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Abstract 
To date sensitivity, bifurcation and singularity analysis have been employed to identify 
and characterize the qualitative nonlinear behaviour of chemical process systems.  The 
phenomena of interest include multiple steady states and periodic or even chaotic 
oscillations. The analyses have been aiming at a proper understanding of the relation 
between the observed behaviour on the one and the process parameters as well as the 
underlying physical-chemical phenomena on the other hand. These methods have rarely 
been used to address synthesis problems, neither in process design nor in process 
control, where a desired process behaviour has to be realized according to given design 
specifications in a constructive manner. The present paper reviews the authors’ recent 
work on constructive nonlinear dynamics that extends and applies ideas from nonlinear 
dynamics to address synthesis rather than analysis problems. The suggested method 
systematically accounts for process economics and process operability in an integrated 
framework. Further, model as well as process uncertainties can be addressed 
systematically. The suggested formalism is illustrated by means of examples from 
various areas of process systems engineering including process design, controller tuning 
and the integration of design and control under uncertainty. Additional opportunities for 
future research and application are pointed out. 
 
Keywords: design under uncertainty, robust control, integration of design and control, 
stability, feasibility, optimization  

1. Introduction 
The development and application of a variety of methods for the analysis of the 
nonlinear dynamics of process systems has a long tradition in chemical engineering 
research. Continuously improving software for numerical bifurcation analysis 
(Kuznetsov, 1999) by parameter continuation has made such analyses more and more 
attractive. The software package AUTO2000 (Doedel et al., 2001) and its predecessors 
have often been used by researchers in chemical engineering. Other software package 
also exist, but have not found such a widespread use, for example, CONTENT 
(Kuznetsov, 1998), which provides an easy-to-use interface to support a variety of 
analysis tasks, or DIVA (Mangold et al., 2000), which is particularly well-suited for the 
analysis of large-scale process models.  
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Early applications of numerical bifurcation analysis were aimed at deepening the 
understanding of the dynamics of chemical process systems in general. For this purpose, 
model problems have been chosen carefully to reflect the qualitative behaviour of an 
important class of process systems. The dynamic behaviour of these model processes 
can be represented by low order nonlinear models which can be treated with the 
analytical and numerical methods from nonlinear dynamics in a straight forward 
manner. The process studied most frequently is the continuous stirred tank reactor 
(CSTR) with various types of chemical reaction systems (see Razon and Schmitz (1987) 
for an overview). The seminal paper on the dynamics of a CSTR with an exothermic 
irreversible first order reaction A→B by Uppal et al. (1974) is still up-to-date in that it 
demonstrates what type of information on the dynamics can be inferred from a 
bifurcation analysis by numerical parameter continuation. Most importantly, numerical 
bifurcation analysis is used to systematically detect and disclose stability boundaries 
due to saddle-node and Hopf bifurcations by one- and two-parameter continuation. 
While the first examples treated were restricted to small models either to illustrate the 
application of a mathematical technique or to get a fundamental understanding of a class 
of problems, this type of analysis has been applied more recently to industrially relevant 
process models of significant complexity including single reaction and separation 
process units as well as simple process plants (see, for example, Harold et al. (1996), 
Khinast et al. (1998), Bildea and Dimian (1998), Ray and Villa (2000), Pushpavanam 
and Kienle (2001), Dorn and Morari (2002), Lei et al. (2003)). 
While bifurcation analysis by continuation is an established method, there has been no 
systematic attempt so far to employ the rich theory of nonlinear dynamics to address 
synthesis problems in a rigorous manner. Rather, an iterative application of nonlinear 
analysis techniques embedded into a manual and time-consuming search in the 
parameter space has been employed. Typically, the designing engineer starts with an 
initial design with fixed process structure and parameters. He or she then employs 
nonlinear analysis methods to understand the behaviour and performance of this design 
in parameter space in the vicinity of the nominal design. From the results of such an 
analysis the designing engineer heuristically derives design modifications to better meet 
the design specifications. The process understanding accumulated during previous 
analysis phases can be effectively used to guide process design (see Bildea and Dimian 
(1998) for an example).  
All these methods are focusing on analysis and are not directly addressing the synthesis 
problem. Synthesis has to be accomplished by the design engineer applying the analysis 
methods during a time consuming iterative search process. To overcome this limitation, 
a new set of nonlinear dynamics methods has been suggested by the authors in recent 
years (Mönnigmann and Marquardt, 2000, Mönnigmann and Marquardt, 2002 
Mönnigmann, 2003, , Mönnigmann and Marquardt, 2003). These nonlinear dynamics 
methods systematically address the synthesis rather than the analysis problem. The next 
section introduces the basic ideas without mathematical rigor first. Section 3 
summarizes the technical issues to be tackled in order render the ideas operational. 
Section 4 introduces a number of problem formulations and reviews selected case 
studies to illustrate the capability of the method. Section 5 puts this new approach into 
perspective with alternative problem formulations and solution techniques. We conclude 
with a summary and with an outline of future research issues.  



2. Conceptual Problem Formulation 

2.1 Preliminaries 
In the present paper we assume that process models can be stated as a system of 
ordinary differential equations (ODE) 
 

),,( θuxfx =& , (1) 
 
where x, u, and θ denote nx-, nu-, and nθ-dimensional vectors of state variables, inputs, 
and parameters of the model, respectively. The vector-valued function f is assumed to 
be smooth with respect to x, u, and θ. The parameters θ comprise model parameters 
(such as a heat of reaction), equipment design parameters (such as a vessel volume), and 
operational parameters that are not manipulated by a controller or an operator (such as a 
feed temperature). For convenience, the notation ηT=(uT,θT) is introduced, equation (1) 
is rewritten as,  
 

),( ηxfx =& , (2) 
 
and the domain of η is referred to as the parameter space. The problem class can easily 
be extended to differential-algebraic systems of index one (Mönnigmann, 2003). It is 
important to note that (2) can represent both open- or closed-loop processes. The 
parameter vector η may approximate time-varying quantities, if their dynamics is much 
slower than that of the process. For a more thorough discussion of the problem class, the 
reader is referred to other publications (Mönnigmann and Marquardt, 2003, 
Mönnigmann, 2003).  
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Figure 1: Critical manifolds separate regions with qualitatively different process 
behaviour from one another. (a) stability boundary, (b) feasibility boundary, (c) the 
intersection of the regions in (a) and (b). 
 
In the space of the parameters η, regions with qualitatively different process behaviour 
can be distinguished. These regions are separated by nonlinear boundaries, the so-called 
critical manifolds (see Fig. 1 for a sketch). The critical manifolds are not apparent from 
the process model, but must be identified by often tedious calculations. A typical case 
for a critical manifold is a stability boundary that separates a region of the parameter 
space in which a single stable steady state exists from a region with sustained 
oscillations around an unstable steady-state (Fig. 1 a). In this case, the critical manifold 
is a manifold of Hopf bifurcations which can be found with, for example, a numerical 



bifurcation analysis (Kuznetsov, 1998). It is noted that simple inequality constraints on 
state variables, such as an upper bound on the process temperature, or on functions of 
state variables, give rise to critical manifolds, too (Fig. 1b). In addition, other 
constraints on the process dynamics than stability boundaries, can be described by 
critical manifolds. Mönnigmann and Marquardt (2000) show, for example, how 
information on the location of critical manifolds of cusp singularities can be used to 
avoid multiple steady states. Similarly, Gerhard et al. (2004) solve optimization 
problems with constraints on the location of nontransversal Hopf bifurcations. These 
constraints ensure that no stability loss can occur in a finite, user-specified, range of a   
bifurcation parameter. The concept of a critical manifold in fact provides a unified 
description of constraints on both process operation and dynamics in the parameter 
space (Mönnigmann 2003, Mönnigmann and Marquardt, 2003). 

2.2 Steady state process design by optimization 
Any steady state 0=f(x, η) of the model (2) corresponds to a stationary operating point 
of a continuous process. Since a particular value η = η* fixes design and operational 
parameters of the process (for the set of chosen model parameters), the point η* 
represents a certain design in the parameter space. Finding an appropriate value η* 
therefore amounts to designing the process. The selection of the desired point in the 
parameter space can be interpreted as a simple synthesis problem if we assume a fixed 
process and model structure. The restriction to a fixed process and model structure has 
been guiding our research in the past. However, we expect that this restriction can be 
overcome by an appropriate extension of our method in the future.  
In a typical design scenario, the design objectives are cast into an economic objective 
function φ. In a first attempt, an economically optimal steady state can therefore be 
determined by solving a problem of the form 
 
min φ(x, η) subject to 0= f(x, η). (3) 
 
Clearly this problem statement does not take information on the critical manifolds of the 
particular model into account. In a next step, we therefore have to force the design into a 
particular region of the parameter space constrained by critical manifolds. For example, 
we want to make sure that any design results in a stable steady-state operating point 
rather than in an unstable point with an oscillatory regime. Similarly, critical manifolds 
due to feasibility constraints have to be taken into account in (3). If we introduce the 
region P which is the intersection of those regions with a certain desired behaviour 
reflecting the design objectives (cf. Fig. 1c), the problem (3) can be replaced by 
 
min φ (x, η) subject to 0= f(x, η) and η ∈  P.  (4) 
 
The boundaries of P are given by parts of the critical manifolds separating regions in the 
parameter space with different qualitative process properties. If none of the critical 
manifolds bounding P gives rise to an active constraint, the problems (3) and (4) will 
result in the same optimal design. In the sequel, however, we assume that at least one 
critical manifold imposes a nontrivial restriction, cf. Figs. 2a and b. In this case, the 
optimal design is not in the desired region P in the parameter space for problem 



formulation (3) but is forced onto one of the boundaries of P for problem formulation 
(4). Denoting the values of the objective φ resulting from problem formulations (3) and 
(4) by φ(3) and φ(4), respectively, this implies ∆φ:= φ(3)- φ(4)≥ 0. Hence, there is a loss ∆φ 
in the objective due to the restrictions imposed by confining the design to a particular 
region P which, for example, guarantees a certain qualitative dynamic behaviour. This 
loss is a quantitative measure for the cost of enforcing such qualitative dynamic 
behaviour or another constraint.  
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Figure 2: The parameters of the optimal design are marked with a cross. (a) Problem 
statement (2) fails to the take critical manifolds into account. (b) Problem statement (3) 
is likely to result in a steady state on one or more critical manifolds. (c) Problem 
statement (5) forces design to back off from the critical manifold into region P.  

