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Abstract 
This paper gives an overview of methods for utilizing large process data matrices.  
These data matrices are almost always of less than full statistical rank, and therefore 
latent variable methods are shown to be well suited to obtaining useful subspace models 
from them for treating a variety of important industrial problems.  An overview of the 
important concepts behind latent variable models is presented and the methods are 
illustrated with industrial examples in the following areas: (i) the analysis of historical 
databases and trouble-shooting process problems; (ii) process monitoring and FDI; (iii) 
extraction of information from novel multivariate sensors; (iv) process control in 
reduced dimensional subspaces.  In each of these problems latent variable models 
provide the framework on which solutions are based. 
 
Keywords: Latent variables, PCA, PLS, subspace models, monitoring, control, digital 
imaging, machine vision 
 
1. Introduction 
Process data sets are often very large, and are not causal in nature (i.e. models built from 
them cannot be used to infer the causal effects of any variable on any other).  The 
correlation among the measured variables is usually of such a high degree that the 
resulting data matrices are typically of very low statistical rank. Furthermore, in most 
process databases, there are usually large amounts of missing data and the signal to 
noise ratio is often quite low in any one variable.  The objective of this paper is to 
present an overview of the important concepts behind multivariate latent variable 
models that are useful for treating such data and to illustrate the use of these reduced 
dimensional models for several classes of problems.  
 
2. Latent Variable Models 
Consider a dataset x = [x1, x2,..., xk] where k variables are measured.  The concept 
behind a latent variable model for the data is that the process under observation is 
actually driven by a set of a<< k latent variables.  This latent variable space can be 
represented by an orthogonal set of vectors t = [t1, t2,…, ta].  Given data from two spaces 



X (n×k) and Y (n×m) a latent variable multivariate regression (LVMR) model  can be 
defined as follows: 

EPTX += T  (4) 

FQTY += T  (5) 
where E and F are assumed to random error and the (nxa) matrix of latent variables T is 
modeled as linear combinations of the x’s: 

XWT =  (6) 
The latent variable space generated by the a columns of T is usually of much smaller 
dimension than X (and possibly Y).   
In the LVMR model, there is no intrinsic difference between the X and Y spaces.  The 
LV model (4) and (5) is symmetric in X and Y, They are both functions of the latent 
variables, they are both measured with error, and there is no assumption of a causality 
direction.  The division of the data into X and Y matrices is arbitrary, and arises mainly 
from the intended use of the model rather than in the features of the data modeled.  The 
model can always be rearranged to express the prediction of Y in terms of X as: 
 

BXXWQTQY ˆˆ === TT  (7) 
 
However, it is important to remember that equation (7) is not the model, rather just a 
rearrangement of the prediction equation for Y.  A more complete discussion of the 
concept and importance of LVMR models is given in Burnham et. Al. (1999). 
 
There are many nonlinear versions of latent variable models.  The simplest just use 
transformations of the x and y’s or simply expand the X matrix with quadratic or other 
nonlinear functions of the x variables. Dynamic ARX models are easily obtained by 
simply including lagged values of past x and y variables in the X matrix (e.g. 
MacGregor et al. 1991).  Other nonlinear approaches (e.g. Wold et. al. 1989) use linear 
LV models for the X and Y spaces, but relate the latent variables of the two spaces by 
nonlinear models. 
 
3. Estimation of LV Models  
Different methods can be used to estimate score matrix (T) and loading matrices (P, W, 
Q) in the latent variable model. These include Principal Component Analysis (PCA) for 
a single data matrix X, and Principal Component regression (PCR), Partial Least 
Squares (PLS), Canonical Correlation Analysis (CCA), and Reduced Rank Regression 
(RRR) for the case of both X and Y matrices.  Although all of the above estimation 
methods provide a set of orthogonal latent variables, they do so by optimizing quite 
different objective functions (Burnham et al., 1996), and these differences play a vital 
role in the appropriateness of the methods for use in various problems. In particular, 
PLS and PCA are the only latent variable models that provide a good model for the X-
space, since this is part of their objective function.  This is an extremely important point 
since, for many problems, the model for the X-space will be the most important part of 
the LV model (equations (3)-(6)).  This may seem strange to the statistical and 
identification communities because they are used to working only with datasets in 



