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Abstract 
A large body of work exists in process industry supply chain optimisation. We describe 
the state of the art of research in infrastructure design, modelling and analysis and 
planning and scheduling, together with some industrial examples. We draw some 
conclusions about the degree to which different classes of problem have been solved, 
and discuss challenges for the future. 
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1. Introduction 
The EU has a strong position in the process industries, which constitute a significant 
proportion of its manufacturing base. The chemicals sector (excluding pharmaceuticals, 
food and drink and pulp and paper) contributes 2.4% of EU GDP. Process companies 
often sit in the middle of wider supply chains and as a result traditionally perform 
differently to companies operating at the final consumer end of the chain. In our 
experience, supply chain benchmarks for the process industries do not measure up well 
when compared with other sectors (e.g. automotive). Examples of such benchmarks are: 
(i) stock levels in the whole chain (“pipeline stocks”) typically amount to 30-90% of 
annual demand, and there are usually 4-24 weeks’ worth of finished good stocks; (ii) 
supply chain cycle times (defined as elapsed time between material entering as raw 
material and leaving as product) tend to lie between 1000-8000 hours, of which only 
0.3-5% involve value-adding operations; (iii) low material efficiencies, with only a 
small proportion of material entering the supply chain ending up as product (particularly 
fine chemicals and pharmaceuticals, where this figure is 1-10%). 
Process industry supply chains, involving manufacturers, suppliers, retailers and 
distributors, are therefore striving to improve efficiency and responsiveness. For “world 
class” performance, both the network and the individual components must be designed 
appropriately, and the allocation of resources over the resulting infrastructure must be 
performed effectively. The process industries have been hampered in this quest by both 
intrinsic factors (e.g. the need to influence processes at the molecular level, and wide 
distributions of asset ages) and technological factors (e.g. availability of tools for supply 
chain analysis). There are a number of reasons for this, many of which relate to details 
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of process and plant design, and to the prevailing economic orthodoxies when key 
decisions were taken. It is often difficult to effect large improvements simply by 
changing logistics and transactional processes – fundamental changes at the process and 
plant level and at the interfaces between the different constituents of the value chain 
from product discovery to manufacture and distribution are often required. The process 
industries will face new challenges in the future. These include: 
• A desire to move from a product-oriented business to a service-oriented business, 

providing life-cycle solutions for customers; 
• More dynamic markets and greater competition, with shorter product life-cycles; 
• Mass customisation (trying to deliver “specialty” products at “commodity” costs); 
• The need to evaluate, report and improve sustainability and environmental and 

social impacts throughout the supply chain, and aiming to anticipate and respond to 
future regulation and compliance requirements (e.g. recovery and recycling of 
consumer products at end-of-use). 

In this paper we will review some of the important relevant and associated research, as 
well as try to anticipate some of the emerging challenges for the sector. 

1.1 Different views of the process industry supply chain 
First of all, it makes sense to define what is meant by the process industry supply chain. 
Most companies, and indeed researchers, tend to employ a company-centric view of the 
supply chain, where the supply chain is seen as consisting of the enterprise in question 
as a central entity, possibly together with some peripheral partners, typically first-tier 
suppliers and customers (Lambert and Cooper, 2000). These views involve the 
integration of production and logistics planning across the enterprise, value-chain 
management, global network planning and investment appraisal. There is much less 
work on the “extended” supply chain, where the view is much broader, e.g. 
encompassing the suppliers’ suppliers and the customers’ customers. This is almost 
certainly due to (i) the relative youth of the discipline, and the fact that considerable 
benefits can be achieved simply by the use of company-centric views of the supply 
chain, and (ii) a wariness of supply chain “partners” and a lack of data sharing. 

1.2 Typical supply chain problems 
Supply chain problems may be divided into three categories: (i) supply chain 
infrastructure (network) design; (ii) supply chain analysis and policy formulation; and 
(iii) supply chain planning and scheduling. The first two are essentially relatively 
infrequent “off-line” activities associated with establishing the best way to configure 
and manage the supply chain network. The last involves deciding how to operate the 
network to respond best to the external conditions faced by the supply chain. These 
problems and progress in relevant research are reviewed in the next three sections. An 
example of a published industrial application is provided in each section as well, with a 
view to illustrating both academic research and state of the art in industrial practice. The 
paper then concludes with a view on future developments and challenges. 



2. Supply Chain Network Design  
The “problem” of supply chain network design is very broad and means different things 
to different enterprises. It generally refers to a strategic activity that will take one or 
more of the following decisions: 

• Where to locate new facilities (be they production, storage, logistics, etc.) 
• Significant changes to existing facilities, e.g. expansion, contraction or closure 
• Sourcing decisions – what suppliers and supply base to use for each facility 
• Allocation decisions – e.g. what products should be produced at each production 

facility; which markets should be served by which warehouses, etc. 
These decisions aim in some way to increase shareholder value. This means that models 
are employed to try to exploit potential trade-offs. These may include: 

i. Differences in regional production costs 
ii. Distribution costs of raw materials, intermediates and products 

iii. Differences in regional taxation and duty structures 
iv. Exchange rate variations 
v. Manufacturing complexity and efficiency (related to the number of different 

products being produced at any one site) 
vi. Network complexity (related to the number of different possible pathways 

from raw materials to ultimate consumers) 
Most companies do not aim to quantify the latter two explicitly, but rather employ 
policies (e.g. single-sourcing of customer zones; exclusive product-plant allocation) to 
simplify operation to the desired degree. 
Models may be steady-state or dynamic and may be deterministic or deal with 
uncertainties (particularly in product demands). Research in this field started very early 
on, with location-allocation problems forming part of the early set of “classical” 
operations research problems, see e.g. Geoffrion and Graves (1974) who consider the 
problem of distribution system layout and sizing and DC-customer allocation. It was 
recognised early on that systematic, optimisation-based approaches should be used, and 
that “common-sense” heuristics might lead to poor solutions (Geoffrion and van Roy, 
1979). These early models tended to focus on the logistics aspects. Clearly, much more 
benefit could be achieved by simultaneously considering the production aspects. 
An early example of a production-distribution network optimisation study in the process 
industries is given by Brown et al. (1987) who considered the biscuit division of 
Nabisco. Their model involves the opening or closing of plants, the assignment of 
facilities to plants and the assignment of production to facilities. The production model 
is based on the relative product-facility “yields”.  A thorough review of the work in this 
area was presented by Vidal and Goetschalckx (1997).  They categorise previous work 
according to a number of characteristics, including: 

• Treatment of uncertainties and dynamics and production and supplier capacity 
• Ability to include single-sourcing restrictions 
• Customer service and inventory features 
• “International” (i.e. taxes, duties, etc.) features 
• Number of “echelons” considered (see below) 
• Cost non-linearities,  model size and solution techniques 



They conclude that features that are not well treated include stochastic elements, 
accurate descriptions of manufacturing processes (and hence capacity), the international 
aspects, extended and multi-enterprise networks and solution techniques. 
In general, the works reviewed above use fairly simple representations of capacity and 
treat all data as deterministic. Given that many of the plants under consideration are 
flexible and multipurpose, and there is a wide product slate, a better representation of 
capacity and demand uncertainty is required for more accurate solutions. 
Kallrath (2002a) addresses the issue of process and plant representation. He describes a 
tool for simultaneous strategic and operational planning in a multi-site production 
network. He aims to optimise the total net profit of a global network, where key 
decisions include: operating modes of equipment in each time period, production and 
supply of products, minor changes to the infrastructure (e.g. addition and removal of 
equipment from sites), and raw material purchases and contracts. A multiperiod model 
is formulated where equipment may undergo one mode change per period. The standard 
material balance equations are adjusted to account for the fact that transportation times 
are much shorter than the period durations. Counter-intuitive but credible plans were 
developed which resulted in cost savings of several millions of dollars. Sensitivity 
analyses showed that the key decisions were not too sensitive to demand uncertainty. 
Sabri and Beamon (2000) also develop a combined strategic-operational design and 
planning model, with two interesting features: a multi-objective optimisation procedure 
is used because of the difficulty of trading off very different types of objectives, and 
uncertainties in lead times as well as demands are treated. However, the model is 
steady-state rather than dynamic. 
Tsiakis et al. (2001a) show how demand uncertainty can be introduced in a multiperiod 
model. They argue that the future uncertainties can captured well through a scenario 
tree, where each scenario represents a different discrete future outcome. These should 
correspond to significant future events rather than just minor variations in demand. 
They utilise a multipurpose production model where flexible production capacity is to 
be allocated between different products, and determine the optimal layout and flow 
allocations of the distribution network. 
All of the above works rely on the concept of fixed “echelons”, i.e. they assume a given 
fundamental structure for the network in terms of the echelons involved (e.g. suppliers, 
manufacturing plants, warehouses, distribution centres, customers). Thus, a rather rigid 
structure is imposed on the supply chain and the design procedure focuses on the 
determination of the number of components in each echelon and the connectivity 
between components in adjacent echelons. However, changes in the fundamental 
structure of the network (e.g. the introduction of additional echelons, or the removal or 
partial by-passing of existing ones) may sometimes lead to economic benefits that far 
exceed what can be achieved merely by changing the number of components and/or the 
connectivity within an existing structure. Tsiakis et al. (2001b) extend this body of work 
by developing a general framework that integrates the different components of a supply 
chain without any a priori assumption as to the fundamental structure of the network. 
The framework uses the concept of a flexible, generalised production/warehousing 
(PW) node. These PW nodes can be located at any one of a set of candidate locations, 
produce one or more products using one or more shared resources, hold inventories of 
the above products as well as of any other material in the network, and exchange 