2.3 Design optimization under uncertainty 
Depending on the nature of the objective function and the critical manifolds, the optimal 
design can either lie in the interior of the region P or on its boundary. In fact, the 
applications treated in Section 4 suggest that the latter case is more likely. If the 
solution of the optimization problem (4) results in a design on the boundary of P, this 
result is not robust, since even a slight change in η may cause the design to leave the 
desired parameter space region P. Thus, the design may cross a stability boundary, or an 
infeasibility may occur in the real process due to the parametric uncertainties in either 
model or operational parameters. In order to make use of the information on the location 
of critical manifolds in a manner that is meaningful for practical applications, 
parametric uncertainty has to be taken into account. To do so, the parameter vector η is 
split into two parts, a subset of np parameters p that are known precisely, and a subset of 
nα=nη- np parameters α that are uncertain. The parameter space is consequently split into 
two subspaces which correspond to uncertain and certain parameters, respectively.    
While a nominal process design corresponds to a single point in parameter space, taking 
the parametric uncertainty into account now unfolds this point into a region denoted by 
R in the (p, α)-space (see Fig. 2c for a sketch of a situation where only uncertain 
parameters exist). With this uncertainty description, we now require the resulting design 
to lie in the desired region of the parameter space P despite the given uncertainties. 
Geometrically, the uncertainty region R that surrounds the nominal design has to be in 
the interior of the region P. The optimization problem to be solved therefore is 
 
min φ(x, η) subject to 0= f(x, η) and R\P=∅ .  (5) 
 
The solution of the optimization problem is sketched in Fig. 2c. Obviously, it is not only 
determined by the design constraints but also by the shape of the uncertainty region R.  



2.4 Leveraging the design loss by structural modifications 
Assuming that the constraint R\P=∅ is not trivially met, the objective function value 
φ(5) resulting from (5) will be larger than or equal to φ(4), i.e. ∆ φ’:= φ(5)- φ(4) ≥ 0. This 
profit loss is larger or equal to the loss ∆φ that does not account for parametric 
uncertainty. The successive introduction of design specifications and parameteric 
uncertainty will result in different desirable regions P and robustness regions R and 
ultimately to different losses after the solution of the associated optimization problem. 
This way, a systematic evaluation of the cost of a certain design specification or the 
uncertainty in a specific model or design parameter becomes possible. If the critical 
manifold is a stability boundary, for example, the loss measures the cost of requesting a 
stable operating point for a given uncertainty in selected model or process parameters. If 
the loss ∆φ’ is not acceptable, the designer might try to reduce the level of uncertainty in 
one or more of the parameters α. Geometrically, this uncertainty reduction leads to a 
smaller uncertainty region R which facilitates a design closer to the boundaries of P. If a 
reduction of the level of parametric uncertainty is not sufficient, a structural 
modification of the process can be envisioned. This structural modification may lead to 
a process with the desired qualitative behaviour, for example stability, but with a 
smaller profit loss even in case of parametric uncertainty. Typically, if the nominal 
steady-state process is open-loop unstable, such a structural change is implemented by 
some type of feedback control or – less frequently – by some modification of the 
process or equipment itself.   

3. Mathematical Problem Formulation and Solution  
This section presents some of the mathematical background necessary to implement the 
concept sketched in the previous section. The style is kept informal. References to more 
detailed literature are given. 

3.1 Critical manifolds 
In order to understand the concept of a critical manifold, it is instructive to consider a 
simple feasibility constraint first. Assume that a feasibility constraint has to be enforced 
for steady states of the process model (1), i.e. we are interested in steady states that obey 
0 =  f(x, α, p) and further satisfy 
 
0 ≤  g(x, α, p) (6) 
 
where g is scalar and real-valued. In this simple case, the set of points at which the 
inequality is active defines the critical manifold M c of interest 
 
M c= {(x, α, p): 0= f(x, α, p) and 0= g(x, α, p)}. (7) 
 
As sketched in Fig. 3a, the projection of this critical manifold separates the space of the 
uncertain parameters α into the region in which (6) holds on the one hand, and the 
region in which (6) is violated on the other hand. Fig. 3b shows the projection of M c 
into the space of the uncertain parameters α along with a robustness region R to be 



discussed below. The  nominal values of the uncertain parameters are denoted by (α1
(0), 

α2
(0))T in Fig. 3. 
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Figure 3: (a) Illustration of a critical manifold Mc. (b) Closest distance along normal 
direction to the manifold. Nominal design at (α(0)

1, α(0)
2)T.  

