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Abstract 
The synthesis of complex distillation columns has remained a major challenge since the 
pioneering work by Sargent and Gaminibanadara that was reported in 1976. In this paper we 
first provide a review of recent work for the optimal design of distillation of individual 
columns using tray-by-tray models. We examine the impact of different representations and 
models, NLP, MINLP and GDP, as well as the importance of appropriate initialization 
schemes. We next provide a review of the synthesis of complex column configurations for 
zeotropic mixtures and discuss different superstructure representations as well as 
decomposition schemes for tackling these problems.  Finally, we briefly discuss extensions for 
handling azeotropic mixtures, reactive distillation columns and integration in process 
flowsheets. Numerical examples are presented to demonstrate that effective computational 
strategies are emerging that are based on disjunctive programming models that are coupled 
with thermodynamic initialization models and integrated through hierarchical decomposition 
techniques. 

1. Introduction 
The optimal synthesis of distillation continues to be a major problem in the design of chemical 
processes due to the high investment and operating costs involved in these systems. The recent 
trends in this area have been to address models of increasing complexity through the use of 
mathematical programming. The high degree of nonlinearity and the difficulty of solving the 
corresponding optimization models, however, have prevented methods with rigorous models 
from becoming tools that can be readily used by industry. For instance, a common problem that 
is experienced with rigorous models is when the trays or columns are “deleted”, as then the 
equations describing the MESH equations become singular, which in turn produces 
convergence failure. 
In this paper we provide a general review of the area of optimal design and synthesis of 
distillation columns, emphasizing recent developments in our groups at Carnegie Mellon and 
INGAR, particularly the Ph.D. work of Mariana Barttfeld. As will be shown, the successful 
                                                           
∗To whom all correspondence should be addressed. E-mail: grossmann@cmu.edu 



solution of the optimization of individual columns and complex column systems seems to 
require appropriate representations for the design alternatives, disjunctive programming 
formulations that are coupled to decomposition methods, and initialization schemes that are 
based on thermodynamics. We first present a general review of optimal distillation design. This 
is followed by a brief review of MINLP and Generalized Disjunctive Programming (GDP). We 
then examine the optimal design problem of columns and contrast the relative 
advantages/disadvantages of MINLP and GDP models. We also discuss the impact of various 
column superstructure representations as well as the importance of suitable initialization 
schemes. We next present a general classification of superstructures and discuss briefly several 
alternatives, including a thermodynamically-based superstructure. We then discuss a 
decomposition strategy for solving the GDP model. Finally, we describe an example problem. 

2. Background 
The economic optimization of a distillation column involves the selection of the number of 
trays and feed location, as well as the operating conditions to minimize the total investment and 
operation cost. Discrete decisions are related to the calculation of the number of trays and feed 
and products locations and continuous decisions are related to the operation conditions and 
energy use involved in the separation. A major challenge that remains is to perform the 
optimization using tray-by-tray models that assume phase equilibrium. 
There are two major formulations for the mathematical representation of problems involving 
discrete and continuous variables: Mixed-Integer Nonlinear Programming (MINLP) and 
General Disjunctive Programming (GDP) where the logic is represented through disjunctions 
and propositions (Grossmann, 2001). Both approaches have been employed in the literature to 
model distillation columns.  
The most common form of MINLP problems is the special case in which the 0-1 variables are 
linear while the continuous variables are nonlinear: 
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Major methods for MINLP problems include first Branch and Bound (BB) (Gupta and 
Ravindran, 1985; Borchers and Mitchell, 1994; Stubbs and Mehrotra, 1999), which is a direct 
extension of the linear case, except that NLP subproblems are solved at each node. Generalized 
Benders Decomposition (GBD) (Benders, 1962; Geoffrion, 1972), and Outer-Approximation 
(OA) (Duran and Grossmann, 1986; Yuan, Zhang, Piboleau and Domenech, 1988; Fletcher and 
Leyffer, 1994; Ding-Mai and Sargent, 1992), are iterative methods that solve a sequence of 
alternate NLP subproblems with all the 0-1 variables fixed, and MILP master problems that 
predict lower bounds and new values for the 0-1 variables. The difference between the GBD 



and OA methods lies in the definition of the MILP master problem; the OA method uses 
accumulated linearizations of the functions, while GBD uses accumulated Lagrangean 
functions parametric in the 0-1 variables. The LP/NLP based branch and bound by Quesada 
and Grossmann (1992) essentially integrates both subproblems within one tree search, while 
the Extended Cutting Plane Method (ECP) (Westerlund and Pettersson, 1995) does not solve 
the NLP subproblems, and relies exclusively on successive linearizations. All these methods 
assume convexity to guarantee convergence to the global optimum. Nonrigorous methods for 
handling nonconvexities include the equality relaxation algorithm by Kocis and Grossmann 
(1987) and the augmented penalty version of it (Viswanathan and Grossmann, 1990). A review 
on these methods and how they relate to each other can be found in Grossmann (2002). 
MINLP problems can be solved for instance with the computer code DICOPT (Viswanathan 
and Grossmann, 1990), which is an implementation of the Outer Approximation/Equality 
Relaxation (OA/ER) algorithm (Kocis and Grossmann, 1987). The computational expense in 
solving these models depends largely on the problem structure. There is also the computational 
difficulty that each constraint must be solved even if the stage “disappears” from the column. It 
would be desirable to eliminate these constraints, not only to reduce the size of the NLP 
subproblems, but also to avoid singularities that are due to the linearization at zero flows. 
MINLP formulations have been used for optimizing individual columns and superstructures 
using economic objective functions (Viswanathan and Grossmann,1990; Viswanathan and 
Grossmann,1993; Bauer and Stilchmair, 1998; Aguirre et al., 2001; Dunebier and Pantelides, 
1999). Two basic representations arise from this formulation according to the way the discrete 
decisions related to the tray optimization are modeled. In one a binary variable with a value of 
“1” is assigned to each tray of the column denoting its existence, and with a value of “0” its 
absence (Viswanathan and Grossmann, 1990). In the other representations, binary variables are 
used for the discrete decisions related to the location of the reflux, reboil or both (Viswanathan 
and Grossmann, 1993; Bauer and Stilchmair, 1998; Aguirre et al., 2001). In both cases, flows 
of streams of non-existing trays are driven to zero which tends to cause singularities, and hence 
numerical difficulties for convergence. 
In order to overcome difficulties in MINLP with “disappearing streams and units,” Raman and 
Grossmann (1994) proposed Generalized Disjunctive Programming (GDP), which in turn 
provides a modeling and solution framework for formulating problems with algebraic 
equations and symbolic logic equations. The GDP model consists of Boolean and continuous 
variables that are involved in an objective function, subject to three types of constraints: (a) 
global inequalities that are independent of discrete decisions; (b) disjunctions that are 
conditional constraints involving an OR operator; (c) pure logic constraints that involve only 
the Boolean variables.  More specifically, the problem is given as follows: 
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where x are continuous variables and y are the Boolean variables. The objective function 
involves the term f(x) for the continuous variables (e.g. operating cost) and the charges ck that 
depend on the discrete choices. The equalities/inequalities g(x) ≤ 0 must hold regardless of the 
discrete conditions and hjk(x) ≤ 0 are conditional constraints that must be satisfied when the 
corresponding Boolean variable yjk is true for the jth term of the kth disjunction. The set Ik 
represents the number of choices for each disjunction defined in the set K. