters, another iteration is taken until convergence is achieved, i.e., the important 
scales and parameters do not change between successive iterations. This approach is 
reminiscent of conceptual process design used for chemical flow sheets, where detailed 
design is done only after several iterations of calculations of increasing complexity are 
done [33]. Specific tools employed in hierarchical multiscale chemical reactor model 
development are depicted in Fig. 2. The model predictions at each scale become more 
accurate as one goes from the left to the right of the figure, at the expense of increasing 
computational intensity. 

Figure 2. Hierarchy of chemical kinetic and reactor models at various scales. UBI-QEP: Unity 
Bond Index Quadratic Exponential Potential. See Fig. 1 for other abbreviations. 
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2.2. Data Injection into Multiscale Models for Parameter Refinement or Scale-Model 
Replacement 
Irrespective of the power of multiscale modeling, model parameters, such as 
diffusivities and activation energies, and measured quantities, such as catalyst surface 
area, have always an uncertainty. As a result, models are almost never in perfect 
agreement with experimental data. In other instances the computational requirements 
are so large that one may have to completely bypass the modeling of a scale, typically 
of the quantum one. It is therefore desirable to estimate or refine the active parameters 
or fill in a missing model of a particular scale using experimental data instead of higher-
level theory/model discussed above. This injection of data into a multiscale model is 
needed to increase its predictive capabilities and can be done using data at one or more 
scales of the ladder (see Fig. 1).  
Parameter estimation or refinement and model replacement become then an integral part 
of multiscale model development. A complication is that multiscale models are typically 
complex and computationally intensive and involve discrete, often stochastic, models at 
some scales. Therefore parameter estimation can be very time consuming and with 
noisy models in comparison to traditional parameter estimation of deterministic models. 
Response surface methods (RSM) could be invaluable in achieving this objective at 
minimal computational cost [34]. Development of more accurate and efficient RSMs 
should be an important objective of the systems community. 
Hierarchical multiscale modeling can be extremely valuable also when parameters are 
completely unknown. For example, one uses a mean-field, continuum model (such a 
model assumes spatial homogeneity at the microscopic scale) to estimate parameters 
and then uses these parameters as a good initial guess in a KMC model (this model can 
naturally account for microscopic heterogeneity, surface diffusion, defects, etc.) [5,35]. 
As another example, one uses a deterministic continuum model to estimate parameters 
and these parameters are then refined using the corresponding stochastic simulation that 
considers fluctuations and correlations in species populations.  
The hierarchical multiscale modeling should be exercised with caution. Its success 
relies in the various models of a scale being ‘structurally’ the same. For example, a 
linear lower level model may not capture the behavior, such as bifurcations, of a 
nonlinear higher-level model. In these instances one may hope to be successful only 
locally or needs to develop better lower level models.  
2.3. An example of NH3 decomposition on Ru for H2 production 
The specific hierarchical multiscale framework for chemical reactors is depicted in Fig. 
2. At the lowest theoretical level (left column), detailed microkinetic models are 
developed for the surface chemistry consisting of elementary-like reaction steps. Pre-
exponentials are set based on Transition State Theory (TST) and activation energies are 
computed using the semi-empirical Unity Bond Index-Quadratic Exponential Potential 
(UBI-QEP) theory [36], using heats of chemisorption as inputs. These inputs can be 
obtained from experiments (preferred), DFT, or estimated using the UBI-QEP method. 
The output of the UBI-QEP method is activation energies of all surface reactions as a 
function of surface coverages. 
Reaction rates are determined using the mean-field approximation and are passed into a 
suitable, simple reactor scale model that accounts for transport via standard mass and 
heat transfer correlations. The entire framework is an automatic ‘wrapper’ of Surface 
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Chemkin [37] and allows users to simulate pseudo-homogeneous reactors, such as a 
fixed bed reactor, and compare different catalysts. At this stage one can inject data to 
refine parameters or use more advanced theoretical tools, such as DFT, KMC, or CFD 
depicted in the right column of Fig. 2, to improve the model and parameters at the 
scale(s) that appears most critical. In our work we have used data injection to refine 
pre-exponentials only and DFT to refine energetics. The latter has mainly been used to 
account for surface coverage effects that are nearly impossible to obtain experimentally 
but can be crucial in affecting reactivity and selectivity [38]. Instead of solving the 
combinatorial problem of computing all interactions between all species in a brute-force 
manner, we identify the most abundant surface species (typically 1 or 2) by running 
simulations and carry out only a small number of DFT calculations for those relevant 
interactions. 
Advantages of this theoretical framework include: (a) its high speed (sub-seconds), (b) 
reasonable predictive capabilities in most cases, (c) easy exploration of alternative 
reaction paths (this is important to ensure that most relevant chemistry is included), and 
(d) creation of insights into the important chemistry. An example of performance of a 
detailed kinetic model of NH3 decomposition on Ru, consisting of 6 reversible 
reactions, against data from a post microreactor is shown in Fig. 3. 

