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Abstract

This paper presents an overview of the research progress in global optimization during the
last five years (1998-2003), and a brief account of our recent research contributions. The
review part covers the areas of (a) twice continuously differentiable nonlinear optimiza-
tion, (b) mixed-integer nonlinear optimization, (¢) optimization with differential-algebraic
models, (d) optimization with grey box/black box/nonfactorable models, and (e) bilevel
nonlinear optimization. Our research contributions part focuses on (i) improved convex
underestimation approaches that include convex envelope results for multilinear functions,
convex relaxation results for trigonometric functions, and a piecewise quadratic convex un-
derestimator for twice continuously differentiable functions, and (ii) the recently proposed
novel generalized aBB framework. Computational studies will illustrate the potential of
these advances.
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1 Introduction

It is now established that Global Optimization has ubiquitous applications not only in Chem-
ical Engineering but also across all branches of engineering, applied sciences, and sciences
(e.g., see the textbook by Floudas 2000). As a result, we have experienced significant in-
terest in new theoretical advances, algorithmic and implementation related investigations,
and their application to important scientific problems. A review paper discussed the ad-
vances in deterministic global optimization and their applications in the design and control
of chemical process systems (Floudas (2000a)). A second review paper presented at the
FOCAPD-1999 meeting outlined the Chemical Engineering research contributions in global
optimization for the period 1994-1999, presented the advances, and identified research oppor-
tunities and challenges (Floudas and Pardalos, 1999). During the last five years, 1998-2003,
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several outstanding textbooks have been published addressing different facets of global op-
timization. These include the textbooks by Tuy (1998), Bard (1998), Sherali and Adams
(1999), Floudas (2000), Horst et al. (2000), Tawarmalani and Sahinidis (2002), and Zabin-
sky (2003). A handbook of test problems in local and global optimization (Floudas et al.
(1999)), as well as two edited volumes of the research contributions presented at the major
conferences on Global Optimization held in 1999 and 2003 (Floudas and Pardalos (2000),
Floudas and Pardalos (2003)), were published. A recent survey paper by Neumaier (2004)
discusses constrained global optimization and continuous constraint satisfaction problems
with a particular emphasis on the use of interval arithmetic for addressing rounding off
errors and reliability issues.

Global optimization addresses the computation and characterization of global optima
(i.e., minima and maxima) of nonconvex functions constrained in a specified domain. Given
an objective function f that is to be minimized and a set of equality and inequality con-
straints S, Deterministic Global Optimization focuses on the following important issues :

(a) Determine a global minimum of the objective function f (i.e., f has the lowest possible
value in S) subject to the set of constraints S;

(b) Determine lower and upper bounds on the global minimum of the objective function f
on S that are valid for the whole feasible region S;

(c) Determine an ensemble of qood quality local solutions in the vicinity of the global
solution;

(d) Enclose all solutions of the set of equality and inequality constraints S;
(e) Prove that a constrained nonlinear problem is feasible or infeasible.

In this review paper, we will discuss the deterministic global optimization advances dur-
ing the last five years for the following classes of mathematical problems: (i) twice continu-
ously differentiable nonlinear optimization, NLPs; (ii) mixed-integer nonlinear optimization,
MINLPs; (iii) differential-algebraic systems, DAEs; (iv) grey-box and nonfactorable prob-
lems; and (v) bilevel nonlinear and mixed integer optimization. We will first present all
the contributions in the aforementioned classes, and we will subsequently focus on a few
advances from Princeton University on (a) convex envelope results for trilinear monomials,
(b) convex relaxation results for trigonometric functions, (c) new convex underestimators
based on piecewise convex quadratic representations, and (d) the generalized aBB global
optimization approach.

2 Twice Continuously Differentiable NLPs

In the first part of this section, we will review the advances in convex envelopes and con-
vexification techniques. We will subsequently focus on theoretical and algorithmic advances
for (a) general C? NLPs; (b) concave, bilinear, fractional, and multiplicative problems; (c)
phase equilibrium problems; and (d) parameter estimation problems.

Convexification Techniques and Convex Envelopes Adjiman et al. (1998a), Hertz
et al. (1999) proposed several new rigorous methods for the calculation of the a parameters
for (i) uniform diagonal shift of the hessian matrix and (ii) non-uniform diagonal shift of
the hessian matrix, and they established their potential trade-offs. Adjiman et al. (1998b)



presented the detailed implementation of the aBB approach and computational studies in
process design problems such as heat exchanger networks, reactor-separator networks, and
batch design under uncertainty.

Tawarmalani and Sahinidis (2001) developed the convex envelope and concave envelope
for z/y over a unit hypercube, compared it to the convex relaxation proposed by Zamora and
Grosmmann (1998a),(1998b), (1999), proposed a semidefinite relaxation of z/y, and sug-
gested convex envelopes for functions of the form f(z)y? and f(z)/y. Ryoo and Sahinidis
(2001) studied the bounds for multilinear functions via arithmetic intervals, recursive arith-
metic intervals, logarithmic transformation, and exponential transformation, and provided
comparisons of the resulting convex relaxations. Tawarmalani et al. (2002a) showed that
tighter linear programming relaxations are produced if the product of a continuous variable
and the sum of several continuous variables is disaggregated, and applied it to the instance
of rational programs that include a nuclear reactor reload pattern design, and a catalyst
mixing in a packed bed reactor problem. Tawarmalani and Sahinidis (2002) introduced the
convex extensions for lower semi-continuous functions, studied conditions under which they
exist, proposed a technique for constructing convex envelopes for nonlinear functions, and
studied the maximum separation distance for functions such as z/y. Tawarmalani et al.
(2002b) studied 0 — 1 hyperbolic programs, developed eight mixed-integer convex reformu-
lations, proposed analytical results on the tightness of these reformulations, developed a
global optimization algorithm and applied it to a p-choice facility location problem.

Liberti and Pantelides (2003) proposed a nonlinear continuous and differentiable convex
envelope for monomials of odd degree, derived its linear relaxation, and compared to other
relaxation. Bjork et al. (2003) studied convexifications for signomial terms, introduced
properties of power convex functions, compared the effect of the convexification schemes for
heat exchanger network problems, and studied quasi-convex convexifications.

Meyer and Floudas (2003) studied trilinear monomials with positive or negative domains,
derived explicit expressions for the facets of the convex and concave envelopes and showed
that these outperform the previously proposed relaxations based on arithmetic intervals or
recursive arithmetic intervals. Meyer and Floudas (2004a) presented explicit expressions for
the facets of convex and concave envelopes of trilinear monomials with mixed-sign domains.
Tardella (2003) studied the class of functions whose convex envelope on a polyhedron co-
incides with the convex envelope based on the polyhedron vertices, and proved important
conditions for a vertex polyhedral convex envelope.

Caratzoulas and Floudas (2004) proposed novel convex underestimators for trigonomet-
ric functions which are trigonometric functions themselves. Akrotirianakis and Floudas
(2004a) introduced a new class of convex underestimators for twice continuously differ-
entiable NLPs, studied their theoretical properties, and proved that the resulting convex
relaxation is improved compared to the aBB one. Meyer and Floudas (2004a) proposed two
new classes of convex underestimators for general C? NLPs which combine the aBB under-
estimators within a piecewise quadratic perturbation, derived properties for the smoothness
of the convex underestimators, and showed the improvements over the classical aBB convex
underestimators for box-constrained optimization problems.

General C? NLPs Adjiman et al. (1998a), Adjiman et al. (1998b) introduced the BB
global optimization approach, which is applicable to general twice-continuously differentiable
NLPs, and presented extensive computational studies in process design problems such as
heat exchanger networks, reactor-separator networks, and batch design under uncertainty.
Yamada and Hara (1998) proposed a global optimization approach based on the triangle



covering for H-infinity control with constant diagonal scaling. Androulakis and Floudas
(1998) studied the parallel computation issues that arise using the aBB global optimization
approach.

Klepeis et al. (1998), and Klepeis and Floudas (1999a) proposed new global optimization
approaches for the structure prediction of solvated peptides using area and volume acces-
sible to the solvent models. A review of the global optimization activities in the areas of
protein folding and peptide docking can be found in Floudas et al. (1999b). Klepeis and
Floudas (1999b) proposed a novel deterministic global optimization approach for free en-
ergy calculations of peptides. Westerberg and Floudas (1999a) and Westerberg and Floudas
(1999b) introduced a global optimization framework for the enclosure of all transition states
of potential energy hypersurfaces, and studied the reaction pathways and dynamics helical
formation with and without solvation. Klepeis et al. (1999) introduced a novel approach that
combines deterministic global optimization and torsional angle dynamics for the prediction
of peptide structures using a sparse set of NMR data.

Byrne and Bogle (1999) introduced a bound constrained linear relaxation, developed two
classes of linear underestimators using the natural extension and mean value theorems of in-
terval analysis, and showed that the interval LP is more efficient than other interval analysis
approaches. Gau and Stadtherr (2002) studied the computational improvement of inter-
val Newton/generalized bisection approaches, introduced a hybrid preconditioning strategy
where a pivoting preconditioner is combined with the standard inverse midpoint method, and
showed that this approach results in a large reduction of the needed subintervals and hence
in significant computational improvements. Gau and Stadtherr (2002) studied synchronous
work stealing, synchronous and asynchronous diffusive load balancing on a two-dimensional
torus virtual network, developed a distributed computing interval Newton framework, and
showed that superlinear speedups can be obtained for vapor-liquid equilibrium and parame-
ter estimation problems. Lucia and Feng (2002) studied the least squares function landscape,
introduced a differential geometry based framework for the determination of all physically
meaningful solutions, singular points, and their connectivity, developed a global terrain algo-
rithm,and illustrated the framework through one and two-dimensional examples from glass
temperature calculations, equilibrium states in nanostructured materials, a simplied SAFT
equation, and a CSTR equation. Klepeis et al. (2002) presented the advances in deter-
ministic global optimization based on the aBB approach and its applications for structure
prediction of oligopeptides, dynamics of helical formation, and protein-peptide interactions.

Zilinskas and Bogle (2003) studied the evaluation of ranges of functions through bal-
anced random interval arithmetic, investigated the hypothesis on the normal distribution
of the centers and radii of the evaluated balanced random intervals through several com-
putational studies, and concluded that this hypothesis is incorrect. Klepeis and Floudas
(2003b) introduced a deterministic global optimization approach, aBB, coupled with tor-
sional angle dynamics for the protein structure prediction given restraints predicted from
the identification of helices and [-sheets. Klepeis and Floudas (2003c) proposed the first
principles framework, Astro-Fold, for the protein structure prediction, described the global
optimization and mixed-integer optimization advances, and presented a variety of test sys-
tems including several blind protein predictions. Klepeis et al. (2003a) introduced a new
class of hybrid global optimization methods denoted as integrated hybrids for the oligopep-
tide structure prediction. Klepeis et al. (2003b) proposed new alternating hybrid global
optimization methods, studied and developed their distributed computing algorithms, and
applied them to the structure prediction of met-enkaphalin and mellitin. These two classes
of hybrid global optimization approaches combine the aBB for the generation of rigorous



lower bounds with the modified genetic algorithm, CSA, for the upper bounding calculations.
Lucia and Feng (2003) extended the terrain methodology to multivariable problems and in-
tegral curve bifurcations associated with valleys and ridges, showed that the terrain mathods
are superior to arc homotopy continuation in the presence of parametric disconnectedness,
and studied examples for the location of all azeotropes, retrograde flash calculations, and
CSTR problems.

Schafroth and Floudas (2004) studied the protein-peptide interactions via deterministic
global optimization, atomistic-level modeling, and several solvation methods that include
the area accessible to the solvent, the volume accessible to the solvent, and the Poisson-
Boltzmann method, and reported excellent agreement on the binding motifs.

Akrotirianakis and Floudas (2004b) presented computational results of the new class of
convex underestimators embedded in a branch-and-bound framework for box-constrained
NLPs. They also proposed a hybrid global optimization method that includes the random-
linkage stochastic approach with the aim at improving the computational performance.

Concave, Bilinear, Fractional and Multiplicative Models Zamora and Grosmmann
(1998b) introduced a deterministic branch-and-bound approach for structured process sys-
tems that have univariate concave, bilinear and linear fractional terms. They proposed
several properties of the contraction operation, embedded them in the global optimization
algorithm and studied the contraction effects on several applications. Shectman and Sahini-
dis (1998) proposed a finite global optimization method for separable concave problems.
Zamora and Grossmann (1999) proposed a branch-and-contract global optimization algo-
rithm for univariate concave, bilinear, and linear fractional models. The emphasis was on
reducing the number of nodes in the branch-and-bound tree through proper use of the con-
traction operator. Van Antwerp et al. (1999) studied the bilinear matrix inequality problem
as a formulation of the globally optimal controller problem and applied a branch-and-bound
global optimization approach to generate lower and upper bounds and prove optimality for
a mass spring model and a reactive ion etching problem.

Adhya et al. (1999) studied bilinear models of the pooling problem, proposed a la-
grangian relaxation approach for the generation of valid lower bounds, and showed that
these bounds are tighter when compared to linear programming based relaxations. Ryoo
and Sahinidis (2003) studied linear and generalized linear multiplicative models, applied the
recursive arithmetic interval approach for the derivation of lower bounds, introduced greedy
heuristics for a branch-and-reduce approach, and applied it to benchmark problems and
randomly generated problems. Goyal and Ierapetritou (2003a) introduced an approach for
the systematic evaluation of the infeasible domains using a simplicial outer approximation
framework that is applicable to concave or quasiconvex constraints.

Phase Equilibriium Maier et al. (1998) applied an interval analysis based approach
for the enclosure of homogeneous azeotropes. They employed the formulations proposed
by Harding et al. (1997) and studied systems with activity coefficient and equation of
state models. Meyer and Swartz (1998) proposed a new approach for testing convexity
for phase equilibrium problems. McKinnon and Mongeau (1998) proposed a generic global
optimization approach for the phase and chemical reaction equilibrium problem that is
based on interval analysis and combines the stability criterion with the minimization of the
Gibbs free energy. Hua et al. (1998a) applied an interval analysis method for the phase
stability computations of binary and ternary mixtures using equation of state models. Hua
et al. (1998b) introduced two enhancements on their interval analysis approach based on



monotonicity and mole fraction weighted averages for improving the efficiency in the tangent
plane stability analysis for cubic equations of state. Zhu and Xu (1999a) used simulated
annealing for the tangent plane stability analysis criterion and they applied it to ternary
systems. Zhu and Xu (1999b) studied the tangent plane stability analysis for the SRK cubic
equation of state through a Lipschitz global optimization approach, and applied it to binary
systems. Zhu and Xu (1999) used simulated annealing for the stability analysis of liquid-
liquid equilibrium systems modeled via the NRTL and UNIQUAC equations for the activity
coefficients and studied ternary systems with up to three liquid phases.

Harding and Floudas (2000a) introduced a novel global optimization approach for the
phase stability of several cubic equations of state based on analytical findings and the prin-
ciples of the aBB global optimization framework. Harding and Floudas (2000b) studied
the enclosure of all heterogeneous and reactive azeotropes, developed a rigorous framework
based on the aBB global optimization principles, and demonstrated its potential for a vari-
ety of case studies. Tessier et al. (2000) introduced monotonicity based and mole fraction
weighted averages based enhancments for the application of interval Newton methods to the
phase stability problem using the NRTL and UNIQUAC models. Zhu et al. (2000) proposed
an enhanced simulated annealing algorithm for the tangent plane stability problem using
the PR and SRK cubic equations of state.

Zhu and Inoue (2001) introduced a branch-and-bound approach based on a quadratic
underestimating function and applied it to the tangent plane distance criterion using the
NRTL equation. Xu et al. (2002) studied the phase stability criterion using the SAFT
equation of state, introduced an interval Newton/generalized bisection approach, followed
a volume-based formulation based on the Helmholtz energy, and applied to nonassociating,
self-associating, and cross-associating systems. Cheung et al. (2002) studied the global
minimum determination of clusters for the solvent-solute interactions in phase equilibrium.
They introduced the OPLS force field, derived tight convex underestimators, derived bounds
on the dependent variables, developed a branch-and-bound approach, and applied it to a
butane molecule and a butane-ethylamine system.

Parameter Estimation Esposito and Floudas (1998) studied the error-in-variables ap-
proach and proposed the first global optimization method for the parameter estimation and
data reconcilliation of nonlinear algebraic models using the principles of the aBB approach.
Gau and Stadtherr (2000) introduced an interval analysis based approach for the error-in-
variables method and studied vapor liquid equilibrium and reaction kinetics models. Gau et
al. (2000) studied further the parameter estimation of vapor liquid equilibrium models via
interval analysis, applied it using the Wilson equation for a variety of binary systems, and
demonstrated that correct predictions of azeotropes are attained only based on the global
optimum parameter solutions in direct contrast to the Dechema data collection. Gau and
Stadtherr (2002) applied the interval-newton approach for the parameter estimation of a cat-
alytic reactor model, a heat exchanger network model, and binary vapor-liquid equilibrium
problems using the Wilson equation, and pointed out that problems of about two hundred
variables can be addressed.

3 Mixed-Integer Nonlinear Optimization, MINLPs

Zamora and Grosmmann (1998a) derived thermodynamic-based convex underestimators,
quadratic/linear fractional convex underestomators, and proposed a hybrid branch-and-
bound and outer approximation method for the global optimization of heat exchanger net-



works with no stream splits. Westerlund et al. (1998) proposed an extended cutting plane
approach for the global optimization of pseudoconvex MINLP problems, studied its conver-
gence properties, and applied it to an example from the paper-converting industry. Vecchi-
etti and Grossmann (1999) introduced a disjunctive programming approach for MINLPs,
denoted as LOGMIP, discussed a hybrid modeling framework for process systems engineering
which allows both binary variables and disjunctions as tools for discrete decisions, imple-
mented a modified logic-based outer approximation approach, and presented computational
studies on two process synthesis problems and an FTIR spectroscopy example. Sinha et
al. (1999) studied the class of solvent design problems, modelled it as a nonconvex MINLP
problem, identified the sources of nonconvexities in the properties and solubility parameter
design constraints, proposed linear underestimators based on a multilevel representation ap-
proach for the functions, developed a reduced space branch-and-bound global optimization
algorithm, and applied it to a single component blanket wash design problem. Noureldin
and El-Halwagi (1999) studied mass integration problems for pollution prevention, proposed
targets for the maximum achievable poluution, introduced an interval analysis framework
for the determination of these targets, studied the pollution prevention via unit manipu-
lation, recycle and interception, and employed the interval-based targets in a case study
featuring the reduction of water usage and discharge in a tire-to-fuel plant. Porn et al.
(1999) proposed convexification schemes for classes of discrete and integer nonconvex mod-
els. They studied the exponential transformation and potential-based transformations and
applied them to integer posynomial problems. Harjunkoski et al. (1999) studied the trim
loss minimization problem for the paper converting industry, formulated it as a nonconvex
MINLP, proposed transformations for the bilinear terms that are based on linear representa-
tions and convex expressions, studied the reductions of the combinatorial space, investigated
the role of different types of objective functions, developed and assessed several algorithmic
alternatives, and showed that the global solution can be obtained with all strategies and
certain convex formulations performed similarly to the linear models.

Adjiman et al. (2000) proposed two novel global optimization approaches for nonconvex
mixed-integer nonlinear programming problems. The first approach, SMIN — oBB is for
separable continuous and integer domains and it is based on the principles of aBB type of
convex underestimators and a branch-and-bound approach for the mixed set of continuous
and binary variables. The second approach, GMIN — aBB, is applicable to general mixed
integer nonlinear problems which are not separable in the continuous and integer variables,
and it is based on a branch-and-bound tree constructed only in the integer domain while
the aBB principles are used to solve the nonconvex NLPs at each node so as to generate
valid lower bounds. The first approach was applied to heat exchanger network problems,
while the second one was applied to pump network configuration problems and trim loss
minimization problems in addition to a variety of benchmark problems. Kesavan and Barton
(2000) introduced a generalized branch-and-cut algorithm for nonconvex MINLPs, showed
that decomposition-based approaches and branch-and-bound algorithms are special cases,
and proposed a number of heuristics towards addressing the computational efficiency issues.
Sahinidis and Tawarmalani (2000) presented two MINLP applications of global optimization
for the design of just-in-time flowshops, and the design of an alterative to freon. In the first
study, the model determines the stagewise number of machines needed that minimizes the to-
tal equipment costs, and they showed improvements compared to the heuristic approaches.
In the second study, the model selects the constituent parts of a molecule so as to sat-
isfy chemical and physical properties, economic, environmental constraints through a group
contribution based approach, and provides a ranked order list of alternative compounds.



Parthasarathy and El-Halwagi (2000) studied a systematic framework for the optimal design
of condensation which an important technology for volatile organic compounds, formulated
it as a nonconvex MINLP model, proposed an iterative global optimization approach which
is based on physical insights and active constraint principles that allow for decomposition
and efficient solution, and applied it to a case study for the manufacture of adhesive tapes.
Porn and Westerlund (2000) introduced procedures for the successive linear approxima-
tion of the objective function and line search techniques, proposed a cutting plane method
for addressing global MINLP problems that feature pseudo-convex objective function and
constraints, studied its convergence properties and initialization schemes, and tested it on
several benchmark problems arising in process synthesis and scheduling applications.