 
A larger class of critical manifolds can be described if the single equation 0 =  g(x, α, p) 
in (6) is replaced by a set of equations, i.e.,  
 
M c= {(x, x, α, p): 0= f(x, α, p) and 0= g(x, x, α, p)}.  (6) 
 
In eq. (6), x denotes a nx-dimensional vector of auxiliary variables that are necessary to 
state the defining equations g of the particular critical manifold. The function g has a 
range of dimension nx+1 and hence implicitly constrains a single state variable 
(Mönnigmann, 2003, Mönnigmann and Marquardt, 2003). For critical manifolds of the 
process model (1), f and g form the so-called augmented system for the critical 
phenomenon of interest. Often, these critical phenomena are bifurcations. Most 
importantly, saddle-node and Hopf bifurcations give rise to stability boundaries. Higher 
order bifurcations and singularities such as cusp or nontransversal Hopf points can also 
be related to engineering applications as demonstrated with an example in Sect. 4. A 
thorough discussion of the theoretical background is beyond the scope of the present 
paper. In the sequel we will only make use of the fact that these systems can be stated in 
the form (6). The reader is referred to Kuznetsov (1999) for an introduction to applied 
bifurcation theory and to Golubitsky and Schaeffer (1985) for singularities of higher 
codimension.  
As a natural extension to the stability boundary, critical manifolds can be defined to be 
steady states at which the real part of the leading eigenvalue attains a user specified 
value σ0<0. Such a critical manifold is interesting from a technical point of view 
because is separates those steady states which have a decay rate of σ0 or faster to linear 
order from steady states for which disturbances are rejected more slowly. Formally, the 
resulting critical manifolds are a simple extension of the augmented system of the Hopf 
bifurcation (Mönnigmann and Marquardt 2002). A simple example is given in Sect. 4.3.   

3.2 Distance to a critical manifold 
Based on the concept of a critical manifold, the robustness of a candidate nominal 
design η(0)T= (α(0)T, p(0)T) can be quantified. The distance r of α(0) to the critical 



manifolds in the subspace of the uncertain parameters α is used as a robustness measure. 
The locally closest distance between α(0) and the projection of the critical manifold onto 
the α-space occurs along the direction that is normal to the critical manifold as shown in 
Fig. 3b. In this figure, the uncertainty box αi∈  [αi

(0)- ∆ αi, αi
(0)+ ∆ αi], i = 1, …, nα, is 

overestimated by a ball. By enforcing the distance |r| between α(0) and the critical 
manifold along the normal direction r to be larger than the radius of the ball, the critical 
manifold is guaranteed not to be crossed, regardless of the actual values of the uncertain 
parameters in the robustness box. 
Mönnigmann and Marquardt (2000) show that the normal vector r can be calculated 
from the defining equations 0 = g(x, x, α, p), 0 = f(x, α, p) in eq. (6). Here we do not 
digress to discussing the construction of sets of equations for the calculation of normal 
vectors, but only cite the result. According to Mönnigmann and Marquardt (2000) the 
normal vector can be calculated from equations of the form 
 
0= G (c, i)(x (c, i), x (c, i), α (c, i), p (c, i), r (c, i)),  (7) 
 
where the upper index (c, i) denotes the quantities that belong to the critical manifold 
number i, r refers to the desired normal vector, and G (c, i) comprises nx+ nx + nα+ np+ nr 
equations which have full rank at solutions (Mönnigmann and Marquardt, 2000, 
Mönnigmann 2003). The structure of these equations depends on the type of critical 
manifold such as one stemming from saddle-node or Hopf bifurcations or from a 
feasibility constraint.   
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Fig. 4: (a) Uncertainty need not be described by a box. (b) Multiple closest connections 
exist due to multiple critical manifolds and non-convexity.  
 
As pointed out in the previous section, the approach presented here is not restricted to 
describing parametric uncertainty by boxes αi∈  [αi

(0)- ∆ αi, αi
(0)+ ∆ αi], i= 1, …, nα. 

Figure 4a sketches a general robustness region around a candidate nominal value α(0) for 
the uncertain parameters. Parametric robustness can be enforced in such a case by 
requiring the locally closest connections between the robustness manifold Mr and the 
critical manifold M (c,i) to be larger than or equal to zero. The locally closest connections 
between M r and M (c,i) occur along directions that are normal to both, the critical 
manifold and the robustness manifold. Mönnigmann and Marquardt (2003) show that a 
large class of robustness regions M r can be described by considering the boundary of 



Mr to be a manifold of the same form (6) as the critical manifolds. In order to 
distinguish the robustness manifold normal vector system from (6), all quantities for the 
robustness manifold normal vector system are labeled with an upper index (r, i) instead 
of (c, i). 
Figure 4b illustrates that generally more than one critical manifold exists. Assuming that 
imax locally closest connections exist, the optimization problem with constraints for 
robustness reads 
 
        min  φ(x(0), α (0), p(0)) (8a)  
     x(0), α(0), p(0) 
           s.t. 0= f(x(0), α (0), p(0)) (8b) 
 0= G(r, i)(x(r, i), x(r, i), α (r, i), p(r, i), r(i)) (8c) 
 0= G(c, i)(x(c, i), x(c, i), α (c, i), p(c, i), r(i)) (8d) 
 0= l(i) r(i)- (α (c, i)- α (r, i)) (8e) 
 0<= l(i) (8f) 
 i= 1, …, imax. (8g) 
 