material with other PW or external nodes. The functions of these nodes are therefore not 
specified a priori, and neither is any flow network superimposed. Rather, the node 
functionalities (production, storage or both) and the flows between nodes are 
determined as part of the optimisation. This tends to result in “leaner” networks, where 
storage capacity is only established where necessary. The flexible network structure also 
provides more scope for exploiting economies of scale in transportation. 

2.1 Process/Capacity Planning 
In the PSE community, the related problem of long-term capacity planning (usually at a 
single, albeit complex, site) has been considered by several researchers. This problem 
involves the long term planning of capacity in a single production site, represented by a 
network of processes interconnected by material streams. An initial capacity is 
associated with each process, and the problem must determine which processes to 
operate in the future (possibly choosing new processes from a candidate set) and where 
and when to expand capacity. In the process industries, production costs tend to 
dominate (e.g. Camm et al., 1997), so this decoupling of production and logistics is 
reasonable. One of the earliest papers in this area was by Sahinidis et al. (1989) who 
describe a MILP model which selects processes to operate from an integrated network, 
and optimises net present value. Sahinidis and Grossmann (1992) and Liu and Sahinidis 
(1995) describe means of improving the solution efficiency of this class of problem. Liu 
and Sahinidis (1996) and Iyer and Grossmann (1998) extended the model of Sahinidis 
and Grossmann (1992) to include multiple product demand scenarios in each period. 
They then propose efficient algorithms for the solution of the resulting stochastic 
programming problems (formulated as large deterministic equivalent models), either by 
projection (Liu and Sahinidis, 1996) or by decomposition and iteration (Iyer and 
Grossmann, 1998).  
The extension of the objective beyond simple expections was presented by Ahmed and 
Sahinidis (1998), who argue that robustness should also be sought. They penalise 
downside risk, defined here as costs above the expected cost. Applequist et al. (2000) 
also recognise that simply optimising expected returns can lead to higher risk solutions. 
They introduce the concept of a risk premium, which reflects the expected return from 
known classes of investment of similar variance to the capacity planning problem under 
investigation, the idea being that any investment should at least meet the risk premium. 
A fast approximation scheme for scenario-based capacity planning problems has been 
reported by Ahmed and Sahinidis (2003); this is guaranteed always to generate a 
feasible solution.  
An interesting area in which significant discrete uncertainty (related to success or failure 
of product tests and clinical trials). The problem of testing and capacity planning in this 
sector has recently been reviewed by Shah (2003). 

2.2 An industrial application 
An industrial application is described by Camm et al. (1997) who worked on the 
restructuring of Procter and Gamble’s North American supply chain. A year-long 
project involving integer programming, network optimisation and geographical 
information systems (GIS) was responsible for streamlining the US manufacturing and 
distribution operations with annual savings of $200m. The initial network comprised 50 



product lines, 60 plants, 10 distribution centres and hundreds of customer zones. A 
number of factors made this initiative particularly timely, including deregulation, brand 
globalisation for production economies, higher plant reliabilities and throughputs, and 
excess capacity from a series of acquisitions. 
Product “sourcing” (i.e. the allocation of products to manufacturing sites) was the focus 
of Camm et al.’s study, with a secondary focus on distribution network design. Rather 
than develop a single comprehensive production-distribution optimisation model, they 
decomposed the problem into a product-plant allocation problem and a distribution 
network design problem. Raw material and manufacturing costs tended to dominate, 
and so the product sourcing problem was the more important of the two, and relatively 
independent of the distribution network design because 80-90% of production is 
shipped directly to customers rather than passing through P&G’s distribution network. 
A family of solutions to the distribution network design problem is then made available 
to the product sourcing model. This simply allocates production to plants to minimise 
overall costs. The problem is solved as a capacitated network flow problem, with a very 
crude production model (each plant simply constrained in terms of total annual 
production across all products). The authors make the point that being able to visualise 
the outputs of large-scale models (via GIS in this case) is important for their credibility. 
Even with such a simple representation of site capacity, large savings (particularly in 
terms of manufacturing costs and the removal of excess capacity) were identified.  

2.3 Remarks 
It should be clear that a very large amount of work has been undertaken to address the 
infrastructure design problem, both in the OR/MS and PSE fields. However, there are a 
number of outstanding issues which provide challenges for ongoing research. 
• It has not really been shown what an adequate description of manufacturing 

processes is at this level, and what the potential benefit of including more detail on 
the manufacturing process is. In the case study above, significant benefits were 
achieved with a low level of resolution; subsequent studies may require more detail. 

• The international nature of many supply chains provides additional opportunities for 
optimisation, especially when considering features such as transfer prices, taxes, 
royalties and duties. Combined financial and production-distribution models should 
be considered (see Shapiro’s (2003) review of strategic planning). 

• Most research still has the enterprise envelope as the boundary conditions. Co-
ordinated optimisation across the extended supply chain should result in significant 
benefits (see, e.g. Lin et al., 2000). 

• The full range of uncertainty is not explored (e.g. raw material availabilities and 
prices, product prices, international aspects, etc.) 

• Perhaps most importantly, from the process engineering perspective, is that there is 
no connection between process design and supply chain operation. We have seen 
many examples where process design has compromised supply chain operation (see, 
e.g. Shah, 2003). Backx et al.  (1998) concur, and introduce the concept of supply 
chain conscious process operation. Process design for supply chain efficiency will 
be an important future research area. We will return to this in section 5. 



3. Supply Chain Simulation and Policy Analysis 
Dynamic process simulation has long been recognised as a useful tool for understanding 
and improving processes. Similarly, supply chain simulation is becoming a popular tool 
to formulate policy. As illustrated as far back as 1958 by Forrester, the processes used at 
different nodes of the supply chain result in a variety of different dynamic behaviours, 
often to the detriment of overall performance. Hence simulation is useful in identifying 
the potential dynamic performance of the supply chain as a function of different 
operating policies, ahead of actual implementation of any one policy. In most cases, the 
simulations are stochastic in that they repetitively sample from distributions of uncertain 
parameters to build up distributions of performance measures, rather than point values. 
Beamon (1998) presented a review of supply chain models and partitioned them into 
“analytical” (i.e. purely declarative) and “simulation” (i.e. including procedural 
elements). Analytical models are used to optimise high-level decisions involving 
unknown configurations, taking an aggregate view of the dynamics and detail of 
operation (e.g. supply chain network design). On the other hand, simulation models can 
be used to study the detailed dynamic operation of a fixed configuration under 
operational uncertainty, and can be used to evaluate expected performance measures for 
the fixed configuration to a high level of accuracy. Although the field of  “Industrial 
Dynamics” is very large, it tends to concentrate on logistics and inventory planning and 
normally ignores production or has a very simplistic representation of production. We 
shall therefore concentrate on research with a significant production element here. 
Bose and Pekny (2000) use a model predictive control (MPC) framework to understand 
the dynamic behaviour of a consumer goods supply chain. They study different levels of 
co-ordination between the supply and demand entities. They also consider forecasting 
techniques, particularly for promotional demands. The forecasting model sets desired 
inventory targets which the scheduling model (based on MILP optimisation) tries to 
meet. This is performed in a repetitive, rolling horizon approach. It allows clear 
conclusions to be drawn regarding promotion and inventory management and the 
benefits and drawbacks of different degrees of co-ordination. 
Perea-Lopez et al. (2001) study a polymer supply chain where the manufacturing 
process is a single stage batch multiproduct reactor, supplying a warehouse, distribution 
network and retailers. They capture the supply chain dynamics by the balance of 
inventories and the balance of orders in terms of ordinary differential equations, 
together with the definition of shipping rates to the downstream product-nodes, subject 
to some physical bounds and initial conditions for the inventory and order values.  The 
model therefore assumes the material and order flows to be continuous. A variety of 
different supply chain control policies are evaluated; these are based on a decentralised 
decision making framework. They identify the policies that best mitigate perturbations. 
They extend this work (Perea-Lopez et al., 2003) to include MILP-based scheduling in 
an MPC framework, whereby regular solutions are generated based on the current state 
and portions of the solution implemented. A centralised approach where all decisions 
are taken simultaneously by a co-ordinator is contrasted with a decentralised approach 
where each entity makes decisions independently. The benefits of central co-ordination 
are clear, with increases in profit of up to 15% observed in the case study presented. 



Supply chains can be thought of as distributed systems with somewhat decentralised 
decision making (especially for short-term decisions). The multi-agent based approach 
is a powerful technique for simulating this sort of system. Agent-based simulation 
techniques have been reported by Gjerdrum et al. (2000), García-Flores and Wang 
(2002) and Julka et al. (2002a, b). In all cases, the different players in the supply chain 
are represented by agents who are able to make autonomous decisions based on the 
information they have available and messages they receive. The agents include 
warehouses, customers, plants, and logistics functions. In Gjerdrum et al. (2000) and 
García-Flores and Wang (2002), the plant decision making involved production 
scheduling; the plant agent used a commercial schedule optimisation package  agent-
based systems have the advantage of being able to provide wrappers to existing 
software. The other agents used a variety of rules (e.g. to generate orders or to manage 
inventory). Agents are able to negotiate solutions from different starting points. Wang et 
al. (2002) have a single plant supply chain and evaluate different inventory management 
policies, while Gjerdrum et al. (2000) have two plants and also evaluate the effect of 
different product sourcing rules. Julka et al. (2002b) consider the operation of a refinery 
and demonstrate the usefulness in crude procurement, demand tracking and retrofit 
analyses. Overall, the agent-based approach is a good framework for the abstraction and 
modular development of supply chain models, and is supported by some good software 
development tools that have been widely used in other sectors (e.g. telecoms). 
Hung et al. (2003a) developed a flexible, object-oriented approach to the modelling of 
dynamic supply chains. This is based a generic node which has inbound material 
mangement, material conversion and outbound material management capabilities, and 
can be specialised to describe plants, warehouses etc. Both physical processes (e.g. 
manufacturing, distribution and warehousing) and business processes are modelled. By 
the latter, we mean how decisions are taken at the different nodes of the chain, who 
takes them, what tools/methods are used etc. This means that the logic of software tools 
used for decision-making at various nodes (e.g. DRP and MRP) are replicated in the 
simulation tool. The aim of this approach is to suggest non-invasive improvements to 
the operation of the supply chain. Such improvements may come about through changes 
in parameters (e.g. safety stocks) or business processes (e.g. relationships between 
agents). In order to assess future performance, uncertainties need to be taken into 
account. These include product demands, process yields, processing times, 
transportation lead times etc. A stochastic simulation approach that samples from the 
uncertain parameters is a useful way of determining expected future performance as 
well as confidence limits on future performance measures. Because the uncertainty 
space is very large, and uncertainties are time varying, Hung et al. (2003b) developed a 
very efficient (quasi Monte Carlo) sampling procedure. Shah (2003) describes two 
pharmaceutical studies based on this. 
An area where stochastic simulation is finding increased use is in refining the results of 
relatively coarse optimisation models. In this case, optimisation models are used to 
determine important structural and parametric decisions, and simulation is used to 
evaluate the distributions of performance measures and constraints more accurately. 
This has been reported by Karabakal et al. (2000) who studied the VW distribution 



network in the USA and Gnoni et al. (2003) who develop a robust planning procedure 
for a multi-site automotive components facility. 
Blau et al. (2000) consider the “value-chain” problem of risk management at the 
development stage in the pharmaceutical industry. This is a long, costly and inherently 
risky process with a large up-front commitment. The aim of their work is to support the 
process of product selection and test planning while managing risk effectively. The 
development activities are modelled as a probabilistic activity network, where each 
activity has a time, precedence relations, resource requirements and probability of 
success. The risk of a set of decisions must be balanced against the potential reward. 
The risk/reward ratio can then be used to compare different drug candidates. A 
screening process removes any obviously unpromising candidates, and then the 
remainder must be sequenced through the development pipleline. A heuristic approach 
using simulation with local rules in response to trigger events (e.g. failure of a test) is 
employed. This aims to process tasks as quickly as possible and although there is no 
guarantee of not violating resource constraints, these violations are usually not large. 
Subramanian et al. (2001, 2003) extend this work to take explicit account of the 
resource requirements of the problem. They make the point that a single-level 
mathematical programming problem cannot hope to capture all these features. On the 
other hand, simulation techniques cope well with the stochastic elements, but require 
local, myopic rules to resolve conflicts or make choices as they arise. They therefore 
developed an integrated optimisation-simulation framework (SIM-OPT), where a 
simulator reverts to an optimisation layer (with different degrees of optimisation) to 
resolve conflicts or make choices such as task sequencing. The results show that using 
optimisation far outperforms the typical local rules used in classical simulation. By 
repetitive simulation, the statistical trends can be tracked and corporate policy 
(particularly in relation to risk and resourcing) can be analysed. Also, data from the 
inner simulation loop can be used to update parameters in the optimisation loop. 