Lee and Grossmann (2001) studied nonconvex generalized disjunctive programming mod-
els, constructed the convex hull of each nonlinear disjunction, used convex underestimators
for bilinear, linear fractional and concave separable functions, introduced a two level branch-
and-bound algorithm where the lower bound requires a discrete search in the disjunctions
space and the upper bound requires a spatial divide and conquer search in the noncon-
vex continuous space, and applied it to benchmark problems, a multicomponent separation
problem, multistage design/synthesis of batch plants with parallel units, and heat exchanger
network synthesis. Bjork and Westerlund (2002) studied the global optimization of heat ex-
changer network synthesis through the simplified superstructure representation that allows
only series and parallel schemes, applied convexification approaches for signomials via piece-
wise linear approximations, developed convex MINLP lower bounding models using the
Patterson formula for the log mean temperature difference considering both isothermal and
nonisothermal mixing, proposed a global optimization approach for alternative models, and
presented extensive computational studies. Wang and Achenie (2002) studied solvent design
problems which are formulated as nonconvex MINLPs, introduced a hybrid global optimiza-
tion approach which combines outer approximation with simulated annealing, applied it
to several benchmark problems, case studies for the extraction of acetic acid from water,
and solvent design for reversible reactions, and showed that near optimal solutions can be
located. Ostrovsky et al. (2002) studied nonconvex MINLP models in which most variables
are in the conconvex terms and the number of linear constraints is much larger than the
nonlinear constraints, introduced the idea of branching on a set of linear branching vari-
ables which depend linearly on the serach variables, proposed a tailored barnch and bound
approach using linear understimators for tree functions based on a multilevel function rep-
resentation, showed that there is a significant reduction in the branching variable space, and
applied it to solvent design and recovery problems. Wang and Achenie (2002) studied the
molecular design of solvents for extractive fermentation including solvent attributes such as
biocompatibility, inertness and phase splitting, introduced a group contribution framework
which results in a conconvex MINLP model, studied a local MINLP algorithm, OA /ER/AP,
and applied it to case studies on ethanol extractive fermentation. Dua et al. (2002) pro-
posed novel approaches for multiparametric mixed-integer quadratic models through the
decomposition into a multiparametric quadratic MIQP model for the upper bound and a
potentially nonconvex MINLP model for the lower bound, suggested ways of addressing
the nonconvexity in the MINLP, and generated envelopes of parametric solutions and the
enclosure of the multiparametric MIQP.

Sahinidis et al. (2003) revisited the design of alternative refrigerants problem, intro-
duced an integer formulation for previously described structural constraints, proposed new
structural constraints between one-bonded and higher-bonded groups in the absence of rings
and new clique constraints for rings, applied a branch-and-reduce global optimization algo-



rithm with a modification so as to generate all feasible integer solutions, and generated new
compounds for refrigerants. Vaia and Sahinidis (2003) studied the simultaneous parameter
estimation and model structure identification in infrared spectroscopy, proposed two meth-
ods out of which the second corresponds to a single nonconvex MINLP model, presented a
branch-and-bound approach which is based on a relaxation of terms that are logarithmic,
bilinear, and multilinear depending on the determinant of the covariance matrix, and pre-
sented comparative computational results. Ostrovsky et al. (2003) revisited their molecular
design reduced dimension branch-and-bound algorithm by studying further the branching
functions concept and the special tree function representation, proposed the sweep mathod
for the construction of the linear underestimators, investigated the problem size dependency
on the algorithmic performance, and showed that the computational effort increases almost
linearly. Sinha et al. (2003) studied the systematic design of cleaning solvent blends for
lithographic printing, modelled it as a nonconvex MINLP problem, introduced an inter-
val analysis based global optimization approach with modifications on the upper bounding
calculation and the local feasibility test which are solved via SQP, and an interval-based
domain reduction algorithm, and presented computational results for the design of aqueous
blanket wash blends. Zhu and Kuno (2003) proposed a hybrid global optimization method
for nonconvex MINLPs which combines convex quadratic underestimation techniques with
a revised form of the generalized benders decomposition, suggested its convergence proper-
ties, and illustrated it via a two variable problem. Goyal and Ierapetritou (2003b) studied
MINLP models where the objective function is convex, and the constraints are convex, con-
cave or quasi-concave, introduced the simplicial approximation of the convex hull of the
feasible region, proposed algorithmic procedures and illustrated them via small benchmark
problems. Kallrath (2003) studied and solved a nonconvex product portfolio problem via an
approximate MILP formulation of the objective function and exact linear relations for the
constraints, modelled it as a nonconvex MINLP problem for the optimization of the number
and size of batch process units, analyzed the sources of nonconvexity consisting of concave
functions and trilinear products, investigated the piecewise linear approximation of the ob-
jective function, the use of a local MINLP solver, SBB, and a global optimization solver,
Baron, and reported that for the large instances weak lower bounds are generated. Gross-
mann and Lee (2003) studied generalized disjunctive programming, GDP, problems which
feature convex nonlinear inequalities in the disjunctions, proposed a convex nonlinear relax-
ation of the nonlinear GDP problem based on the convex hull representation of each of the
disjunctions which was derived by variable disaggregation and reformulation, formulated the
nonlinear GDP as a MINLP which was shown to produce improve bounds compared to big-
M models, and presented comparative computational studies of the two formulations. Lee
and Grossmann (2003) studied nonconvex GDP problems with bilinear equality constraints,
derived convex underestimators and overestimators for the bilinear constraints using the
reformulation/linearization approach, expressed the discrete choices as disjunctions which
were subsequently relaxed by their convex hull representations, used their earlier two level
global optimization approach (Lee and Grossmann (2001)), and presented computational
studies for pooling problems, water usage problems, and wastewater network problems.
Lin et al. (2004) revisited the nonconvex product portfolio problem introduced by Kall-
rath (2003), presented an improved formulation consisting of a concave objective function
with linear constraints in the continuous and binary variables, proposed several techniques
for tightening the model and accelerating its solution, developed a customized branch-and-
bound approach which addresses the problem to global optimality, applied it to small and
large instances, and demonstrated that global solutions can be obtained very efficiently in



contrast to commercial MINLP solvers. Kesavan et al. (2004) studied separable MINLP
models with nonconvex functions, proposed two decomposition algorithms based on alternat-
ing sequences of relaxed master problems, two nonlinear programming problems, and outer
approximation, showed that the first algorithm yields the global solution while the second
provides a rigorous bound on the global solution, and presented computational results on
several benchmark problems and heat exchanger network problems.

4 Differential-Algebraic Models, DAEs

Esposito and Floudas (2000a) studied the global optimization in parameter estimation of
systems described by differential-algebraic models, proposed a rigorous global optimiza-
tion approach based on a collocation framework and the aBB principles, proposed a global
optimization approach based on an integration framework, and investigated a variety of
benchmark problems and complex kinetic mechanisms. Esposito and Floudas (2000b) stud-
ied the deterministic global optimization of nonlinear optimal control problems, introduced
the integration-based framework, investigated the properties of the input-output map of
solutions, suggested three alternative ways of calculating the 3 values for the lower bound-
ing problems, and demonstrated through several challenging case studies the algorithmic
trade-offs of the different strategies, as well as the determination of the global solution. Bar-
ton et al. (2000) studied the optimization of hybrid discrete/continuous dynamic systems,
presented a framework based on hybrid optimal control, investigated existence and sensitiv-
ity results, introduced a modified stochastic search approach, and presented computational
results for a tank changeover problem. Esposito and Floudas (2001) pointed out the theo-
retical rigor and advantages of the proposed global optimization methods by Esposito and
Floudas (2000a) and the differences between local search approaches and global optimization
methods.

Esposito and Floudas (2002) studied the isothermal reactor network synthesis problem,
formulated it as nonconvex NLP with differential-algebraic constraints, introduced a global
optimization framework based on the integration approach and the aBB, investigated al-
ternative types of reformulations, and reported extensive computational studies for complex
reaction/reactor networks. Banga et al. (2002) studied the optimal experimental design for
the parameter estimation of nonlinear dynamic systems, formulated it as an optimal control
that optimizes the Fischer information matrix, introduced two stochastic global optimiza-
tion approaches to address the nonsmoothness and the multiplicity of solutions, and applied
it to the parameter estimation of a fed-batch bioreactor. Papamichail and Adjiman (2002)
introduced a deterministic spatial branch-and-bound global optimization approach for non-
convex models with ordinary differential equations, proposed a convex relaxation based on
the theory of differential inequalities which allowed them to generate rigorous bounds for
the parametric ODEs and their sensitivities, and applied their framework to small optimal
control problems and reaction kinetics parameter estimation models.

Adjiman and Papamichail (2003) developed further their branch-and-bound approach,
proposed three convex relaxations for the parameter estimation of the initial value problem,
and presented computational results on several parameter estimation problems in kinet-
ics. Singer and Barton (2003), Singer and Barton (2004) studied the global optimization
of integral objective functions subject to ordinary differential equations, derived convex
relaxations for the integral based on a pointwise integrand scheme, developed a branch-and-
bound global optimization approach on a Euclidean space which combines the integrand
convex relaxations with differential inequalities, McCormick’s composition approach, and
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outer approximation, and illustrated their approach with several small benchmark prob-
lems. Lee and Barton (2003) studied the global optimization of linear time varying hybrid
systems which exhibit both discrete state and continuous state behavior, and extended their
recently developed approach for the determination of the optimal mode sequence when the
transition times are fixed (Barton and Lee (2003)), proposed a reformulation of the problem
via binary variables while maintaining the linearity of the dymanical system, derived convex
relaxations of Bolza-type functions using recent results for linear time varying continuous
systems (Lee et al. (2004)), and applied it to benchmark problems and an isothermal plug
flow reactor problem. Chachuat and Latifi (2003) introduced a spatial branch-and-bound
global optimization approach for problems with ordinary differential equations in the con-
straints, presented results on the first and second order derivatives for the initial value prob-
lem and the two point boundary value problem, compared the sensitivity and the adjoint
approaches, developed convex underestimators using the aBB principles, and presented com-
putational studies and comparisons of the sensitivity versus the adjoint approach for several
problems. Banga et al. (2003) studied integrated process design and operation, parameter
estimation in bioprocess models, and focused on stochastic global optimization methods for
dynamic systems, addressed handling of constraints in stochastic methods, presented hybrid
approaches for dynamic optimization, and presented computational studies on the optimal
control of bioreactors, the integrated design of a waste treatment plant (see also Moles et al.
(2003)) where they provided comparisons for several algorithmic approaches, and discussed
advances in the parameter estimation of bioprocesses. Banga et al. (2003) reviewed and
introduced optimization as a key technology for food processing and discussed stochastic
global optimization methods and their potential applicability in food process engineering.

5 Grey-Box and Nonfactorable Models

Byrne and Bogle (2000) studied the global optimization of modular flowsheeting systems,
introduced an approach to modular based process simulation which is based on interval
analysis and which can generate interval bounds, derivatives and their bounds for generic
input-output modules, proposed a branch-and-bound global optimization algorithm, and
applied it to an acyclic problem, and flowsheet with recycle.