3. Model Reduction 
The models obtained using the hierarchical multiscale framework are often very 
complex and computationally demanding. The aim of these models is the accurate 
prediction of macroscale properties, such as conversion. Ideal reactors (lower hierarchy 
at the reactor scale in Fig. 2) seldom represent the actual system accurately, and hence, 
more realistic CFD models need to be used. Using complex kinetic models (higher 
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Figure 3. Comparison of predictions for NH3 decomposition on Ru with (solid line) and 
without (dashed line) adsorbate-adsorbate interactions in a CFD simulation, shown as inset 
[39], against data (symbols) of [40]. 
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hierarchy at the kinetics scale) with complex CFD models (higher hierarchy at the 
reactor scale) represent a large computational burden. As a result, model reduction is 
required to obtain computationally tractable, physically meaningful models.   
Mathematical tools such as principal component analysis (PCA), approximate inertial 
manifold (AIM), etc. have been used for model reduction at various scales (for 
example, see [39]). Additionally, scaling analysis has been used to simplify the 
complexity of reactor models, whereas identification of the rate determining step (RDS) 
or the use of small scale asymptotics is useful at the kinetics scale [40]. For example, 
[41] simplified a transient CFD model using scaling laws, and solved a pseudo-steady 
1D model in the gas phase and a transient 3-D model in the solid phase. [42] used 
boundary layer approximation and scaling analysis to reduce a 2D elliptic model into a 
more computationally tractable parabolic model, whereas, [43] reduced the kinetic 
model consisting of 6 reversible reactions (discussed in the previous section) for 
ammonia decomposition and used the resulting 1-step chemistry in CFD reactor 
modeling for design of integrated microdevices for hydrogen production [44]. These are 
just some examples of model reduction but model reduction is unquestionably an 
essential step in multiscale model development (Fig. 1) and in linking complex models 
to process and product optimization and control. 

4. Model-Based Design of Experiments: Maximizing Chemical Information 
Content 
Experiments are typically carried out at certain conditions and it is often found that only 
a small number of kinetic parameters are active under those conditions. A natural 
question is whether one could design experiments based on a model, rather than 
statistical design, in order to increase the number of active model parameters and the 
accuracy of parameter estimation from data. The benefit of increasing the number of 
active parameters is that one could either validate or extract additional and possibly 
more accurate kinetic parameters. A parameter pj is most active when the response Ri of 
the model with respect to this parameter is highest, i.e., when the absolute value of a 
sensitivity coefficient i j| ln R / ln p |∂ ∂  is largest. During the estimation of kinetic 
parameters, identifiability analysis [45] could determine the extractable ones.  
Once optimum operating conditions for maximizing the sensitivity coefficients of the 
responses with respect to the identifiable parameters in the mechanism have been 
determined, experiments need to be conducted to test the model. Correct prediction of 
the best operating conditions depends on how good the initial values of parameters of a 
model are. Therefore, an iterative approach may be needed. Given that lower level 
models are used to estimate parameters, model predictions are reasonable even in the 
first iteration and the search leading to better models and parameters is physically 
constrained, i.e., convergence is usually attained in 1-2 iterations. Next, we outline the 
elements of the proposed approach. Then we illustrate the procedure using our 
microkinetic mechanism for NH3 decomposition on Ru [38] as an example. 
4.1. Identifiability Analysis 
One performs a sensitivity analysis with respect to the mechanism parameters to obtain 
a sensitivity matrix g 
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i jg= R / p⎡ ⎤∂ ∂⎣ ⎦ , (1) 

where Ri is the vector of measured model response (e.g., NH3 conversion), p is the 
vector of parameters (e.g., pre-exponentials), n is the number of model responses, and 
m is the number of parameters. Then the Fisher Information Matrix (FIM) is calculated 