Equations (8b) ensure that the optimal design (x(0), α (0), p(0)) is a steady state of process 
model (1). Equations (8c) and (8d) ensure that the critical manifold M (c, i) and the 
robustness manifold M (r) are connected by a common normal direction r (i), cf. Fig. 4b. 
Constraints (8e) and (8f) guarantee that a distance larger than or equal to zero exists 
along this direction. For a more detailed discussion the reader is referred to 
Mönnigmann (2003) or Mönnigmann and Marquardt (2003). 

3.3 Numerical solution  
In order to describe the robustness of a candidate design (x(0), p(0), α(0)) by its distance to 
the critical manifolds, the location of these critical manifolds must be known. An 
analysis of the critical manifolds is often tedious, however. Since existing methods for 
the analysis of critical manifolds for process dynamics strongly rely on visualizations, a 
thorough analysis of these manifolds is only practical for process models with a few 
uncertain parameters. Clearly, an optimization method for parametric robustness must 
not rely on an a priori analysis of the critical manifolds, but it must take the critical 
manifolds into account automatically.  
Rather than analyzing the critical manifolds a priori, they can be detected as the 
optimization proceeds. From research in applied bifurcation analysis, real-valued test 
functions are known which signal the crossing of a critical manifold by a sign change 
(Kuznetsov, 1999). With these test functions, an optimal robust design can be found by 
solving the optimization problem (8a)-(8g) repeatedly while iteratively building up 
information on the critical manifolds. Assuming that a feasible solution and some 
critical manifolds i= 1, …, jmax are known (possibly none to start with), the optimization 
can be started with constraints on the distance to these jmax known critical manifolds. 
Loosely speaking, the optimizer will push the robustness region through the search 
space, and previously unknown critical manifolds are signalled by sign changes in the 
test functions. Constraints on the distance to these previously unknown critical 
manifolds are then added to (8a)-(8g), and the process is repeated until no new critical 
manifolds must be taken into account. Mönnigmann (2003) successfully demonstrated 



that this approach can be used for the optimization of examples with a few hundred 
model equations without a priori knowledge on the existence and location of critical 
manifolds. 

3.4 Software implementation 
Several technical issues need to be resolved for an implementation of the method 
sketched here. Most importantly, eq. (7) and the defining equations 0 = g(x, x, α, p) in 
eq. (6) contain higher order derivatives of the process model equations. These 
derivatives are currently calculated with symbolic and automatic differentiation by 
MAPLE (Monagan et al., 2000) and ADIFOR (Bischof et al., 1998), respectively.  
Furthermore, it must be pointed out that the test functions are only meaningful at 
steady-states of the process model. The optimization algorithm used to solve (8a)-(8g) 
therefore must be of the feasible path type if the test functions are to be evaluated 
simultaneously. The restriction of having to use a feasible path optimizer can be 
relaxed, however, by evaluating the test functions along a linear connection between the 
starting and end points of the optimization. For details, the reader is referred to 
Mönnigmann (2003).   

4. Illustrating Applications  
The previous sections introduced the concept of a critical manifold and the idea of 
stating constraints in terms of distance between candidate points of operation and 
critical manifolds in the space of the uncertain parameters. Due to the generality of 
these concepts, the sketched approach is applicable to a variety of problems. This 
section demonstrates the application to process design, robust controller tuning and 
integration of design and control. The examples given here are simple and the 
discussions are brief due to limitations in space. References to more detailed discussions 
and larger examples are given, however. 

4.1 Process design  
In this application, a simple model for a fermentation in a well-mixed tank is optimized. 
The fermenter model is not stated here for brevity, but the reader is referred to Agrawal 
et al. (1982) for details. The cost function φ in (8a) is the cost of the substrate 
diminished by the profit from produced cells in this example. The constraints (8b)-(8f) 
comprise the fermenter model and constraints on the distance to critical manifolds for 
stability. Since the process model has been analyzed before (Agrawal et al. 1982), we 
know a priori that two critical manifolds due to saddle-node and Hopf bifurcations exist. 
The constraints (8c)-(8f) have to be stated for saddle-node and for Hopf bifurcations, or, 
in other words, imax=2 in (8g). The Damköhler number Da and the substrate feed 
concentration SF are assumed to be uncertain parameters α with uncertainties ∆α1= 
∆Da= 0.05 and ∆α2= ∆SF=0.03 kmol m-3. The constraints (8c)-(8f) ensure that the 
resulting optimal point of operation is stable despite this parametric uncertainty.  
The model is first optimized without the constraints (8c)-(8g) for reference. The result is 
an optimal but unstable point of operation. The optimization is then repeated with the 
robustness constraints. This optimization results in an optimal stable point of operation 
which is robust in the sense that it remains stable despite the uncertainty in Da and SF. 