which the X-space is full rank, by virtue of the way in which the data were collected 
(e.g. using designed experiments).  In such situations, a model for the X-space is 
unnecessary since it is fully explained by the X-data directly.  However, with the large 
data sets that we are dealing with in this paper, that arise from routine operation of the 
plant, the X-space typically has a statistical rank a << Min (n, k), and any models built 
from such data are only valid in this reduced dimensional space of the latent variables, 
and even then only in the restricted region of this space spanned by the training data.  
The X-space model is essential for defining this valid model space, for treating missing 
data, for detecting outliers, and for monitoring processes.  It is this modeling of the 
reduced dimensional spaces of both X and Y that make the latent variable methods of 
PLS and PCR so different from standard regression approaches such as multiple linear 
regression (MLR), neural networks (NN), etc., and makes them much more powerful for 
treating the problems being addressed here. 
 
The number of principal components (a << min(n, k)) required to adequately model the 
covariance structure of X is often decided by a cross-validation procedure [Wold, 1978] 
which yields statistical tests for their significance based on a prediction criterion. 
 
4. Analysis of Process Databases 
 
Perhaps the main area of industrial application for these LV models has been, and 
continues to be, the analysis of historical databases collected routinely by process 
computers.  There are two common ways in which industrial engineers currently use 
these LV methods to analyze such data.  The first is where nobody has every looked 
seriously at the historical data to see if things can be learned that might lead to process 
improvements.  This retrospective analysis is often performed over several very 
different time scales.   A second usage is for short term trouble-shooting.  Immediately 
after a process upset, a local LV model can be built over the recent period leading up to 
and covering the upset, and the local model used to analyze for possible causes. 
 
The tools for analysis consist of looking at score plots of the latent variables (e.g. t1 vs. 
t2) to study how the process has moved in the reduced dimensional space, and at the 
corresponding loading plots (p1 vs. p2) to interpret the groups of variables that are 
related to movements in certain directions.  The squared prediction error (SPE) in the X 
and Y spaces are used to detect abnormal situations 
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where the predicted values are given by 
TTPX =ˆ  (9) 

Contribution plots are particularly useful for highlighting which group of variables is 
highly related to a movement in the score space or the residual space [MacGregor et al., 
1996; Kourti and MacGregor, 1996; Miller et al., 1998].   
 
The contribution of variable xj to the residual SPEi is 
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and the contribution of xj to a movement in any latent variable ∆tl over any period is 
jljlj pxttox ∆=∆)(onContributi  (11) 

where pjl is the loading of the variable xj in the loading vector pl of the LV, and ∆xj is the 
change in xj over that period.  These contribution plots do not show causal relationships.  
They only reveal which group of variables, in which part of the plant, are related to the 
movement or event that occurred.  However, by narrowing down the possible variables 
and location in the plant it is usually much easier for the engineer or operator to 
diagnose some possible reasons for the event. 

 
There are numerous applications of this use of LV models to analyze industrial 
databases in both continuous processes [e.g. Yacoub & MacGregor, 2002] and batch 
processes [Nomikos, 1996; Garcia et al. 2003].  In this section, an industrial batch 
process will be used to illustrate the basic concepts.  Typically data from batch 
processes are of the form illustrated in Fig. 2.  For each batch one has data on initial 
conditions, prior processing history, etc. (Z matrix), histories on the time varying 
trajectories of process variables during each batch (X array), and data on the final 
product quality and productivity (Y matrix).  Although the Z-matrix is important in this 
problem we ignore it here and illustrate the analysis using only X and Y data.  The three 
dimensional X array can be unfolded to give an X matrix with each row containing the 
time histories of all the variables for a given batch.   
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Figure 2: Nature of batch data 
 