Meyer et al. (2002) studied the global optimization of problems with nonfactorable con-
straints for which there does not exist an analytical form, proposed a sampling phase in
which the nonfactorable functions and their gradients are sampled and a new blending func-
tion is constructed, presented a global optimization phase in which linear underestimators
and overestimators are derived via interval anlysis and the interpolants are used as sur-
rogates in a branch-and-cut global optimization algorithm, discussed a local optimization
stage where the global optimum solution of the interpolation problem becomes the starting
point for optimizing locally the original problem, and illustrated their approach through a
small benchmark problem, an oilshale pyrolysis problem, and a nonlinear continuous stirred
tank reactor model. Theoretical and algorithmic advances outside of Chemical Engineering
in this area include the work by Jones et al. (1998), Jones (2001), Gutmann (2001), and the
recent book by Zabinsky (2003).
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6 Bilevel Nonlinear Optimization

Gumus and Floudas (2001) studied the global optimization of bilevel nonlinear program-
ming problems which involve twice continuously differentiable functions, proposed a convex
relaxation of the inner problem followed by its equivalent representation via necessary and
sufficient optimality conditions, introduced the aBB global optimization principles, pre-
sented a branch-and-bound framework, and applied it to several benchmark problems and
parameter estimation problems. Floudas et al. (2001) introduced the first rigorous global
optimization approach for the calculation of the flexibility index and the feasibility test
which are bilevel nonlinear optimization models, and demonstrated its applicability to a
heat exchanger network problem, a pump and pipe run problem, a reactor-cooler system,
and a prototype process flowsheet model.

Pistikopoulos et al. (2003) studied bilevel optimization models which are of linear-linear,
linear-quadratic, quadratic-linear, or quadratic-quadratic type, and introduced approaches
from parametric programming to transform the bilevel problem into a family of single level
optimization problems which can be solved to global optimality, and presented computa-
tional results on several small benchmark problems. Gumus and Floudas (2004) studied
the global optimization of bilevel mixed-integer optimization problems, proposed an ap-
proach that is applicable to mixed-integer nonlinear outer problem and twice continuously
differentiable nonlinear inner problem, introduced another approach based on the convex
hull representation of the inner problem, which is applicable when the inner level problem
features functions which are mixed integer nonlinear in the outer variables and linear, poly-
nomial, or multilinear in the inner integer variables, and linear in inner continuous variables;
and applied it to several challenging benchmark problems.

In the remainder of this paper, we will present recent advances from Princeton Univer-
sity on (i) explicit facets for convex and concave envelopes for trilinear functions, (ii) convex
underestimators for trigonometric functions, (iii) new convex underestimators based on a
piecewise quadratic perturbation function, and (iv) the generalized aBB convex underesti-
mators.

7 Explicit Facets of Convex and Concave Envelopes for
Trilinear Monomials

Approximations of the convex envelope of nonconvex functions play a central role in de-
terministic global optimization algorithms and the efficiency of these algorithms is highly
infuenced by the tightness of these approximations. Meyer and Floudas (2003), Meyer and
Floudas (2004a) proposed explicit expressions defining the facets of the convex and con-
cave envelopes for trilinear monomials, with mixed sign domains, as well as with positive or
negative bounded domains for each variable. These advances are discussed in the sequel.

Facets of the Convex Envelope The description of the nonvertical facets depends on
the signs of the bounds on x. In this section, we present the set of facets for Case 1 (the
complete set of cases can be found in the papers by Meyer and Floudas (2003), Meyer and
Floudas (2004a)). The symbols z,y, and z are used to denote a permutation of z;, z2 and
z3. In addition to the signs of the bounds, in some cases there are auxiliary inequalities that
must be satisfied for the facets to apply.

Case1l: 2>0,y>0,2>0
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Mapping {1, 22,23} onto {z,y, 2} in such a way that the following relations apply,

Tyz +zyz < 2Yz +7TYZ,
Tyz+zyz < TYz+2YZ,

the linear equalities defining the facets of C4(z) are:

w = g§$+ﬂy+§gz—2§gg
w = YT+ Ty + TYz — 27YZ
w = yYzr+I2Y +TY2 — TYZ — TYZ
w = Yzr+T2Y+IYz —TYZ — TY2
0
w = = w+f&y+fgz+(—_—£—@&—Eg?—k&ﬁ),
where 0 = Tyz — 2YZ — Tyz + TYZ
0 _ _ 0z _ _
w = —x + 22y + 2Y2 + (————= — TYZ — Y2 + TYz2),
r—7 r— = =

where 6 = zyZ — Tyz — 27z + z27z.

Ilustration To construct the lower bounding facets of Cs(x) where x = [1,2] x [1,2] x
[1,2] we first observe that all bounds are positive (i.e., Case 1). As the bounds on all the
variables are the same it makes no difference how we map {z1,z2,z3} onto {z,y,z}. After
substitution, the facets become:

= 1z + 1z + 13 — 2,
421 + 422 + 423 — 16,
2x1 4+ 225 + 223 — 6,
= 2x1 4+ 2z2 + 223 — 6,
2z, + 2x5 + 223 — 6,
= 21 + 2x9 + 223 — 6.

€ &8 &8 & € €
Il

Note that the last four facets are identical and hence we only need three facets to define
the convex envelope. Comparisons between the convex envelope and other approximation
schemes are provided Figure 1. Explicit facets for the concave envelope and for the complete
set of cases are presented in the papers by Meyer and Floudas (2003), Meyer and Floudas
(2004a)).

Comparison with Other Bounding Schemes The recursive arithmetic interval (rAl)
scheme for generating convex lower bounds for the multilinear monomial was compared
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with the arithmetic interval (AI) scheme and other bounding schemes studied by Ryoo and
Sahinidis (2001).

The separation distances between the function zyz and the lower bounding functions
fai(z,y, z) and fia1(z,y, 2) are defined as dai(z,y, 2) := zyz— far(z,y, 2), and dya1(z, v, 2) =
xyz — fea1(,y, z). These separation distances are compared with d¢(z,y, z), the separation
distance between zyz and the convex envelope. Two graphs are presented for each sign
combination. In each graph y and z are constant, while the separation distances are plotted
as a function of z.

In Figure 1, the AI and rAl systems are shown to generate poor bounds relative to the
convex envelope.

y=12512=15 y=1752=15
0.6 1
/,\ T~ - 0.9 /,\\
; BN / \
05 / \ 0.8 / \
3 / \ 3 / \
% / \ % 0.7 , \\
204 o
[a) /,/ \ 0 0.6 /
5 ' ‘ 5 /
=4 \ -
€03 \ g /
o \ 20.4 /
) d & / d
Al 03 / Al
0.2 — - ' ; — - dy
— "c 0.21 / — dc
0.1 0.1
1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2
X X

Figure 1: Comparison of Lower Bounding Separation Distances, z € [1,2], y € [1,2], z €
[1,2].

8 Convex Underestimators for Trigonometric Functions

Caratzoulas and Floudas (2004) have recently proposed a C® convex underestimator for
the function

f(@)=asin(z+s), z€l[zr,zy], a>0.

The underestimation method can be applied to one-dimensional as well as multi-dimensional
problems involving trigonometric polynomials, since the product of trigonometric functions
can always be decomposed into the sum of sin and cos functions with arguments that are
linear combinations of the problem variables. The general case sin(k ), « € [zL, Zy], reduces
to the above equation form by appropriate scaling of the independent variable. A summary
of the method is presented in the following for the translated function g(z) = f(x + zL),
z € [0, D], where D = zyy — z,.

Caratzoulas and Floudas (2004) considered as underestimating function the following
three-parameter (a, b, zs) trigonometric function

¢(z) = —a sinlk(z —z;)]+b, z€[0,D], a>0,
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where k = 2r/L, and L is the period of ¢(z). For ¢(x) to be convex, the conditions
zs <0and L > 2(D — ;) must be satisfied. They considered L = 2(D — z,) + M, where
M € RT, an arbitrary positive, real number, that makes the period of ¢(z) dependent on
the phase shift zs. They proved that any M > 2 D is sufficient, and by means of asymptotic
analysis of the solution have further shown, rigorously, that the value of M does not affect
how tight the underestimator will be.

Of the three equations necessary to uniquely determine the parameters a, b and x,,
two are obtained from the requirement that at the bounds of the domain ¢(z) match g(z),
that is, g(zo) = ¢(zo), zo € {0,D}. If g(z) is non-convex and the domain includes at
least one minimum, the authors obtain a third equation by setting g(q) = t(g), where
t(z) = g(zo) + ¢'(z1)(x — 20), o € {0,D}, is tangent to g(z) at the point z; and passes
through the point zo; ¢ € (0, D) denotes the minimum of g(x) nearest to zg. From these
equations, Caratzoulas and Floudas (2004) obtained

. A+6p0(fr —1T)
~ sin(kxs) + sin{k[D — (D — q) da 0 — 5]}

and

[A+6a0(fr —T)]sin(kzs)
sin(kzs) + sin{k[D — (D — q) 6a,0 — 5|}’

where fr = f(z1), fu = f(zv), A = fr — fu = g(0) — g(D); T = t(q); and da,0 = 1, if

A =0, and zero otherwise. For the phase shift, x, they obtained
Asin(kq) + (T — fr) sin(kD)

A(1 = cos(kq)) + (T — fL)(1 — cos(kD))’
xs=-M/2>0, A=0.

b=fr—

tan(kz,) = —

A#0

This equation must be solved numerically (a few Newton iterations have proven sufficient)
and it was shown that it always has a solution, that is, for given ¢ and L (i.e., M) there
always exists a unique z; < 0 satisfying it.

For zy = 0, and ¢ = ¢; the minimum of g(z) nearest to z = 0, one obtains the tangent
line t;(z). For zy = D, and ¢ = g, the minimum of g(z) nearest to the end point z = D,
one obtains the tangent line ¢, (z). Thus, they obtain two sets of parameters, (a;, b, zs) for
q = qi, and (ay, by, xsy) for ¢ = ¢, and the respective functions ¢;(z) and ¢, (z). If both
¢i(z) and ¢, (z) are underestimators, the tighter one is chosen — that is the one with the
smaller amplitude parameter, a. Caratzoulas and Floudas (2004) proved that:

Property 1: For M > 2D, the function F(z) = ¢;(z) — ¢,(x) cannot have a single root in
the interval [g, ¢u]-

Property 2: If ¢;(q;) > t.(q) and t;(qu) < tu(gu), a sufficient condition for ¢;(z) (¢u(z))
to be an underestimator is that the function (¢; —¢,,)(z) ((¢y, — t1)(z)) has a root in [g;, gy]-
Theorem: At least one of the functions ¢;(z) and ¢, (x) constructed above is an underes-
timator.

If g(x) is non-convex and the domain does not include a minimum, in the rather trivial
case where ¢g(0) > g(D) and the tangent to g(x) passing through = 0 does not exist, namely
z¢ ¢ [0, D], the underestimator is a line through the end points; similarly if g(0) < g(D)
and the tangent to g(z) passing through z = D does not exist. That would also be the
case if g(0) = g(D). If, however, either one of the two tangents exists, an underestimator of
the same form as before is sought. By enforcing the same end-points matching conditions
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as before, one obtains the equations for the parameters a and b. However, in the absence
of a minimum point, the condition ¢(q) = t(¢) cannot be employed. Instead, they set
(d¢/dz),_, = 0if g(0) < g(D), or (d¢/dzx),_p =0 if g(0) > g(D), to obtain:

-D—-M/2, A<O
Ts =
D-M/2, A>0.

Caratzoulas and Floudas (2004) proved that the function ¢(z) obtained in this manner is
also an underestimator.

Maximum separation distance Caratzoulas and Floudas (2004) investigated the be-
haviour of the solutions with respect to the parameter M > 2 D as that becomes very large.
In all cases, they showed that the curvature, a k2, of ¢(z) approaches a finite value. Based on
their asymptotic analysis, they also have investigated the max,¢jo, pj{ming¢o, pjlg(z)]—¢(x)}
and its dependence on the domain size, D, as a measure of high tight an underestimator
¢(x) is. Specifically, they showed that as M — oo

mingepo,pj[9(#)] — fr + A/[4r D (1 —r D], A#0

2€[0,D] "2€[0,D] min, efo,p)[9(z)] — fr + (fr = T) D*/[4q¢(D —q)], A=0

max { min [g(z)] — ¢(x)} ~ {
where r = [A q+ (T — f1) D]/[A ¢* + (T — f1) D?], withr ~ 1/D and 1 —rD ~ A q/[D (fr —
T)]. As D increases, the quantity on the left-hand side grows linearly.

Ilustration As an example, let us consider the following function: f(z) = sin z+sin 13% +
Inz—0.84z, 1.5 < x < 12.484. This function has a unique minimum with an objective func-
tion value of —8.7429 located at x = 10.914. Applying the proposed convex underestimation
approach on this example to underestimate, individually, each of the first two terms in f(z),
the term Inz, being concave, has been underestimated by a straight line connecting the
end points of the domain. The first initial lower bound is —9.7818 at 2 = 9.656. Using
aBB with the theoretical value a = 6.0007, one obtains an initial lower bound of —185.2376
located at x = 6.992. Fig. 2 presents graphs of f(z), of its trigonometric terms and their
underestimators, and of the overall underestimator.

9 Convex Underestimators by Piecewise Quadratic Per-
turbation

Meyer and Floudas (2004b) introduced a refinement of the classical BB convex underesti-
mator, via a smooth, piecewise quadratic, perturbation function, ¢. In this section, we will
briefly introduce the concepts behind the aBB type of underestimators, and we will subse-
quently focus on the new class of convex underestimators that are based upon a piecewise
quadratic perturbation function.

The aBB algorithm is based on the idea of constructing a smooth convex underestimator
of a nonconvex twice continuously differentiable function f(z) using a convex quadratic
perturbation function, ¢(z) The convex underestimator ¢(z) is defined as follows:

¢(z) = f(z) — q(2).
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Figure 2: The function f(z) in illustrative example and its underestimator. We also plot
the trigonometric terms, sin z and sin(10z/3), of f(z) and their individual underestimators,
as computed by the method of Caratzoulas and Floudas (2004).

The aBB convexification approach can be viewed as an approximate solution to a more
general convexification problem, that of finding a convexifying perturbation function ¢(z)
which minimizes a measure, u, of the separation between a nonconvex C? continuous func-
tion f(z) and the convex underestimator f(z) — ¢(x). The size of the domain x affects
the result of every step in the a calculation and strongly influences the tightness of the
resulting convex underestimator. In particular, reducing x reduces the mismatch between
the assumed quadratic functional form and the ideal form; it reduces the overestimation
in the interval extension of the Hessian matrix; and the maximum separation distance has
been shown to be a quadratic function of interval length (Floudas (2000)). Constructing a
convex underestimator using a number of different o vectors, each applying to a subregion
of the full domain x can lead to improved convex underestimators and it is discussed in the
sequel.

Let f(x) be a C? continuous function. For each variable z;, let the interval [z;, T;] be par-

titioned into N; subintervals. The endpoints of these subintervals are denoted 2?, z}, - - - ,;vév ¢
where z; = 29 < 2} < --- < 2% < ... < 2} = F;,. In this notation the k' interval is
[, 2¥]. A smooth convex underestimator of f(z) over x is defined by

¢(z) := f(z) — q(z)

where
n
qg(z) := qu(xz) for z; € [z¥71, 2},
i=1
¢ (z:) = of (e — i) (@f —zi) + Blai +

In each interval [zF !, 2¥], af > 0 is chosen such that V2¢(z), the Hessian matrix of ¢(z),
is positive semi-definite for all members of the set {z € x : z; € [zF !, z¥]}. ¢¥(;) is the
quadratic function associated with variable 4 in interval k. The function ¢(z) is a piecewise
quadratic function contructed from the functions ¢¥ (z;).

The continuity and smoothness properties of g(z) are produced in a spline-like manner.

For ¢(z) to be smooth the ¢F functions and their gradients must match at the endpoints
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z¥. In addition, we require that q(z) = 0 at the vertices of the hyperrectangle x. To satisfy

these requirements, the following conditions are imposed for all i = 1,... ,n:
g;(zf) = 0
@b = ¢ ab) forallk=1,... N, -1
(@) = 0
dgf dg;*!
—4 = X forallk=1,...,N; — 1.
d.’L‘i =k da&', ora ¢
i t

Expanding and solving these equations, we obtain:

N;—1
5 (z (ot = x%) @ —a?)

k=1
k—1
B = B+ sl forallk=2,...,N;
7j=1
k-1
7= —p! ?—Zsfm{ forall k=1,...,N;.
j=1

with s¥ = —ak(zh —zF71) — o (ah T — oh).
This class of convex underestimators satisfies the following smoothness, underestimation,

and convexity properties.

Property 1: ¢(z) : x 3 z — R is a continously differentiable function.

Property 2: If af >0forallk=1,... ,N;—1,and i = 1,... ,n, then ¢(z) is concave over

X.

Property 3: ¢(z) is an underestimator of f(z), that is ¢(z) < f(x) for all z € x.

Property 4: Let f be a function differentiable on an open set 2 C R”, and let C' be a

convex subset of 2. Then, f is convex on C' if and only if its gradient V f is monotone on

C.

Property 5: Let f : R D x — R be a twice continuously differentiable function over x. Let

6(z) = f(z)—q(@). EV2(f(2)- 3" ¢k(@)) > Oforall z € T = 817", ah1]x- - x[akn =1, 2ke]

where z¥ € {z},... )71}, i =1,... ,n, then ¢(z) is a convex function on x.

Illustrative example Consider the Lennard-Jones potential energy function,

1 2
x)=—5 — —.
f(z) o2~ 6
in the interval [z,Z] = [0.85,2.00]. The first term of this function is a convex function and
dominates when z is small, while the second term is a concave function which dominates
when z is large. The minimum eigenvalue of this function in an interval [z,Z] can be
calculated explicitly as follows:

-5 if z<1.21707

min f" = { —7AT810 if [z,7] > 1.21707
5% — %‘; if =z >1.21707.
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The classical @BB underestimator for this function and interval is f(z)— 4280 (z—z)(z—z).
The potential energy function, the classical BB underestimator, and the ¢(z) underestima-
tors are shown in Figure 3. In this figure the a spline underestimator based on 2 subregions
is denoted, ¢(?), while that based on 16 subregions is denoted, ¢(19).

2

standard aBB underestimator

. . . . . )
1 12 1.4 16 18 2
0.85<x<2.00

Figure 3: Lennard-Jones potential function and underestimators

10 The Generalized aBB Global Optimization Approach

In this section, the convex underestimators of the classical BB global optimization approach
are outlined first, the new class of convex underestimators is presented next along with their
key theoretical properties and an illustrative example which compares the quality of the new
convex understimators.

Convex underestimators of the aBB method In aBB, a convex underestimator of
a nonconvex function is constructed by decomposing it into a sum of nonconvex terms of
special type (e.g., linear, bilinear, trilinear, fractional, fractional trilinear, convex, univariate
concave) and nonconvex terms of arbitrary type. The first type is then replaced by very
tight convex underestimators which are already known (Floudas (2000)). For the nonconvex
terms of arbitrary type, whose convex envelops are not known, a convex underestimator is
generated by adding to them the relaxation function, ¢(x;a):

n

$(z;0) = =Y ai(zi —zf)(z} —w3)

i=1

where a; > 0,4 = 1,2,...,n. That is, if we assume that f(x) is an arbitrarily nonconvex
function, then

Lopp(z;a) = f(z) + ¢(2; )

is an underestimator of f(z). Note that since ¢(z¥;a) = ¢(zV;a) = 0 the underestimator

L,pB(z;a) coincides with f(z) at the end-points of X. Also by noting that the relaxation
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function ¢(z;a) is separable we can derive the following relationship that exists among the
Hessian matrices of Lopp(z; ¢), f(z) and ¢(z; «)

V2Lapa(z;a) = V2 f(x) + 24

where A = V?¢(z;a) = diag {a1,as,...,a,}. From the above equation it can be derived
that L,pp(z;a) is convex if and only if V2L,pp(z;a) is positive semi-definite matrix. It
is shown in Adjiman et al. (1998a) that if the parameters a;,i = 1,2,...,n, have values
greater than or equal to the negative one half of the minimum eigenvalue of the Hessian
matrix V2f(z) in the whole domain X = [zl zY], then the underestimator L,pg(;a)
is convex function. The calculation of the smallest eigenvalue of the Hessian matrix of
an arbitrarily nonconvex function is done by generating the interval hessian matrix and
requiring that the interval hessian matrix is positive semi-definite.

Adjiman et al. (1998a), Floudas (2000) developed several methods that calculate ap-
propriate values for all a;,7 = 1,2,...,n that ensure the positive semi-definiteness of the
interval matrix [V?L,pp(z; a)] and consequently the convexity of the underestimating func-
tion Lopp(z;a). These methods can be classified into two categories. The first category
consists of methods that find a common value for every parameter «;, whereas methods of
the second category calculate different values for each «;.

The most efficient of those methods is the scaled Gherschgorin. The value for each
parameter ¢; is determined by the equation

@; = max 0,—%@“- - Zmax{uijh |7”|} ili_]
i '

where L.j and 71']' are the lower and upper bounds of 8% f/0z;z; as calculated by interval
analysis, and d;,7 = 1,2,...,n are positive parameters. A common choice for those param-
eters is d; = z¢ — zF, which reflects the fact that variables with a wider range have a larger
effect on the quality of the underestimator than variables with a smaller range.