TFIM=g *g . (2) 

If the determinant of FIM is zero, some parameters are interdependent and not 
identifiable. These parameters have to be removed and the computation of the FIM 
repeated.  
Subsequently, one calculates a correlation coefficient (cc) to judge whether any two 
identifiable parameters can be estimated within the measurement error in the 
experiments.  cc is given as  

( )
( ) ( )

-1
i,j -1 -1

FIM i,j
cc =

FIM i,i FIM j,j×
  (3) 

and can vary from –1 to +1.  Larger absolute values (away from 0) indicate higher 
correlation between parameters. Every parameter is self-correlated (cci,i = 1). Even 
though some parameters are identifiable, based on the determinant criterion, they could 
be highly correlated, so it may be difficult to estimate them separately given 
measurement error. Such parameters should be removed and the analysis repeated, so 
that only the identifiable, less correlated parameters are estimated from the experimental 
data. 
4.2. Global Stochastic Search 
We perform model-based design of experiments to maximize the number of active 
parameters and the values of sensitivity coefficients. In particular, a global search in 
experimentally feasible parameter space is conducted on the computer, using a Monte 
Carlo (MC) global search algorithm (see Fig. 4a). At each point in parameter space, a 
reactor simulation is run using the current detailed kinetic model along with a local 
sensitivity analysis of experimentally measured responses with respect to kinetic 

Figure 4. (a) Schematic of global Monte Carlo search in experimental parameter space 
(represented as a 3D cube for graphical purposes; each (yellow) sphere represents a point 
randomly picked in space) to identify conditions that sensitize kinetics parameters. (b) and 
(c) Examples of an actual sensitivity analysis carried out under different conditions. The 
sensitive (active) parameters can vary considerably in parameter space. 
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parameters. Our objective is to identify suitable combinations of experimental variables 
that sensitize the maximum number of kinetic steps, i.e., identify experimental 
conditions where the most abundant reactive intermediate (MARI) and the rate 
determining step (RDS) change, providing additional kinetic information. Herein the 
FIM is employed, following the methods of [46], to systematically screen and organize 
the results of the global MC search. 
4.3. Illustration Using the NH3 Decomposition Reaction on Ru 
The microkinetic model of [38] for NH3 decomposition on Ru has 12 pre-exponentials. 
Using a continuous stirred tank reactor (CSTR) model, we carry out sensitivity analysis 
of the NH3 exit mass fraction with respect to the pre-exponentials at 700 randomly 
selected operating conditions within the ranges shown in Table 2. It is found that the 
determinant of FIM is non-zero. Therefore, all pre-exponentials are identifiable over the 
operating ranges. However, calculation of the correlation matrix shows that the 
backward pre-exponentials are highly correlated with the forward ones (an expected 
result since the forward and backward ones are related to each other via thermodynamic 
constraints).  Therefore, the backward pre-exponentials are eliminated and the analysis 
is repeated. 
Table 2. Range and scaling type of operating variables used to convert them into the [0,1] 
interval.  

Operating variable Min  Max  Scaling 

Temperature, T [K] 500 1000 Linear 

Pressure, P [atm] 0.1 10 Log 

Residence time, τ [s] 0.05 5 Log 

Catalyst area per unit reactor 
volume, A/V [cm-1] 

150 15000 Log 

Inlet H2 mole fraction 0.0 1.0 Linear 

Inlet NH3 mole fraction 0.0 1.0 Linear 

Inlet N2 mole fraction 0.0 1.0 Linear 

 
With only the forward pre-exponentials, the determinant of FIM is non-zero and the 
correlations are not very high either; therefore, all six pre-exponentials are identifiable. 
Fig. 5 shows the correlation coefficients for all reactions based on 700 operating 
conditions. As expected, each parameter is completely correlated with itself (ccii=1).  H2 
adsorption and NH3 adsorption (cc16 and cc61) have ~80% correlation, indicating that 
independent extraction of pre-exponentials could be difficult and higher experimental 
accuracy might be required. 
The sensitivity coefficients change drastically within the parameter space, as shown in 
Figs. 4b, 4c, and 6 and so does the RDS (see Fig. 6). This implies that sufficient 
sampling of parameter space can indeed provide new chemical insights. 
Within parameter space, conditions with the largest normalized sensitivity coefficient 
for each identifiable parameter are found, simply by sorting the global search sensitivity 
data. To avoid non-interesting conditions of low NH3 conversion and to minimize 
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Figure 5. Correlation coefficients for all identifiable pre-exponentials in the 
microkinetic mechanism for NH3 decomposition on Ru.  Some reaction pairs are 
labeled for ease of visualization.
experimental uncertainties, a threshold of 5% conversion is applied while selecting best 
operating conditions. Values of optimal operating conditions are depicted in Fig. 6. 
Subsequently, experiments must be conducted at the identified conditions to test 
predictions and further refine model parameters (if needed one can take another 
iteration to refine parameters). At this stage refinement of heats of chemisorption 
(another model input) and most sensitive pre-exponentials could simultaneously be 
carried out. 
 

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100
Ammonia conversion [%]

NH3
*+*=NH2

*+H*

|N
SC

|

731 0.3 2.0 1541 0.02 0.50 0.48

 
-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Ammonia conversion [%]

NH2
*+*=NH*+H*

|N
SC

|

822 2.0 0.1 560 0.74 0.25 0.01

 
-2
0
2
4
6
8

10
12
14

0 20 40 60 80 100

|N
SC

|

Ammonia conversion [%]

NH*+*=N*+H*

984 0.1 0.2 1253 0.2 0.6 0.2

 

0
1
2
3
4
5
6
7
8

0 20 40 60 80 100
Ammonia conversion [%]

NH3+*=NH3
*

722 5.9 0.1 5535 0.08 0.82 0.1

|N
SC

|

 
-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100

|N
SC

|

Ammonia conversion [%]

N2+2*=2N*

954 0.9 0.1 3427 0.0 0.6 0.4

 
0
1
2
3
4
5
6
7
8

0 20 40 60 80 100

|N
SC

|

Ammonia conversion [%]

H2+2*=2H*
817 4.6 2.4 6847 0.68 0.32 0.0

 

Hierarchical Multiscale Model-based Design 19



 
Figure 6. Absolute values of normalized sensitivity coefficients (NSC) from global MC search in 
parameter space vs. ammonia conversion. The values of optimum parameters of T [K],  P [atm], 
τ [s], A/V [cm-1], and inlet mole fractions of H2, NH3, and N2 are displayed in this order at each 
maximum NSC. 

With the growing success of high-throughput experimentation, the above framework 
could be applied for faster and more reliable development of microkinetic mechanism 
parameters that contain valuable chemical information about the adsorbates and the 
catalysts.  

5. Toward Model-Based Catalyst Design 
By carrying out the above procedure for many catalysts, a library of kinetics models can 
be developed. We propose that this library can assist in catalyst design. This would then 
be an example of product design mentioned above. At the simplest level, the catalyst 
composition becomes a manipulated variable and optimization can lead to better 
catalysts formulations that can guide high throughput experiments by narrowing down 
the huge parameter space. This idea awaits experimental validation. 

6. Use of Microkinetic Models for Reactor Optimization 
The design of any chemical system involves tradeoffs, and hence optimizing a process 
flow sheet is a frequently studied problem [47]. For microreactors, the objective 
function is cast as maximization of performance, such as yield or selectivity, or as a 
complex economic function. One of the more conceptually straightforward goals is to 
use the hierarchical multiscale reactor models to determine the optimal reactor network 
and operating conditions that optimize the objective function subject to new constraints 
arising at the microscale (see next section).  
The methods for reaction network synthesis can broadly be classified into two main 
types: attainable region (AR) methods and superstructure optimization methods. [48] 
defined the AR as a set of all physically realizable reactor outcomes for a given feed, 
and presented a geometric method to determine the AR in the concentration space. The 
reactor network that yields the maximum achievable performance can then be chosen in 
this AR. [49] presented an excellent overview of this method, while [50] have extended 
its applicability by proposing an optimization-based targeting method. On the other 
hand, superstructure methods consider a set of process design alternatives, which 
includes reactors, such as stirred tank reactors (CSTRs), plug flow reactors (PFRs), 
cross flow reactors (CFRs), with additional units, such as mixers, splitters, separators, 
etc. Given a reaction mechanism, kinetic data and physical properties, a mathematical 
model of the system is formulated and optimization is carried out in order to obtain the 
sizing and interconnections between the various units, inlet feed rates, stream 
compositions, and reactor temperatures. The resulting formulation is usually non-
convex, due to bilinearities arising from the mass balances and nonlinearities of the 
reaction kinetics, and hence, a method guaranteeing global optimum currently does not 
exist. Application of simulated annealing [51], genetic algorithms [52,53], or global 
optimization techniques, such as the αBB algorithm [54] can increase the chance of 
reaching a global optimum. 
Another issue in reactor network optimization using microkinetic models is the 
computational burden, as the model consists of tens to hundreds of reactions involving 
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several species. While a solution for an idealized reactor (CSTR, PFR or CFR) requires 
a computational time less than 1 second, the overall optimization is computationally 
very demanding. Therefore, model reduction techniques described in the previous 
section can be vital in optimization. Additionally, the optimal reactor network and 
operating conditions should be physically realizable in the microreactor. Herein lies 
another opportunity for systems engineering researchers in areas of optimal sensor and 
actuator placement, and integration of system-wise design and control. 
6.1. Example: Water Gas Shift (WGS) reaction 
WGS is an important reaction because it reduces the amount of CO – a fuel cell catalyst 
poison – as well as increases the amount of hydrogen in the reformed gas stream. The 
overall WGS reaction is: 

2 2 2CO + H O CO + H  (4) 

WGS is a reversible, exothermic reaction; as a result, the CO conversion is equilibrium-
limited at high temperatures and kinetically limited at low temperatures. The aim is to 
determine the optimal temperature profile and feed conditions to minimize the CO 
content in the effluent. In industrial practice, this is achieved through a two-stage WGS 
process: a high temperature WGS reactor converts most of the CO to CO2 (and H2O to 
H2), whereas a low temperature WGS reactor further reduces the CO content and 
increases the H2 content of the exit gases. 
While the two-stage design of WGS system is a standard practice, not much work has 
focused on actual optimization of this system, especially in the context of determining 
an optimum temperature profile. Recently, [55] used the AR method to geometrically 
determine the optimal reactor design. [56] extended this work to numerically generate 
the AR, specifically for the WGS reactor. [57], on the other hand, applied the 
superstructure-based approach to formulate the design problem and used a quasi-
Newton technique for optimizing the temperature.  
Here, we consider optimization of the temperature and the feed profile for a reaction 
network shown in Fig. 7.  The reactor network consists of n-PFRs in series. The CO-
rich stream is the feed, steam is fed as the side stream, and an optional recycle is 
possible. The microkinetic model developed by [27] for WGS on Pt catalyst is used. 
[58] performed a similar superstructure-based reactor network synthesis for methane 
acetylization using gas-phase chemistry consisting of 36 reversible reactions and 19 
species; however, we are not aware of any reactor optimization work involving catalytic 