3.1 An industrial application (D’Alessandro and Baveja, 2000) 
The polymers and resins business of Rohm and Haas was being squeezed by powerful 
customers and suppliers and had not been able to increase prices of key products 
between 1992 and 1997. An ERP system was rolled out between 1992 and 1995, but 
because underlying processes did not change, the expected productivity improvements 
did not materialise. The division therefore undertook a study to try to improve supply 
chain margins. Prior to the study, the policy was quite chaotic, aiming to serve all 
customers equally with constant disruptions to production plans. The study involved (i) 
a review of customer service policy; (ii) a review of product demand management; and 
(iii) a review of production planning and manufacturing management. 
The review of customer service policy recognised that treating all customers uniformly 
was not a good idea and placed unnecessary stress on the supply chain. The customer 
base was then arranged into four tiers, where the first tier reflected very important 
customers responsible for a significant proportion of demand, and the fourth tier 
represented the long tail of very low volume customers with erratic demands. This 
fourth tier was then not serviced directly, but rather through distributors who managed 
stock themselves. 



There was no formal demand management policy prior to the study, and most products 
were made to stock with a view to supplying on short lead times. In the study, products 
were categorised into four quadrants based on demand volume and demand variability. 
The contribution of products in each quadrant to the prevailing inventory costs was 
found to be very different. This resulted in a new strategy, whereby some capacity was 
dedicated to high volume, low variability products, which were made to stock for low 
lead times. This results in far fewer changeovers. The low volume, high variability 
products were to be made to order. Customers would have to expect longer lead times 
and would be expected to order in production batch multiples. 
In order to identify how to allocate products to production capacity and to estimate the 
new lead times, a discrete-event supply chain simulation model was developed. 
Different rules for make to stock and make to order products were evaluated, and it was 
found that segregating the resources for these classes of products was beneficial. 
Overall an estimated improvement in throughput of 15% was achieved, and millions of 
dollars were saved while operating a more predictable, less stressful system. Again, the 
simulation model is not very complicated, but still identifies significant benefits. 

3.2 Remarks 
This is very much an emerging area, and one which is expected to expand rapidly. One 
key issue is the integration of business process modelling with the physical aspects 
(recipes, resources etc.). There is no consensus yet on frameworks for addressing this. A 
simulation engine needs to replicate or incorporate algorithms used at certain parts of 
the supply chain. The emerging frameworks appear to be agent-based and object-
oriented, both of which are suited to modelling complex systems with degrees of 
distributed decision making. These complex, stochastic, discrete-event models contain 
adjustable parameters. The application of optimisation procedures (probably gradient-
free) to select good values for these is another interesting avenue to pursue. 

4. Supply Chain Planning 
Supply chain planning considers a fixed infrastructure over a short- to medium-term, 
and seeks to identify how best to use the production, distribution and storage resources 
in the chain to respond to orders and demand forecasts in an economically efficient 
manner. Optimisation methods have found considerable application here. A feature of 
these problems is that the representation of the production process depends on the gross 
margin of the business. Businesses with reasonable to large gross margins (e.g. 
consumer goods, specialties) tend to use “recipe-based” representations, where 
processes are operated at fixed conditions and to fixed recipes. Recipes may also be 
fixed by regulation (e.g. pharmaceuticals) or because of poor process knowledge (e.g. 
food processing). On the other hand, businesses with slimmer margins (e.g. refining, 
petrochemicals) are moving towards “property-based” representations, where process 
conditions and (crude) process models are used in the process representation, and 
stream properties are inferred from process conditions and mixing rules. We shall 
consider each of these in turn. 