The New Class of Convex Underestimators Akrotirianakis and Floudas (2004a) pro-
posed the following new class of underestimating functions, L (z;7), of an arbitrary non-
convex function, f(z):

Li(w;7) = f(z) + ®(z;7)

where

n

®(x;) = — Z(l — eni@i=ai))(1 — enilai —wi)y

i=1
and y = (y1,%2,---,7) T is a vector of non-negative parameters. Akrotirianakis and Floudas
(2004a) proved the following properties of the function L (z;7):

Property 1: L;(z;7) < f(z), for all 2 € [zL, 2Y], because ®(z;7) < 0 for all z € [zF, 2]
and v > 0.

Property 2: Li(z%;v) = f(z©), for every corner point ¢ of X, because ®(z%;v) = 0
for all z¢ € X.

20



Property 3: There exist certain values of the parameters v; so that Lq(z;v) is a convex
function. This is due to the fact that the relaxation function ®(z;+) is convex for
every x € X and v; > 0,4 = 1,2...n. Hence if the parameters v; have large enough
values then all the non-convexities in the original function f(z) can be eliminated,
thereby producing a convex function L4 (z;7).

Property 4: The maximum separation distance of between the nonconvex function f(x)
and its underestimator Lgopp(z;7) is

n

max {f(z) - Li(z;7)} = (1 — edn(e =)y

zl<z<zU ‘
- = i=1

Property 5: The underestimators constructed over supersets of the current set are always
less tight than the underestimator constructed over the current box constraints.

The values of the parameters v;,7 = 1,2,...,n are determined by an iterative procedure
that not only guarantees the convexity of the underestimator L; (z;) but also ensures that
Ly (z;7) is tighter than the aBB underestimator

Lapp(w;0) = f(z) = Y ai(zi — 2f)(af —z;)

The initial values of the 7; parameters are selected by solving the system of non-linear
equations

U+72 + 2@ =) =0, i=1,2...)n

where ¢; < 0,5 = 1,2,...,n. The parameters ¢; convey second order characteristics of the
original nonconvex function into the construction process of the underestimator. Candidate
values for these parameters can be provided by the scaled Gerschgorin method (Adjiman et
al. (1998a)).

Akrotirianakis and Floudas (2004a) proved the following two important results regard-
ing the relationship between the maximum separation distances between f(z) and the two
underestimators L (z;v) and Logg(z;a).

Theorem 1: Let v = (11,12, c, )T be the solution of the above system. Then, the two
underestimators L; (z;7) and Lap B?a:; a), where

4(1 _ 60.511(w¥—wf))2 4(1 _ 60.51n(:c,t{—z£‘))2

)T
(zf —2p)? 7 (zf] —zf)?

a=(

have the same maximum separation distance from f(x).
Theorem 2: Let @ = (@, @s,...,&,)" be the values of the @ parameters as computed by
(10). Then, the two underestimators Ly (x;7%) and Lygp(x;@), where

2log(1 + Vi (af —={)/2) 2log(1 + v/ (z}) —wﬁ)/2))T

= ( U L e U_ L
Ty — X7 Ty Ty

have the same maximum separation distance from f(x).
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The above two theorems reveal that for any v € [y,7] there exists an a € [a,@], such
that the underestimators L;(x;~y) and L,pp(z; @) have the same maximum separation dis-
tance from the nonconvex function f(z). From all these pairs of underestimators, the only
one that is known to be convex a priori is Lopp(x; @), since this is the one resulting from
the classical aBB method. However, for most arbitrarily nonconvex functions the underes-
timators L,pp(z;a) and L;(x;y) are convex within a large portion of the intervals [a, @]
and [, 7] respectively. Based on the above observations, it is natural to search for a vector
7 in the interval [y,7] or for a vector a in the interval [, @], so that at least one of the
underestimators L; (z;7), Lapp(;a) is convex.

Akrotirianakis and Floudas (2004a) proposed an approach that iteratively determines,
using interval analysis, the minimum values of the 7 or & parameters that result in an under-
estimator that is convex and tighter than the classical aBB method. They also developed the
generalized aBB global optimization approach, denoted as GaBB, and perfomed extensive
computational studies for box constrained global optimization problems (see Akrotirianakis
and Floudas (2004b)).

Tllustrative Example This example consists of the global minimization of a potential
function describing the pseudoethane molecule (see Floudas (2000)) which takes the form:

588600

hiz) = (3rg — 4cos(8)r — 2(sin*(0)cos(x — ZF) — cos(0))r3)®
1079.1
" (3r2 — 4cos(0)r2 — 2(sin?(8)cos(z — 21) — cos?())r3)?
n 600800
(372 — 4cos(0)rg — 2(sin2(0)cos(x) — cos?(8))r3)s
1071.5
 (3r2 — 4cos(0)rZ — 2(sin2(0)cos(z) — cos®(0))rZ)3
n 481300
(3r% — 4cos(0)rg — 2(sin?(0 + 2F)cos(x) — cos?(8))r3)®
1064.6

(3r2 — 4cos(0)ré — 2(sin?(0 + 2T”)cos(sv) — cos?(0))rg)?

where r( is the covalent bond length (ro = 1.54A), € is the covalent bond angle (6 = 109.5°)
and z is the dihedral angle (z € X = [0, 2x]).

The value of the a parameter computed by the classical aBB method using the scales
Gerschgorin approach is @ = 77.124, and the corresponding value for the v parameter,
is ¥ = 1.0673. Solving for v we obtain v = 0.8521 and the corresponding value for the
a parameter, is a = 18.579. The convexity verification algorithm of Akrotirianakis and
Floudas (2004a) checks whether there exist values of v € [y,7] and « € [a,@] such that the
underestimator Lopp(z; @) is convex. After 16 iterations it concludes that if @ = a, then
L,pp(r;a) is a convex underestimator of fi(z). The minima of the two underestimators
Lypp(z;@) and L,pp(x; a) are —762.2377, and —184.4244, respectively. Figure 4 compares
the two underestimators L,pg(z;@) and Lygp(x; @) and shows the improvement.
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Figure 4: Comparison of the underestimators Lypp(z; @) and L,pp(x;a) of the nonconvex
function f ()

Summary

This paper reviewed the advances in global optimization during the period 1998-2003. The
focal point was novel theoretical, algorithmic, and applications oriented advances on deter-
ministic global optimization methods for (i) general twice differentiable NLPs, (ii) mixed
integer nonlinear optimization problems MINLPs, (iii) models with differential-algebraic
constraints, (iv) grey-box and nonfactorable models, and (iv) bilevel nonlinear and mixed-
integer optimization. Recent advances from Princeton University were also presented on
convex and concave envelopes for trilinear monomials, convex underestimators for trigono-
metric functions, a new class of convex smooth piecewise underestimators with a quadratic
perturbation that use as a basis the classical BB type of underestimators, and a new class
of generalized and improved convex underestimators for twice continuously differentiable
functions. Illustrative examples were presented to highlight the potential benefits of these
recent, advances.

Acknowledgements

Christodoulos A. Floudas gratefully acknowledges support from the National Science Foun-
dation, the National Institutes of Health, AspenTech Corporation and Atofina Chemicals.

References

N. Adhya, M. Tawarmalani, and N.V. Sahinidis. A Lagrangian approach to the pooling problem. Ind.
Eng. Chem. Res., 38:1956-1972, 1999.

C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A Global Optimization Method, aBB, for General
Twice-Differentiable NLPs — II. Implementation and Computational Results. Comput. chem. engng.,
22(9):1159-1179, 1998b.

C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A Global Optimization Method, aBB, for
General Twice-Differentiable NLPs — I. Theoretical Advances. Comput. chem. engng., 22(9):1137-1158,
1998a.

C.S. Adjiman, I.P. Androulakis, and C.A. Floudas. Global Optimization of Mixed-Integer Nonlinear Prob-
lems. AIChE J., 46:1769, 2000.

23



C.S. Adjiman and I. Papamichail. A deterministic global optimization algorithm for problems with non-
linear dynamics. In Floudas C. A. and P. M. Pardalos, editors, Frontiers in Global Optimization, pages
1-24, Santorini, Greece, June 8-12 2003. Kluwer Academic Publishers.

I.G Akrotirianakis and C.A. Floudas. A New Class of Improved Convex Underestimators for Twice Con-
tinuously Differentiable Constrained NLPs. J. Global Optim., 2004a.

1.G. Akrotirianakis and C.A. Floudas. Computational Experience with a New Class of Convex Underesti-
mators: Box-constrained NLP problems. J. Global Optim., 2004b.

I. P. Androulakis and C. A. Floudas. Distributed Branch and Bound Algorithms in Global Optimiza-
tion. In Parallel Processing of Discrete Problems, (Ed. P. M. Pardalos, volume 106 of IMA Volumes in
Mathematics and Its Applications, Springer- Verlag, pages 1-36, 1998.

J.R. Banga, E. Balsa-Canto, C.G. Moles, and A.A. Alonso. Improving food processing using modern
optimization methods. Trends in Food Science and Technology, 14:131-144, 2003.

J.R. Banga, C.G. Moles, and A.A. Alonso. Global optimization of bioprocesses using stochastic and hybrid
methods. In Floudas C. A. and P. M. Pardalos, editors, Frontiers in Global Optimization, pages 45-70,
Santorini, Greece, June 8-12 2003. Kluwer Academic Publishers.

J.R. Banga, K.J. Versyck, and J.F. Van Impe. Computation of Optimal Identification Experiments for
Nonlinear Dynamic Process Models: a stochastic global optimization approach. I. & CE Res., 41:2425—
2430, 2002.

J.F. Bard. Practical Bilevel Optimization. Nonconvex Optimization and its Applications. Kluwer Academic
Publishers, 1998.

L. Barton and C.K. Lee. Global Dynamic Optimization of Linear Time Varying Hybrid Systems. Dynamics
of Continuous Discrete and Impulsive Systems-Series B, S:153, 2003.

P.I. Barton, J.R. Banga, and S. Galan. Optimization of hybrid discrete/continuous dynamic systems.
Comp. & Chem. Eng., 24:2171-2182, 2000.

K.J. Bjork, P.O. Lindberg, and T. Westerlund. Some convexifications in global optimization of problems
containing signomial terms. Comp. & Chem. Eng., 27:669-679, 2003.

K.J. Bjork and T. Westerlund. Global optimization of heat exchanger network synthesis problems with
and without the isothermal mixing assumption. Comp. €& Chem. Eng., 26:1581-1593, 2002.

R.P. Byrne and 1.D.L. Bogle. Global optimization of constrained non-convex programs using reformulation
and interval analysis. Comp. & Chem. Eng., 23:1341, 1999.

R.P. Byrne and I.D.L. Bogle. Global optimization of molecular process flowsheets. I & EC Res., 39:4296—
4301, 2000.

S. Caratzoulas and C.A. Floudas. A Trigonometric Convex Underestimator for the Base Functions in
Fourier Space. J. Optimization, Theory and Its Applications, 2004. accepted for publication.