l 1, T 1 l2 , T2 ln, Tn
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Figure 7: A schematic of the reactor network superstructure consisting of n-PFRs in series. 
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microkinetic models. 
One of the critical aspects in optimization of WGS using microkinetic model is to 
accurately capture the reaction equilibrium. In the absence of thermodynamic data for 
the surface-adsorbed species, the scheme proposed in [59] is used to ensure that all our 
models are thermodynamically consistent. The full model consists of 46 elementary-like 
reactions. [4] used PCA (principal component analysis) to reduce the model to 18 key 
reactions. The 18-reaction system was simulated for a wide range of operating 
conditions; the most abundant reaction intermediate (MARI) and the RDS were 
identified. Then, small parameter asymptotics was used to derive a 1-step global rate 
expression. In comparison to commonly postulated Langmuir-Hinshelwood rate 
expressions, an advantage of this a posteriori model reduction strategy is that the rate 
parameters are physically meaningful, no a priori assumptions were made in obtaining 
the model, the “loss of information” is well characterized and the model, being 
developed from a microkinetic model, is applicable over a wide range of operating 
conditions. As the simulation time for the reduced order expression is significantly 
lower than that for the 46-step mechanism, the reduced mechanism was used for 
optimization results presented here. Comparison of the results of the full and reduce 
chemistry models will be presented elsewhere. Note that the reduced expression still 
accounts for all the important surface phenomena, such as temperature and coverage-
dependent activation energies. 
Using the reduced-order model, we undertook reactor network optimization in two 
steps. First, we assumed an isothermal system and performed optimization using a 
gradient-based (quasi-Newton) optimizer. Based on these results, we were able to 
simplify the reactor network, as follows: recycle stream was not required since the 
recycle ratio was equal to or close to 0; the CO-rich stream is fed only at the inlet or 
PFR-1 (i.e., 0fim =  for 1i > ); steam may be split over the n-PFRs; no intermediate 
side-draw. 
The reactor network optimization problem was thus simplified to the one of optimizing 
the total reactor length, the temperature, and the feed rate of the side streams for each of 
the n PFRs. The resulting optimal temperature (a local minimum) profile with n = 10 
reactors, shown in Fig. 8, indicates the expected trend: the temperature is high in the 
initial reactors, where the CO concentration is higher, and drops significantly as the CO 

Figure 8: Optimum temperature profile for a reactor network consisting of 10-PFRs in series 
obtained using a quasi-Newton scheme. The dotted line represents one isothermal reactor and 
the dashed line represents two-stage WGS reactors. In all cases, total reactor length was 2.0 
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conversion increases due to the system getting equilibrium limited. 
It is interesting to compare the optimization results with that used in industrial practice, 
and the ones obtained using AR by [56]. There are two different stages in WGS: high 
temperature stage with T ~ 700 K and the low temperature stage with T ~ 450 K. The 
higher limit represents a “break-off” point: an increase in temperature does not result in 
any significant increase in the reaction rate, but adversely affects the equilibrium 
conversion. The lower temperature limit is a trade-off between higher equilibrium 
conversion and a lower rate of reaction. Fig. 8 also provides a comparison between the 
non-isothermal system, a two-stage system described above, and an isothermal system. 
In all cases, the total reactor length was 2 cm and 40 sccm feed (dry basis) and 40 sccm 
steam. The optimized non-isothermal system results in significant improvement over 
two-stage and isothermal systems. 