4.1 Recipe-based planning 
Here, process descriptions based on fixed recipes have been used to optimise 
production, distribution and storage across multiple sites, normally using MILP models. 
Wilkinson et al. (1996) describe a continent-wide industrial case study. This involved 
optimally planning the production and distribution of a system with three factories and 
fourteen market warehouses and over a hundred products. It was found that the ability 
of the model to capture effects such as multipurpose operation, intermediate storage and 
changeovers gave rise to counter-intuitive results, such as producing materials further 
away from demand points than would be expected. This balances the complexity 
associated with producing many products in each factory with the extra distribution 
costs incurred by concentrating the manufacture of specific products at specific sites. 
McDonald and Karimi (1997) describe a similar problem for multiple facilities which 
produce products on single-stage continuous lines for a number of geographically 
distributed customers. Their model is of multiperiod form, and takes account of capacity 
constraints, transportation costs and shortage costs. An approximation is used for the 
inventory costs, and product transitions are not modelled. They include a number of 
additional supply chain related constraints such as single sourcing, internal sourcing and 
transportation times. 
Kallrath (2002b) presented a comprehensive review on planning and scheduling in the 
process industry. He identifies the need for careful model formulation for the solution of 
complex problems in reasonable computational times. He describes briefly how careful 
modelling and algorithm design enables the solution of a 30-day integrated refinery 
scheduling problem. 
Neumann et al. (2002) describe a planning tool that can be used at all levels in the 
supply chain, including network design, supply chain planning and short-term 
scheduling. They emphasise the importance of demand management in supply chain 
planning, but focus mainly on the scheduling application. 
Berning et al. (2002) describe a multisite planning-scheduling application which uses 
genetic algorithms for detailed scheduling at each site and a collaborative planning tool 
to co-ordinate plans across sites. The plants all operate batchwise, and may supply each 
other with intermediates, creating interdependencies in the plan. The scale of the 
problem is large, involving of order 600 different process recipes, and 1000 resources. 
Timpe and Kallrath (2000) present a mixed integer optimisation-based multisite 
planning model which aims to give accurate representations of production capacity. It is 
a multiperiod model, where (as in Kallrath, 2002a) each unit is assumed to be in one 
mode per period – this enables the formulation of tight changeover constraints. An 
interesting feature of the model is that the grid spacings are shorter at the start of the 
horizon (closer to scheduling) and longer later on (closer to planning). The problem 
solved involved four sites in three geographical regions. A similar problem (albeit with 
continuous process networks) is considered by Bok et al. (2000) who develop a bilevel 
problem-specific decomposition scheme to deal with larger scale problems. 
The approaches above assume deterministic demands. Gupta and Maranas (2000) and 
Gupta et al. (2000) consider the problem of mid-term supply chain planning under 
demand uncertainty. Gupta and Maranas (2000) utilise a two-stage stochastic 
programming approach, where production is chosen here-and-now while distribution 
decisions are optimised in a wait-and-see fashion. This makes sense, since production 



tends to be the main contributor to lead times. Gupta et al. (2000) investigate the trade-
offs between customer demand satisfaction and production costs, using a chance-
constrained approach applied to the problem of McDonald and Karimi (1997). 
Ryu and Pistikopoulos (2003) aim to deal with two problematic features in supply chain 
planning: (i) hierarchical decision structures with interdependence of the decisions of 
different agents; and (ii) uncertainty in data. They develop a bi-level approach which 
elegantly captures the interdependence of the solutions and solve the problem using a 
parametric programming approach. 

4.2 Property-based planning 
This is a relatively new field, but one which is likely to grow, given the consolidation of 
lower margin facilities into “world-scale” complexes. Jackson and Grossmann (2003) 
propose a multiperiod nonlinear programming model for the production planning and 
product distribution of multi-site continuous multiproduct plants. They  represent the 
plants by nonlinear process models.  Hence the operating conditions and key properties 
form part of the model variables. A typical problem involves 12 one-month periods, up 
to 5 markets, 4 sites and 118 products. A Lagrangean decomposition scheme is used, 
comparing spatial decomposition (i.e. between sites) and temporal decomposition (i.e. 
decoupling time periods via the inventory carry-overs). The less intuitive temporal 
decomposition method was found to be superior. 
Although not strictly a “supply chain” planning problem, the area of refinery planning 
and scheduling has seen the use of process models. For example, Moro et al. (1998) and 
Pinto et al. (2000) describe a refinery planning model with non-linear process models 
and blending relations.  They demonstrate that industrial scale problems can in principle 
be solved using commercially available mixed integer non-linear programming solvers. 
Wenkai et al. (2003) briefly describe a large refinery scheduling and inventory 
management model and introduce the concept of marginal value analysis which 
identifies critical streams and operations. 
Neiro and Pinto (2003) extend this work to a set of refinery complexes, and also add 
scenarios to account for uncertainty in product prices. To ensure a robust solution, the 
decision variables are chosen “here and now”.  They demonstrate that non-linear models 
reflecting process unit conditions and mixture property prediction can be used in 
multisite planning models. They also show that there are significant cost benefits in 
solving for the complex together rather than for the individual refineries separately. 

4.3 An industrial application (Kegler et al., 2003) 
Syngenta produce and sell many varieties of seed corn hybrids. These are subject to 
both yield and demand uncertainties, and suffer from long lead times because the 
production process involves growing the hybrids in the year before they are needed and 
sold from inventory. They may remain in inventory for a few successive seasons before 
they reach their expiry date. Syngenta’s customers (farmers) must choose which hybrids 
to plant during their growing season. This choice will depend on a number of factors 
including the location, soil, weather and their experience with particular hybrids in the 
previous growing season. An interesting feature is that there is a North American (NA) 
production (planting) season and a South American (SA) one six months later. This 
means that a “classical” two-stage stochastic programming technique may be applied. 