Although there are over 350,000 observations in this data set, a PLS model (using 
scaled and mean centered data) explains the statistically significant information with 
only a=2 latent variables.  In other words, for each batch, the changing co-variation 
among all the variables, over the entire time history of the batch can be summarized by 
the score values of two latent variables (t1, t2).  A score plot of these two LV’s is shown 
in Fig. 3.  It reveals a clear separation in the t1 direction between batches with good Y 
results (high t1 values – indicated by the region of the dark ellipse) and those with poor 
Y results (low t1 values).  A plot of the p1 loading vector shown in Fig. 4 can be used to 
help interpret why these two groups of batches are different.  For each process variable 
there are 350 loading values corresponding to the 350 time intervals during the batch.  
From this plot it is clear that good performance (a high value of t1) is associated with 
trajectories of variables x1 and x3 lying above their mean trajectories throughout the last 
two thirds of the batch and with the trajectory of variable x4 lying below its mean over 



the same period. Such information together with a more complete analysis of the  (Z, X, 
Y) data provided great insights into improving the batch operation.  
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Figure 3:  Score plot for all the batches (good batches in solid elliptical region) 
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Figure 4: Plot of the elements of the first loading vector p1 consisting of a loading value 
for each variable at each time period over the time history of the batch 
 
5. Process Monitoring and FDI 
Once the analysis of the historical process data is complete and improvements made to 
the process, one is interested in monitoring the process to ensure that any gains are 
maintained, and that any new problems are detected and identified as early as possible.  
The scope of process monitoring is wider than detecting simple hardware and sensor 
faults.  Its purpose is to detect any type of complex atypical behavior such as might be 
associated with the effects of changes in impurities, surface chemistry, etc. on the 
performance of the process. 
 



There is a large literature on FDI methods such as those based on analytical redundancy 
[Gertler, 1998] that involve the use of causal models from theory or identification 
experiments. However, multivariate statistical approaches based on LV models use non-
causal models built from normal operating data.  They are multivariate extensions of 
statistical process control (SPC) methods.  They compare the behaviour of future 
operation of the plant against a LV model built from past behaviour where only 
“common cause variation” was present (i.e. from data collected where the performance 
was acceptable) [Kresta et.al., 1991; MacGregor and Kourti, 1995].  Any abnormal 
behaviour can be detected in the residual SPE plot or in the score plots or their 
Hotelling’s T2 equivalent 
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where sl
2 is the variance of tl from the training data.  Control limits on these plots 

[MacGregor and Kourti, 1996; Nomikos and MacGregor, 1995] can be obtained using 
the F-distribution or using the empirical reference distribution of the training data.  An 
abnormal situation is detected when any of the control limits on these charts is violated, 
and then contribution plots can be used to identify that group of variables associated 
with the fault.   
 
To illustrate the concepts of the MSPC approach we again use the batch fermentation 
process of the last section.  To develop a PLS model for monitoring, we now only use 
the cluster of batch data with good performance shown in Fig. 3.  Control charts for the 
SPE and Hotelling’s T2 statistics for a new (bad) batch are shown in Fig. 5. An 
abnormal event is clearly detected by time 277 when the 99% control limit on both the 
T2 and SPE charts are violated.  The SPE contribution plot for the process variables at 
that time period is also given.  High values of variables x6 are clearly related to the fault. 
 

Hotelling’s T2 On-line Monitoring for Batch 73

 

 
Figure 5: Batch # 73: Left: Hotelling’s T2 plot with control limits shown 
Right: SPE plot and contribution plot at time 277 where fault is first detected 



6. Extracting Information From Multivariate Sensors 
 
There is currently a major revolution occurring in new sensor technologies that will 
have major impacts on process control.  In the chemical industry a whole new 
generation of sensors referred to as micro-sensors or molecular sensors are being 
developed by process analytical chemists.  These sensors generate large amounts of data 
with information on the detailed molecular properties of the streams or products being 
sampled, and they do so at a greatly reduced cost per sample over traditional laboratory 
analysis.  In the solids processing industries the lack of on-line sensors has greatly 
limited the ability to implement control systems, but digital imaging systems, based on 
the availability of inexpensive cameras and computers, are starting to have an impact. 
 
As an illustration consider two applications of on-line digital colour imaging; the first 
involves the monitoring of a combustion process through imaging of the turbulent flame 
in a boiler system; the second involves the monitoring and feedback control of product 
quality in the snack food industry. 
 
The monitoring of the off-gas pollutants (NOx, SO2, etc.) from combustion processes in 
boiler systems is an important environmental problem.  Inferential models based on 
neural networks are well established for predicting these off-gas pollutants using 
process measurements taken around the boiler system.  In this example we consider the 
use of colour (RGB) digital images of the turbulent flame in the boiler as a predictor 
variable [Yu and MacGregor, 2003a,c].  Figure 6 shows two flame images taken one 
second apart during a time when no changes were occurring.  The difficulty in 
extracting information from these highly time varying flame images is obvious.  
However, by performing a PCA on these images and projecting them into the LV score 
space, the score plots of successive images are very stable at any given operating 
condition, but they do change significantly as the process conditions and waste fuel 
feeds change.  Using masking methods, features can be extracted from the PCA score 
plots that summarize the changes in the flame [Yu and MacGregor, 2003a,c], and these 
can be used as predictors in a PLS model for the NOx and SO2 off-gas concentrations.  
The predicted versus observed plot for NOx from a feasibility study is shown in Fig. 7.  
The predictions obtained from the flame data alone were as good as using both the 
flame and the process data and much better than just using the latter.  Prediction of other 
important process and environmental variables was equally good. 
 

 
 
Figure 6: Flame images taken 1 second apart in an industrial boiler 
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Figure 7: Predicted vs. observed NOx concentration in the off-gas. Prediction done 
using only RGB flame images 
 
The monitoring and feedback control of product quality in snack food production has 
been presented by Yu et al. (2003b,c).  A schematic of the system showing the imaging 
of the randomly deposited chips on a moving belt is shown in Fig. 8.  Multi-way PLA 
and PLS methods are used to extract information from the images that is related to both 
the concentration of coating materials on the base product and to the distribution of the 
coatings over the product.  This image information is then used for the on-line 
feedforward/feedback control of the process.  Feedback control of the coating 
concentration based on the imaging systems is currently in use on several industrial 
lines.  Table 1 compares the results of the image-based control on one of the lines 
against the results from the previous operator-based control system. 
 

C

Unseasoned 
Product

Seasoni ng

Tumbl er

Conveyor Bel t

Camera

Li ght i ng

Computer

 
 
Figure 8: Imaging system for feedback control of snack food quality 
 
 
Table 1: Mean Absolute Error (MAE) for the three cases 

 Prior control Image-based feedback 
control (regulation) 

Image-based feedback 
control (set point tracking) 

MAE 0.8523 0.4481 0.4769 



7. Process Control In Reduced Dimensional LV Spaces 
 
Latent variable methods are also useful in process control situations, particularly where 
the controlled (CV) and manipulated (MV) variable spaces are high dimensional, but of 
less than full rank.   The simplest situation, where the CV space is high dimensional, but 
of low rank, include problems such as the cross-directional control of properties on 
paper machines or polymer films [Rigopoulos et. al., 1997], control of polymer 
molecular weight distributions [Clarke-Pringle and MacGregor, 1998] and particle size 
distributions [Flores-Cerrillo and MacGregor, 2003a], and control of polymer end 
properties in continuous reactors [Roffel et al., 1989]. In these cases some variation of 
PCA has usually been employed on the collected data to reduce the dimension of the 
CV space to a full rank space (e.g. use the latent variables of PCA, or a subset of the 
real variables which best define the PCA space, as new CV’s), and the MV’s are used to 
control this space. 
 