This result is visualized in Fig. 5. The loss for guaranteeing robust stability is about 
66% of the profit in the nominal case. Such a loss calls for a stabilizing controller (see 
Section 4.2) or a process design modification. For details on this example, the reader is 
referred to Mönnigmann (2003). 
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Figure 5: (a) Result of the optimization of the fermenter with constraints for robust 
stability. (b) Enlargement of the robustness ellipse at the critical manifold due to 
saddle-node and Hopf bifurcations. 
 
A similar but more involved application to a continuous polymerization process is given 
by Mönnigmann and Marquardt (2003). The polymerization is optimized with respect to 
an economic profit function. In order to guarantee parametric robustness with respect to 
stability, critical manifolds due to Hopf and saddle-node bifurcations have to be taken 
into account. In addition, an upper bound on the process temperature gives rise to a 
critical manifold of the feasibility constraint type. The example demonstrates that the 
approach presented here can be used to treat feasibility constraints and constraints on 
the dynamics in a unified manner. 

4.2 Robust controller tuning 
The previous examples addressed the robustness of a single optimal point of operation. 
Robust stability often has to be guaranteed over wide ranges of operating conditions 
rather than for a single point of operation, however.  For example, if various grades are 
to be produced for a range of production capacities, the process must be stable despite 
the demanded flexibility. In this section, we discuss a simple example, where the 
robustness constraints (8c)-(8f) are used to guarantee parametrically robust stability for 
a large range of operating conditions. The example considered is a cooled CSTR with 
an exothermic first order reaction A→B. Unmodeled dynamics are represented by an 
overdamped second order process. A feedback linearizing controller is used to control 
the temperature in the vessel. We are interested in a controller tuning which guarantees 
robust stability in a large region of operating temperatures. A bifurcation analysis of the 
model reveals that a lower bound on the controller time constant exists below which the 
region of process instability vanishes (Hahn et al., 2003).  
A manifold of a particular type of bifurcation, a so-called nontransversal Hopf 
bifurcations, splits the closed-loop process parameter space into two regions with 



qualitatively different behaviour. While in one region unstable behaviour can occur 
depending on the value of the temperature controller set-point Tsp, process stability can 
be guaranteed for the entire range of Tsp in the other region. By backing off the critical 
manifold of nontransversal Hopf bifurcations at a user-specified distance, process 
stability can be guaranteed for the entire range of Tsp despite parametric uncertainty.   
In this application, the cost function φ in (8a) is the yield of product B. Equations (8b)-
(8f) are the CSTR process model and the robustness constraints for the critical manifold 
of nontransversal Hopf bifurcations of the form (6). For details on the defining relations 
of the critical manifold the reader is referred to Gerhard et al. (2004). 
The feed rate q to the reactor and the time constant εv of the unmodelled dynamics are 
considered to be uncertain parameters α. The robustness ball in Fig. 6 overestimates the 
uncertainties ∆α1=∆q=10 mol min-1 and ∆α2=∆εv=0.01. Figure 6 illustrates the result. 
Figure 6a shows the result of the optimization without constraints (8c)-(8f). This 
optimization has been carried out for reference only. For the resulting point of operation 
some values of the set-point Tsp are not admissible, since the process may become 
unstable (dotted line) due to Hopf bifurcations (⁪). With robustness constraints, the 
process is stable for the entire range of Tsp (solid line) as illustrated in Fig. 6b  
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Figure 6: (a) Optimization without constraints (8c)-(8f). (b) Optimization with 
constraints (8c)-(8f). 

4.3 Integration of design and control  
The example in Section 4.1 addressed the design of an open-loop fermentation process. 
This section presents a simple application to a closed-loop model. The fermenter model 
of Section 4.1 is augmented by a simple P-controller to demonstrate that both model and 
controller parameters can be determined by solving the optimization problem (8a)-(8g). 
It is stressed that this amounts to simultaneously tuning the controller, and designing the 
process for optimal operation with respect to an economic cost function.  
In this example, the same cost function (8a) as in Sect. 4.1 is used. Equations (8b)-(8f) 
comprise the closed-loop model and the constraints for robustness with respect to a 
bound σ0<0 on the real part of the leading eigenvalue as discussed in Sect. 3.1. The 
bound on the eigenvalues is chosen to be σ0= -1/60. By staying off this manifold, a 
decay rate of 1/(60s) or faster is guaranteed for the closed-loop process to first order. 
Since only one critical manifold exists, imax=1 in equation (8g).  



The fermenter model is stated in dimensional variables for this application 
(Mönnigmann and Marquardt, 2003). The feed flowrate F is considered an input. A P-
controller F = F0+ kP(S- S0) is added to the process, where S is the substrate 
concentration in the tank. The controller bias F0 and the substrate feed concentration SF 
are considered to be uncertain parameters α. The parametric uncertainties were assumed 
to be ∆α1=∆F0=0.7 m3 s-1 and ∆α1=∆SF=0.03 kmol m-3. The result is illustrated in Fig. 
(7). In the shaded area shown in Fig. (7), the leading eigenvalue is smaller than 1/(60s). 
The robustness ellipse touches the critical manifold thus guaranteeing a decay rate of 
1/(60s) despite the user-specified parametric uncertainty. 
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Figure 7: Steady-states of the closed-loop fermenter in the shaded area have a decay 
rate of 1/(60s) or faster. 
 