When planning the production of year n, the inventory on hand for the demands in year 
n and the costs for NA and SA production are known. The demands in years n and n+1 
and the yields for NA and SA are unknown but can be represented by distributions. The 
yields relate to the key decision variables which are the areas to plant for each hybrid. 
The variance in the distribution of demand for year n is much smaller than n+1 since 
information on year n-1 is available.  The two stage approach uses the expected value 
for year n and commits to the areas planted in NA. The second stage decisions are the 
areas to plant for each hybrid in SA. These are not selected here and now, but rather the 
uncertain variables are discretised into scenarios and the areas are determined on a wait-
and-see basis. At the end of the first stage, the actual NA yields are known, and the 
demand for year n is known with very little uncertainty. At the end of the NA growing 
season, the model is re-run to select the best here-and-now values for the SA production 
areas, based on the new yield information. The objective function in both optimisation 
models is the maximisation of expected gross margin. The results were quite different 
from historical plans, with considerably higher predicted margins (increases of $5m per 
annum). Qualitatively speaking, the SA production was historically used as a stop-gap, 
while the new approach used it more systematically.  The model had no complicated 
resource constraints since there is no upper bound on the total area planted. This means 
that each hybrid can be considered independently. Again, this study illustrates the 
benefits of systematic approaches, even if the models used are not very complicated. 

4.4 Remarks 
Many of the points made in section 2.3 hold here as well, especially with respect to 
process design, global trade and classes of uncertainty. Romero et al. (2003) show how 
to integrate financial and planning models at the plant level; similar models at the 
enterprise level are needed. More work needs to be undertaken on multi-enterprise 
(extended) supply chain planning. For illustration, below is an order profile for a 
product of one of our collaborators. The dynamics are generated by their customer’s re-
ordering policy. What would be better – an optimised plan trying to meet hundreds of 
order profiles like this, or a collaborative plan, driven by smoother end-user demands? 
The property-based planning area is bound to grow, with gradual convergence of supply 
chain and process simulation/optimisation models. 
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5. Future Developments and Challenges 
A number of challenges have already been posed in sections 2.3, 3.2 and 4.4 above. We 
see two generic important future challenges: 



Improved design for existing processes. A distinguishing feature of process industry 
supply chains is that supply chain performance is very strongly affected by the 
flexibility and responsiveness of the production process. This is not the case to the same 
extent in other industries. For example, consider the multimedia products supply chain. 
Here, efficient forecasting, flexible warehouses and real-time downstream supply chain 
management and adaptation are critical; production is very straightforward (stamping 
out CDs and DVDs) and often a lead time of one day can be assumed for a product. We 
believe “process design for supply chain responsiveness” is an important area that has 
not receive much attention so far. The process industries have not fully grasped the 
concept of mass customisation. For example, instead of using a single reactor to 
produce different complete polymers from monomers, why not try to develop building 
blocks of medium molecular weights and combine them as appropriate? To what extent 
can intermediates be made at “worldscale” centralised facilities and specialised products 
be configured at flexible, near-market facilities? 
Effective design of “new” supply chains. It is evident that the process industry supply 
chains of the future will be quite different from those of the past. In addition, a number 
of new supply chains (parts of which may already be present) will emerge. There exists 
a relatively short window of opportunity to explore the optimal configuration of such 
supply chains before they develop organically – this may be of vital importance in 
informing national and international policy as well as strategic decisions in industry. 
Examples of such “supply chains of the future” include: (i) hydrogen, and more 
generally, supply chains to support fuel cells; (ii) water; (iii) fast response therapeutics 
(particularly vaccines) for civilian and homeland security uses; (iv) energy – the 
provision of the energy needs for a country can be viewed as a supply chain which is 
subject to significant decarbonisation pressures; (v) life science products; (vi) crops for 
non-food use and biorefineries; (vii) gas-to-value (i.e. generating high value products 
(e.g. very low sulphur diesel) from natural gas in situ); and (viii) waste-to-value and 
reverse production systems (closed loop supply chains, see e.g. Realff et al., 2000). 
Although research in basic sciences related to emerging industries is currently flavour of 
the month, supply chain research as applied to these will be important. Wang (2000) 
notes that enablers for emerging industries (e.g. micro-nano technology, biotechnology 
and advanced material technology) are information technology, supply chain 
management, modelling and simulation, human development and knowledge 
management. 
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