B. Chachuat and M.A. Latifi. A new approach in deterministic global optimization of problems with ordi-
nary differential equations. In Floudas C. A. and P. M. Pardalos, editors, Frontiers in Global Optimization,
pages 83-108, Santorini, Greece, June 8-12 2003. Kluwer Academic Publishers.

A. Cheung, C.S. Adjiman, P. Kolar, and T. Ishikawa. Global optimization for clusters of flexible molecules-
solvent-solute interaction energy calculations. Fluid Phase Equilibrium, 194-197:169-183, 2002.

V. Dua, N. A. Bozinis, and E.N. Pistikopoulos. A multiparametric programming approach for mixed-integer
quadratic engineering problems. Comp. & Chem. Eng., 26:715-733, 2002.

W.R. Esposito and C.A. Floudas. Global Optimization in Parameter Estimation of Nonlinear Algebraic
Models via the Error-In-Variables Approach. I&EC Res., 35(5):1841-1858, 1998.

W.R. Esposito and C.A. Floudas. Global optimization for the parameter estimation of differential-algebraic
systems. I & EC Res., 39(5):1291-1310, 2000a.

W.R. Esposito and C.A. Floudas. Determistic global optimization in nonlinear optimal control problems.
J. Global Optim., 17:97-126, 2000b.

W.R. Esposito and C.A. Floudas. Comments on Global Optimization for the Parameter Estimation of
Differential Algebraic Systems. Ind. Eng. Chem. Res., 40:490, 2001.

W.R. Esposito and C.A. Floudas. Deterministic global optimization in isothermal reactor network synthesis.
J. Global Optim., 22:59-95, 2002.

24



C. A. Floudas. Deterministic Global Optimization : Theory, Methods and Applications. Nonconvex
Optimization and its Applications. Kluwer Academic Publishers, 2000.

C. A. Floudas, J.L. Klepeis, and P.M. Pardalos. Global Optimization Approaches In Protein Folding and
Peptide Docking. In M. Farach-Colton, F.S. Roberts, M. Vingron, and M. Waterman (Eds.), editors,
DIMACS Series In Discrete Mathematics and Theoretical Computer Science, volume 47, pages 141-171,
1999b.

C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z.H. Giimiig, S.T. Harding, J.L. Klepeis,
C. Meyer, and C.A. Schweiger. Handbook of Test Problems in Local and Global Optimization. Kluwer
Academic Publishers, 1999.

C.A. Floudas. Global Optimization In Design and Control of Chemical Process Systems. J. Process Control,
10:125, 2000a.

C.A. Floudas, Z.H. Gumus, and M.G. Ierapetritou. Global optimization in design under uncertainty:
feasibility test and flexibility index problems. I & CE Res., 40:4267-4282, 2001.

C.A. Floudas and P.M. Pardalos. Optimization in Computational Chemistry and Molecular Biology. Non-
convex Optimization and its Applications. Kluwer Academic Publishers, 2000.

C.A. Floudas and P.M. Pardalos. Frontiers in Global Optimization. Nonconvex Optimization and its
Applications. Kluwer Academic Publishers, 2003.

C.Y. Gau, J.F. Brennecke, and M.A. Stadtherr. Reliable nonlinear parameter estimation in VLE modeling.
Fluid Phase Equiliblria, 168:1-18, 2000.

C.Y. Gau and M.A. Stadtherr. Reliable nonolinear parameter estimation using interval analysis: error-in-
variable approach. Comp. & Chem. Eng., 24:631-637, 2000.

C.Y. Gau and M.A. Stadtherr. Deterministic global optimization for error-in-variables parameter estima-
tion. AIChE Journal, 48:1192, 2002.

C.Y. Gau and M.A. Stadtherr. Dynamic load balancing for parallel interval-Newton using message passing.
Comp. & Chem Eng., 26:811-825, 2002.

C.Y. Gau and M.A. Stadtherr. New interval methodologies for reliable chemical modeling. Comp. €& Chem.
Eng., 26:827-840, 2002.

V. Goyal and M.G. Ierapetritou. Framework for evaluating the feasibility/operability of nonconvex pro-
cesses. AIChE Journal, 49(5):1233-1240, 2003a.

V. Goyal and M.G. Ierapetritou. MINLP optimization using simplicial approximation method for classes
of non-convex problems. In C. A. Floudas and P.M. Pardalos, editors, Frontiers in Global Optimization,
pages 165-196, Santorini, Greece, June 8-12 2003b. Kluwer Academic Publishers.

I.LE. Grossmann and S. Lee. Generalized convex disjunctive programming: nonlinear convex hull relaxation.
Comp. Optim. and Appl., 26:83-100, 2003.

Z.H. Gumus and C.A. Floudas. Global optimization of nonlinear bilevel programming problems. J. Global
Optim., 20:1-31, 2001.

Z.H. Gumus and C.A. Floudas. Global optimization of mixed-integer bilevel programming problems. 2004.
submitted for publication.

H.M. Gutmann. A radial basis function method for global optimization. J. Global Optim., 19:201, 2001.

S. T. Harding, C.D. Maranas, C.M. McDonald, and C. A. Floudas. Locating All Homogeneous Azeotropes
in Multicomponent Mixtures. Industrial €& Engineering Chemistry Research, 36(1):160-178, 1997.

S.T. Harding and C.A. Floudas. Phase Stability With Cubic Equations of State : A Global Optimization
Approach. AIChE J., 46:1422, 2000a.

S.T. Harding and C.A. Floudas. Locating Heterogeneous and Reactive Azeotropes. Ind. Eng. Chem. Res.,
39:1576, 2000b.

I. Harjunkoski, T. Westerlund, and R. P6rn. Numerical and environmental considerations on a complex
industrial mixed integer nonlinear programming (MINLP) problem. Comp. & Chem. Eng., 23:1545-1561,
1999.

D. Hertz, C.S. Adjiman, and C.A. Floudas. Two results on bounding the roots of interval polynomials.
Comp. & Chem. Eng., 23:1333, 1999.

R. Horst, P.M. Pardalos, and N.V. Thoai. Introduction to Global Optimization. Nonconvex Optimization
and its Applications. Kluwer Academic Publishers, 2000.

25



J.Z. Hua, J.F. Brennecke, and M.A. Stadtherr. Reliable computation for phase stability using interval
analysis: Cubic equation of state models. Comp. & Chem. Eng., 22(9):1207, 1998a.

J.Z. Hua, J.F. Brennecke, and M.A. Stadtherr. Enhanced Interval Analysis for Phase Stability: Cubic
Equation of State Models. Ind. Eng. Chem. Res., 37:1519, 1998b.

D.R. Jones. A taxonomy of global optimization methods based on response surfaces. J. Global Optim.,
21:345, 2001.

D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-box functions.
J. Global Optim., 13:455, 1998.

J. Kallrath. Exact computation of global minima of a noncovex portfolio optimization problem. In C. A.
Floudas and P. Pardalos, editors, Frontiers in Global Optimization, pages 237-254, Santorini, Greece, June
8-12 2003. Kluwer Academic Publishers.

P. Kesavan, R.L. Allgor, E.P. Gadzke, and P. Barton. Outer Approximation Algorithms for Separable
Nonconvex Mixed-Integer Nonlinear Problems. Math. Programming, 2004. in press.

P. Kesavan and P. Barton. Generalized Branch-and-Cut framework for mixed-integer nonlinear optimization
problems. Comp. & Chem. Eng., 24:1361-1366, 2000.

J.L. Klepeis, I.P. Androulakis, M.G. lerapetritou, and C.A. Floudas. Predicting Solvated Peptide Con-
formations via Global Minimization of Energetic Atom to Atom Interactions. Computers € Chemical
Engineering, 22(6):765-788, 1998.

J.L. Klepeis and C.A. Floudas. A Comparative Study of Global Minimum Energy Conformations of
Hydrated Peptides. Journal of Computational Chemistry, 20(6):636, 1999a.

J.L. Klepeis and C.A. Floudas. Free Energy Calculations for Peptides via Deterministic Global Optimiza-
tion. Journal of Chemical Physics, 110(15):7491, 1999b.

J.L. Klepeis and C.A. Floudas. Ab Initio Tertiary Structure Prediction of Proteins. J. Global Optimization,
25:113, 2003b.

J.L. Klepeis and C.A. Floudas. ASTRO-FOLD: A Combinatorial and Global Optimization Framework
for Ab Initio Prediction of Three-Dimensional Structures of Proteins from the Amino-Acid Sequence.
Biophysical Journal, 85:2119, 2003c.

J.L. Klepeis, C.A. Floudas, D. Morikis, and J.D. Lambris. Predicting Peptide Structures Using NMR Data
and Deterministic Global Optimization. J. Computational Chemistry, 20:1354, 1999.

J.L. Klepeis, M. Pieja, and C.A. Floudas. A New Class of Hybrid Global Optimization Algorithms for
Peptide Structure Prediction: Integrated Hybrids. Computer and Physics Communications, 151:121, 2003a.

J.L. Klepeis, M. Pieja, and C.A. Floudas. A New Class of Hybrid Global Optimization Algorithms for
Peptide Structure Prediction: Alternating Hybrids and Application to Met-Enkephalin and Melittin. Bio-
physical J., 84:869, 2003b.

J.L. Klepeis, H.D. Schafroth, K.M. Westerberg, and C.A. Floudas. Deterministic Global Optimization
and Ab Initio Approaches for the Structure Prediction of Polypeptides, Dynamics of Protein Folding and
Protein-Protein Interactions. Advances in Chemical Physics, 120:266-457, 2002.

A. Lee and L.E. Grossmann. A global optimization algorithm for nonconvex generalized disjunctive pro-
gramming and applications to process systems. Comp. €& Chem. Eng., 25:1675-1697, 2001.

C.K. Lee and P.I. Barton. Global dynamic optimization of linear hybrid systems. In Floudas C. A. and
P. M. Pardalos, editors, Frontiers in Global Optimization, pages 289-312, Santorini, Greece, June 8-12
2003. Kluwer Academic Publishers.

C.K. Lee, A.B. Singer, and P. Barton. Global Optimization of Linear Hybrid Systems with Explicit
Transitions. Systems & Control Letters, 2004. in press.

S. Lee and I.E. Grossmann. Global optimization of nonlinear generalized disjuctive programming with
bilinear equality constraints: applications to process networks. Comp. & Chem. Eng., 27:1557-1575, 2003.

L. Liberti and C.C. Pantelides. Convex Envelops of Monomials of Odd Degree. J. Global Optim., 25:157—
168, 2003.

X. Lin, C.A. Floudas, and J. Kallrath. Global Solution Approach for a Nonconvex MINLP Problem in
Product Portfolio Optimization. J. Global Optimization, 2004.

A. Lucia and Y. Feng. Global terrain methods. Comp. & Chem Eng., 26:529-546, 2002.
A. Lucia and Y. Feng. Multivariable terrain methods. AIChE Journal, 49:2553, 2003.