The same approach has successfully been used in the optimization of larger process 
models. Grosch et al. (2003) optimized a continuous crystallization process. The 
crystallization is modeled with a population balance which is discretized by the methods 
of moments. Simple crystallization kinetics given by Volmer’s law for nucleation and 
McCabe’s law for crystal growth are used. The open-loop process turns out to have an 
optimal point of operation which is unstable. In order to avoid sustained oscillations due 
to a Hopf bifurcation, the process is augmented by a PI-controller. The closed-loop 
model is then optimized with an upper bound σ0<0 on the real part of the dominant 
eigenvalue, simultaneously tuning the controller and obtaining an optimal robust steady 
state of operation. Similarly, Mönnigmann (2003) uses the approach sketched in the 
present section to optimize the reaction section of Douglas’ HDA process. An optimal 
point of operation is found in this example for which a user-specified decay rate can be 
guaranteed despite parametric uncertainty. The HDA model comprises several hundred 
equations and twelve uncertain parameters. This example therefore demonstrates that 
the proposed approach can be applied to large-scale models.  

5. Discussion  

5.1 Limitations and obvious extensions   
Several extensions of the approach presented here are currently being investigated. We 
give a brief account of the major ideas. A more detailed description along with first 



examples to illustrate the potential of synthesis methods based on critical manifolds and 
robustness regions can be found in the thesis of Mönnigmann (2003).  
Most importantly, the restrictive assumption on the dynamics of the quantitites η has to 
be relaxed. These quantities have to be either constant, or they may vary on a time-scale 
that is much slower than the dominating process time. A suitable parameterization of 
time-varying inputs and performance indices can be used to address this issue.  Bounds 
on performance indices can also be cast into a new type of a critical manifold. By means 
of an example Mönnigmann (2003) shows that a bound on performance indices such as 
the integral squared error (ISE) gives rise to critical manifolds of the same type as those 
of a stability boundary. Since the ISE increases, loosely speaking, both with larger 
frequencies of oscillation and smaller decay rates, the idea of bounding the ISE above is 
a natural extension of the critical manifolds defined by the bounds on the eigenvalues as 
briefly sketched in Sect. 4.3.  
In an alternative extension of the existing method, bounds on trajectories of the 
dynamical system can be used to define critical manifolds for the response of a 
nonlinear system to time-varying disturbances. As opposed to the extension employing 
critical manifolds of performace indices and input parameterization, the critical 
boundaries for trajectories do not have to rely on the steady-state assumption. 
On a different track, the stability boundaries known from applied bifurcation theory 
have to be generalized to critical manifolds that are more relevant from a practitioners 
point of view. While bifurcation theory focuses on the stability of solutions, a stable 
solution with a very small real part of the leading eigenvalue is of little interest from a 
practical point of view. Critical manifolds defined as the steady-states at which a user-
specified bound on the leading real part is attained remedy this problem as demonstrated 
in Sect. 4.3. A natural extension to bounding the real part is to confine eigenvalues to a 
sector in the open right half of the complex plane.  
All of the examples investigated so far in our research have been based on process 
models of the ODE type. An extension of the theory to DAE models of index one is 
straight forward. An implementation of such an extension is planned for the near future. 
A more interesting extension relates to the treatment of distributed parameter systems. 
A straight forward extension of our method is the approximation of the distributed 
parameter model by a lumped ODE or DAE model by means of the method of lines. 
This would be in line with research related to the analysis of the nonlinear dynamics of 
distributed parameter systems (e.g., Jensen and Ray (1982), Pathath and Kienle (2002)). 
However, it is well known that the spatial discretization may significantly impact the 
stability behaviour. Stability boundaries may just move quantitatively but they also may 
vanish completely (Liu and Jacobsen, 2004).  Hence, the impact of the discretization on 
the critical manifolds must be investigated in the future. 
Our method currently only addresses a very restricted class of synthesis problems as a 
fixed and given model structure must be assumed. Typically, not only the process and 
control parameters but also the structure of the process and its associated control system 
are of interest during design, requiring the formulation of mixed-integer or disjunctive 
programming problems (see Grossmann (2002) for a review). Even though we did not 
address this problem yet in our research, we would expect that the method can be 
extended in the longer run to such problems replacing the dynamic process model (1) by 



a disjunctive dynamic model (Oldenburg et al., 2003) that allows for structural design 
alternatives. 
The system size that can be tackled with the current implementation of the method is 
limited by the use of the dense derivatives matrices generated by ADIFOR (Bischof et 
al., 1998). The tractable system size can be expected to increase considerably if the 
sparse option of ADIFOR is used in the future. 