7. Integrated Microchemical Devices: Opportunities for Systems 
Engineering 
In the preceding section, discussion focused on reaction kinetics and on design and 
optimization of single microreactor(s). Production of power requires integration of 
reactors, heat exchangers, and separation units, much like in a chemical plant. The 
characteristic length scales of typical microscale devices are on the order of several 
hundred microns, and as a result, at high pressures the continuum approximation still 
holds for the reactor itself. Therefore, the conventional equations of motion and 
transport are still applicable for the device. Yet, at the catalyst scale, reaction and 
transport within pores require smaller scale, often non-continuum models, as shown in 
Figs. 2 and 1 and discussed in the previous sections. So one may ask the question of 
whether there are any differences between microscale devices and their large-scale 
counterparts even at the reactor scale. The answer to this is affirmative. 
First, due to their small scale the flows in microdevices are laminar and so mixing is 
slow. Yet one needs to achieve high performance in shorter residence times. This leads 
to the potential of break through and/or incomplete conversion. Furthermore, small 
particulates needed to fill a microdevice in order to give high surface area catalyst, 
cause huge pressure drops, and as a result the fixed bed paradigm for separation or 
reaction cannot be employed. Moveable, small parts break and can cause bypassing due 
to settling. These aspects point to the realization that different structures, possibly 
monolithic-like, need to be explored to overcome issues of mixing, high catalyst area, 
and pressure drop [60]. Operation is often transient, e.g., turning on and off a laptop, 
and thus, the catalyst must be active not only at steady state (common industrial 
situation). In addition, heat transfer must be sufficiently fast (orders of seconds or 
smaller) to achieve reasonable operation. Hybrid systems, where a small battery is used 
for start up, followed by a device converting chemical energy to electricity is a process 
alternative with most promise. 
Second, the increase in surface area per unit volume resulting from miniaturization 
results in an increase of transport rates, and thus, a microreactor has the potential to 
operate under kinetically controlled conditions. This is a major advantage in terms of 
process intensification (high throughput with small devices) and the ability to extract 
intrinsic kinetics from experimental data. However, hot spots could form due to higher 
rates. Furthermore, surface reactions are favored over gas-phase reactions. This fact has 
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interesting implications for radical quenching of gas-phase combustion chemistry 
leading to inherent device safety, regarding flame propagation, but also to the inability 
of making workable gaseous microburners [42]. Heat losses become large, and thus 
designs that ‘trap’ energy inside the system [61] are highly desirable. The proximity of 
gas-phase chemistry to walls makes surfaces not only important for carrying out 
chemistry but the main conduits of heat transfer. As a result, the material makeup of the 
walls is crucial [62].  
Miniaturization, in conjunction with heat losses requires compact, well-integrated 
designs with a very different layout (flow-sheet) than their large-scale counterparts. The 
different chemical and heat transfer characteristics found at microscales may render 
conventional wisdom originating from large scales inapplicable to the design of 
microdevices [63]. For example, co-currently and counter-currently coupled 
microreactors (multifunctional devices of carrying endothermic and exothermic 
reactions on opposite sides of a wall) hardly have any difference in their stability and 
maximum hydrogen produced when materials are highly conductive [64]. Thus, process 
design and control of microdevices (lab-on-a chip) need substantial rethinking [65] 
keeping in mind the aforementioned pros and cons of microchemical devices. Due to 
the strong coupling of various components, design and control of individual units is 
unlikely to work; interactions between various units need to be accounted for. This 
issue is further acerbated because these systems often run in transient operation. This is 
currently a relatively uncharged territory. 
Modeling of these systems needs PDEs, leading to infinite dimensional systems that are 
not easily amenable for control. Hence, model reduction methods are required to obtain 
control-relevant models. With the development of novel MEMS sensors and actuators, 
their optimal placement for estimation and fault diagnostics, and for improving flow 
and/or temperature control will receive more attention [66,67]. Finally, the shorter time 
scales, of the order of minutes to hours, make them suitable for  "plant-wide" 
optimization and control schemes. 

8. Summary and Outlook 
With rapid advances in nano- and micro-systems, multiscale simulation and analysis is 
emerging as a new paradigm in computational science that could facilitate a better 
understanding of the underlying physics, and enable improved design, optimization and 
control of these complex systems. The aim of this article was to highlight the progress 
achieved in this field in the last decade. This emerging field presents new challenges as 
well as new opportunities, and will benefit from an increased synergism between 
reaction engineering and process systems engineering communities. 
Specifically, this paper discussed the hierarchical multiscale modeling work done in our 
research group. We demonstrated how the various tools at different scales of the 
“multiscale simulation ladder” have been used to develop more accurate and physically 
meaningful microkinetic models that can be applied over a large range of operating and 
design conditions. Quantum mechanics, molecular dynamics, semi-empirical methods, 
Kinetic Monte Carlo (KMC), and coarse-grained KMC methods have been put to use to 
obtain those parameters that are unknown and where experimental data is lacking. 
System tools, such as parameter estimation, response surface method, identifiability 
analysis have been applied to improve the quality of models. Model reduction was used 
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to obtain reduced-order models that are useful for tasks, such as CFD simulation/design 
of reactors, reactor network synthesis, etc. 
Process design and control of micro- and nano-scale systems needs careful rethinking 
since on the one hand system integration, thermal management, and water management 
are key, challenging issues that await solutions, and on the other hand measurements, 
sensing, actuation, and control are plagued by the large disparity of scales. Aside from 
modern applications, the systems community has also to offer lots to the development 
of multiscale simulation itself in terms of passing optimum information between models 
at various scales with minimal error, integrating data with models across scales, and 
developing reduced models. Some of these issues have briefly been touched upon above 
with examples from the fuel-processing arena and are also addressed in [12-14,68-70].  
The low cost of Beowulf clusters renders multiscale simulation a reality. However, 
multiscale modeling requires substantial intellectual infrastructure, mainly in techniques 
that span a wide range of scales and is particularly demanding on students. In most 
cases, such research can be accomplished at a reasonable pace only via collaboration(s). 
In the long term, the creation of suitable training modules, courses, textbooks, and 
summer schools is needed for broad dissemination of multiscale modeling. 
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