26



R. W. Maier, J. F. Brennecke, and M. A. Stadtherr. Reliable Computation of Homogeneous Azeotropes.
AIChE J., 44:1745-1755, 1998.

K. McKinnon and M. Mongeau. A Generic Global Optimization Algorithm for the Chemical and Phase
Equilibrium Problem. J. Global Optim., 12:325-351, 1998.

C.A. Meyer and C.A. Floudas. Trilinear monomials with positive or negative domains: facets of convex
and concave envelopes. In C. A. Floudas and P. M. Pardalos, editors, Frontiers in Global Optimization,
pages 327-352, Santorini, Greece, June 8-12 2003. Kluwer Academic Publishers.

C.A. Meyer and C.A. Floudas. Convex hull of trilinear monomials with mixed-sign domains. J. Global
Optimization, 2004a. in press.

C.A. Meyer and C.A. Floudas. Convex underestimation of twice continuously differentiable functions by
piecewise quadratic perturbation: Spline aBB underestimators. J. Global Optimization, 2004b. accepted
for publication.

C.A. Meyer, C.A. Floudas, and A. Neumaier. Global optimization with nonfactorable constraints. 1. &
CFE Res., 41:6413-6424, 2002.

C.A. Meyer and C.L.E. Swartz. A Regional Convexity Test for Global Optimization: Application to the
Phase Equilibrium Problem. Computers € Chemical Engineering, 22:1407-1418, 1998.

C.G. Moles, G. Gutierrez, A.A. Alonso, and J.R. Banga. Integrated process design and control via global
optimization. I. Chem. E., 81:507-517, 2003.

A. Neumaier. Complete Search in Continuous Global Optimization and Constraint Satisfaction. In A. Iser-
les, editor, Acta Numerica. Cambridge University Press, 2004. in press.

M.B. Noureldin and M. El-Halwagi. Interval-based targeting for pollution prevention via mass integration.
Comp. & Chem. Eng., 23:1527-1543, 1999.

G.M. Ostrovsky, L.E.K. Achenie, and M. Sinha. On the solution of mixed-integer nonlinear programming
models for computer aided molecular design. Comp. & Chem. Eng., 26:645-660, 2002.

G.M. Ostrovsky, L.E.K. Achenie, and M. Sinha. A reduced dimension branch-and-bound algorithm for
molecular design. Comp. € Chem. Eng., 27:551-567, 2003.

I. Papamichail and C.S. Adjiman. A rigorous global optimization algorithm for problems with ordinary
differential equations. J. Global Optim., 24:1-33, 2002.

G. Parthasarathy and M. El-Halwagi. Optimum mass integration strategies for condensation and allocation
of multicomponent VOCs. Comp. & Chem. Eng., 55:881-895, 2000.

E.N. Pistikopoulos, V. Dua, and J. Ryu. Global optimization of bilevel programming problems via para-
metric programming. In Floudas C. A. and P. M. Pardalos, editors, Frontiers in Global Optimization,
pages 457-476, Santorini, Greece, June 8-12 2003. Kluwer Academic Publishers.

R. Porn, 1. Harjunkoski, and T. Westerlund. Convexification of different classes of non-convex MINLP
problems. Comp. & Chem. Eng., 23:439-448, 1999.

R. Porn and T. Westerlund. A cutting plane method for minimizing pseudo-convex functions in mixed
integer case. Comp. & Chem. Eng., 24:2655-2665, 2000.

H. S. Ryoo and N.V. Sahinidis. Analysis of Bounds for Multilinear Functions. J. Global Optim, 19:403-424,
2001.

H.S. Ryoo and N.V. Sahinidis. Global optimization of multiplicative programs. J. Global Optim., 26:387—
418, 2003.

N.V. Sahinidis and M. Tawarmalani. Applications of global optimization to process and molecular design.
Comp. & Chem. Eng., 24:2157-2169, 2000.

N.V. Sahinidis, M. Tawarmalani, and M. Yu. Design of alternative refrigerants via global optimization.
AIChE Journal, 49(7):1761, 2003.

H.D. Schafroth and C.A. Floudas. Predicting Peptide Binding to MHC Pockets via Molecular Modeling,
Implicit Solvation, and Global Optimization. Proteins: Structure, Function, and Bioinformatics, 54:534,
2004.

J. P. Shectman and N. V. Sahinidis. A Finite Algotithm for Global Optimization of Separable Concave
Functions. J. Global Optim., 12:1-36, 1998.

H.D. Sherali and W.P. Adams. A Reformulation-Linearization Technique for solving Discrete and Con-
inuous Nonconvez Problems. Nonconvex Optimization and its Applications. Kluwer Academic Publishers,
1999.

27



A.B. Singer and P. Barton. Global Solution of Linear Dynamic Embedded Optimization Problems. J.
Optimization, Theory and Its Applications, 2004. in press.

A.B. Singer and P.I. Barton. Global solution of optimization problems with dynamic systems embedded.
In Floudas C. A. and P. M. Pardalos, editors, Frontiers in Global Optimization, pages 477-498, Santorini,
Greece, June 8-12 2003. Kluwer Academic Publishers.

M. Sinha, L. Achenie, and G.V. Ostrovsky. Environmentaly benign solvent design by global optimization.
Comp. & Chem. Eng., 23:1381-1394, 1999.

M. Sinha, L.E.K. Achenie, and R. Gani. Blanket Wash Solvent Blent design using interval analysis. Ind.
Eng. Chem. Res., 42:516-527, 2003.

F. Tardella. On the existance of polyhedral convex envelopes. In C. A. Floudas and P. M. Pardalos, editors,
Frontiers in Global Optimization, pages 563-573, Santorini, Greece, June 8-12 2003. Kluwer Academic
Publishers.

M. Tawarmalani, S. Ahmed, and N.V. Sahinidis. Product Disaggregation in Global Optimization and
Relaxations of Rational Programs. J. Global Optim., 3:281-303, 2002a.

M. Tawarmalani, S. Ahmed, and N.V. Sahinidis. Global Optimization of 0-1 Hyperbolic Programs. J.
Global Optim., 24:385—-416, 2002b.

M. Tawarmalani and N.V. Sahinidis. Semidefinite Relaxations of Fractional Programs via Novel Convexi-
fication Techniques. J. Global Optim., 20:137-158, 2001.

M. Tawarmalani and N.V. Sahinidis. Convex extensions and envelops of lower semi-continuous functions.
Mathematical Programming, 93:247-263, 2002.

S.R. Tessier, J. F. Brennecke, and M.A. Stadtherr. Reliable phase stability analysis for excess Gibbs energy
models. Chemical Engineering Science, 55:1785, 2000.

H. Tuy. Convez Analysis and Global Optimization. Nonconvex Optimization and its Applications. Kluwer
Academic Publishers, 1998.

A. Vaia and N.V. Sahinidis. Simultaneous parameter estimation and model structure determination in
FTIR spectroscopy by global MINLP optimization. Comp. & Chem. Eng., 27:763-779, 2003.

J.G. Van Antwerp, R.A. Braatz, and N.V. Sahinidis. Globally optimal robust process control. Journal of
Process Control, 9:375-383, 1999.

A. Vecchietti and I.LE. Grossmann. LOGMIP: a disjunctive 0-1 nonlinear optimizer for process systems
models. Comp. & Chem. Eng., 23:555-565, 1999.

Y. Wang and L.E.K. Achenie. Computer aided solvent design for extractive fermentation. Fluid Phase
FEquilibria, 201:1-18, 2002.

Y. Wang and L.E.K. Achenie. A hybrid global optimization approach for solvent design. Comp. & Chem.
Eng., 26:1415-1425, 2002.

K.M. Westerberg and C.A. Floudas. Locating All Transition States and Studying the Reaction Pathways
of Potential Energy Surfaces. Journal of Chemical Physics, 110(18):9259, 1999a.

K.M. Westerberg and C.A. Floudas. Dynamics of Peptide Folding : Transition States and Reaction
Pathways of Solvated and Unsolvated Tetra-Alanine. J. Global Optimization, 15:261, 1999b.

T. Westerlund, H. Skrifvars, I. Harjunkoski, and R. Porn. An extended cutting plane method for a class
of non-convex MINLP problems. Computers €& Chemical Engineering, 22(3):357-365, 1998.

G. Xu, J.F. Brennecke, and M.A. Stadtherr. Reliable computation of phase stability and equilibrium from
the SAFT equation of state. Ind. Eng. Chem. Res., 41:938, 2002.

Y. Yamada and S. Hara. Global Optimization for H-infinity Control with Constant Diagonal Scaling. IEEE
Transactions on Automatic Control, 43:191-203, 1998.

7.B. Zabinsky. Stochastic Adaptive Search for Global Optimization. Nonconvex Optimization and its
Applications. Kluwer Academic Publishers, 2003.

J.M. Zamora and I.LE. Grosmmann. A Global MINLP Optimization Algorithm for the Synthesis of Heat
Exchanger Networks with no Stream Splits. Computers €& Chemical Engineering, 22(3):367-384, 1998a.

J.M. Zamora and I.LE. Grosmmann. Continuous Global Optimization of Structured Process Systems Models.
Computers & Chemical Engineering, 22(12):1749-1770, 1998b.

J.M. Zamora and L.LE. Grossmann. A Branch and Contract Algorithm for Problems with Concave Univari-
ate, Bilinear and Linear Fractional Terms. J. Global Optim., 14:217-219, 1999.

28



Y. Zhu and K. Inoue. Calculation of chemical and phase equilibrium based on stability analysis by QBB
algorithm: application to NRTL equation. Chemical Engineering Science, 56:6915, 2001.

Y. Zhu and T. Kuno. Global optimization of nonconvex MINLP by a hybrid branch-and-bound and revised
generalized benders decomposition approach. Ind. Eng. Chem. Res., 42:528-539, 2003.

Y. Zhu, H. Wen, and Z. Xu. Global stability analysis and phase equilibrium calculations at high pressures
using the enhanced simulated anneling algorithm. Chemical Engineering Science, 55:3451, 2000.

Y. Zhu and Z. Xu. A reliable method for liquid-liquid phase equilibrium calculation and global stability
analysis. Comp. & Chem. Eng., 176:133-160, 1999.

Y. Zhu and Z. Xu. A reliable prediction of the global phase stability for liquid-liquid equilibrium through
the simulated anneling algorithm: Application to NRTL and UNIQUAC equations. Fluid Phase Equilibria,
154:55-69, 1999a.

Y. Zhu and Z. Xu. Lipschitz optimization for phase stability analysis: application to Soave-Redlich-Kwong
equation of state. Fluid Phase Equilibria, 162:19-29, 1999b.

J. Zilinskas and I.D.L. Bogle. Evaluation ranges of functions using balanced random interval arithmetic.
Informatica Lithuan, 14(3):403-416, 2003.

29