5.2 Relation to other work   
Due to the general applicability of the concept of a critical manifold, the proposed 
approach cannot only be applied to design for a certain qualitative dynamic process 
behaviour but also to design for process feasibility.  
The application to feasibility constraints relates the presented approach to research on 
design under uncertainty. Numerous articles have addressed this problem over the last 
two decades (see Mönnigmann and Marquardt (2003) for a brief summary). Many 
articles on design under uncertainty are based on feasibility and flexibility measures for 
nonlinear process models that were introduced by Grossmann and coworkers (Halemane 
and Grossmann, 1982, Swaney and Grossmann, 1985). These measures are based on 
assessing the constraint violation. The idea of constraint violation is to rate designs (x, 
α, p) by the value of the function g in (6). Clearly g(x, α, p) ≥ 0 and g(x, α, p) ≤ 0 
indicate feasibility and infeasibility, respectively. In addition, however, the particular 
value of g(x, α, p) is used to compare designs. Among several infeasible designs (x(i), 
α(i), p(i)), the one that yields the smallest constraint violation g(x(i), α(i), p(i)) is, loosely 
speaking, considered to be the best one. While this seems to be obvious for simple 
feasibility constraints (such as an upper bound on the temperature in a unit, for 
example), it is not clear which assumptions must hold for the function g in (6) in 
general. Assume, for example, that we know a feasible steady-state (x(1), α(1), p(1)) for 
which a constraint g(x, α, p) ≥ 0 is active, i.e. g(x(1), α(1), p(1))= 0. Further assume that we 
know that increasing p(1) by a small number ε>0 renders the feasible steady state 
infeasible, i.e. g(x(1), α(1), p(1) )= 0, g(x(2), α(1), p(2)) ≥ 0 for p(2)= p(1)+ ε. One would like to 
infer that for a third steady state 0 = f(x(3), α(1), p(3)) with g(x(3), α (1), p(3) )< g(x(2), α(1), 
p(2)) that p(3)>p(2)>p(1). Unfortunately, this cannot be inferred for general constraints g in 
(6).  
In contrast, the measure used here is not based on evaluating a measure in the range of 
the constraint functions, but the distance between the candidate point of operation and 
the critical manifolds in the space of the uncertain parameters. Note that this is a 
measure that is directly defined in the space of the uncertain parameters. While this 
detail seems to be technical at first sight, it is the key to an approach that covers both 
feasibility and dynamical constraints. For constraints on the dynamics, an inequality of 
the type (6) can in general not be stated. The concept of constraint violation can 
therefore not be extended from feasibility constraints of the form (6) to constraints on 
the dynamics. A meaningful definition of the critical manifold (7) can, however, be 
stated based on the so-called augmented systems for bifurcation points known from 
applied bifurcation theory (Kuznetsov, 1999). Since both feasibility constraints and 
constraints on the dynamics such as stability boundaries can be described by critical 
manifolds, a unified approach to robust stability and feasibility is possible. Previous 
approaches to design under uncertainty made use of matrix measures (Kokossis and 



Floudas, 1994, Mohideen et al., 1997). While matrix measures are amenable to 
implementation, they are known to be conservative. Unfortunately, this 
conservativeness may result in an overestimation of the stability boundary and thus to 
suboptimal process designs only. Furthermore, the approach suggested seems to be a 
viable approach to systematically  studying the interaction between design and control 
for nonlinear systems. Only very few papers have been treating this subject (see, for 
example, Lewin and Bogle (1996), and Brengel and Seider (1992)).  

6. Summary  
Methods for the analysis of the dynamics of nonlinear process models are well 
established in the chemical engineering community. While these methods are very 
mature and powerful, they rely on visualizing numerical data and on subsequently 
interpreting diagrams. Unfortunately, an approach which depends on manual 
visualization and experience-based interpretation can not be used systematically in 
process design. Further, nonlinear analysis becomes tedious or even impossible if the 
dimension of the space of relevant parameters is large. The present paper summarizes 
the ideas behind a new approach to taking dynamics into account at the design stage. To 
the authors’ knowledge this is the first instance of a nonlinear dynamics method that is 
constructive in the sense that it does not rely on analysis, visualization and 
interpretation. The new approach is based on the concept of a critical manifold that 
separates regions of the design space with desired process behaviour from those with 
undesired process behaviour. As the concept of a critical manifold can be applied to 
both dynamical properties and feasibility constraints, the proposed critical manifold-
based constraints permit a unifying approach to robust stability and feasibility. Because 
the method relies on the distance to a critical manifold in parameter space, the curse of 
dimensionality limiting the applicability of analysis methods is not faced, because the 
normal to a manifold is always a one-dimensional object regardless the dimension of the 
parameter space. A number of examples have been briefly summarized to demonstrate 
the versatility of the approach.  
To the authors’ knowledge, the sketched critical manifold-based approach is the first 
systematic approach to considering stability at the process design stage which does not 
involve approximations such as matrix measures and which accounts for uncertainty. As 
the new approach allows to optimize a process model with respect to a profit function 
and to simultaneously take constraints on the dynamics into account, it is ideally suited 
for the integration of design and control. Our research will focus in the near future on  a 
more detailed comparison to existing approaches to the design of robust controllers for 
nonlinear systems  as well as on tailoring of the method to the integration of process and 
control system design.  
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