A more complex situation occurs where the MV space is also of less than full rank.  
This situation will arise when there are operational constraints preventing all the MVs 
from acting independently.  A classic example occurs in the control of batch reactors 
where the control at any time (θi ) during the batch calls for the adjustment of the 
trajectories of all the MV’s over the entire remainder of the batch (for example see the 
trajectories in Fig. 3).  The MV vector therefore consists of an extremely high 
dimensional vector, but this vector of MV trajectories must respect many operational 
constraints both with respect to the shape of the trajectories over time, and with respect 
to the covariance among the MV’s at all time points (e.g. see Fig. 9). 
 

 
Figure 9: Control of polymer quality using LV models to adjust the MV trajectories at 
two decision times 
 
This problem can easily be formulated and solved in the latent variable space of PLS 
models.  An example from Flores-Cerrillo and MacGregor [2003b] on the control of 
product quality in batch nylon polymerization reactors is used here to illustrate the 
approach.  A PLS model is built using historical batch data and a few designed 
experiments in the MV’s at the decision points θi.  This model allows for prediction of 
the vector of final product quality variables using the measured trajectories on all the )ˆ(y



process and manipulated variables (e.g. Fig. 9) up to any decision time (θi) during the 
batch run.  The missing data imputation feature of PLS models is used to impute the as 
yet unknown process variables for the uncompleted portion of the batch.  A control 
action is then computed in the LV space (t1, t2, t3) of the PLS model that will optimize 
the quadratic objective 
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where y is a (1xm) vector and t a (1xa) vector.  The optimization is subject to the 
constraint that the new computed score values for the batch (tl = tl(θi) + ∆tl; l = 1, 2, …, 
a) fall within the range of historical values given by 
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Once the new score values have been computed from the control algorithm, the 
adjustments ∆u to the remainder of all the actual MV’s can then be computed using the 
PLS model for the X-space [Flores-Cerrillo and MacGregor, 2003b] as 

 where xT
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T is the vector of measurements on all  process 

and MV’s up to time θi and x2
T is the computed values for all process and MV’s from 

time θi until the end of the batch. The matrices W1, W2 and P2 are the partitioned parts 
of W and P relating to x1 and x2, respectively.  The plots in Fig. 9 show the resulting 
trajectories of two MV’s resulting from solving the control problem at two decision 
times (θ1 = 35 min and θ2 = 75 min) for the nominal conditions (0) and two disturbances 
(1 and 2).  In both situations the final controlled variables were returned to their target 
values at the end of the batch. 
 
Although a linear PLS model has been used in the above problem, it is important to note 
that the resulting controller is a nonlinear time varying one.  This results from two 
factors.  First, the batch PLS model is centered about the average or nominal trajectories 
of all variables and hence is modeling only variations about these (nonlinear) 
trajectories.  Secondly, the PLS model captures the time varying covariance structure 
among the deviations in all the variables as this structure changes throughout the entire 
course of the batch.  



8. Conclusions 
An overview of data based methods for the analysis, monitoring and control of 
processes has been presented.  In particular, emphasis has been placed on the use of 
latent variable models, based on PLS and PCA, to treat situations where the data 
matrices are less than full statistical rank.  In essence all these problems are subspace 
problems where the analysis, control etc. must be confined to the low dimensional 
subspaces defined by the latent vectors. Such situations dominate most industrial data 
base problems.   
 
Several industrial problems are discussed in this paper to illustrate the power of these 
approaches. These include the problems of analyzing large historical databases and 
trouble-shooting process problems; process monitoring and FDI; extracting information 
from multivariate image sensors for process monitoring and control; and control in 
reduced dimensional subspaces.  Many other important problems based on using latent 
variable models and industrial databases have also been addressed in the literature.  
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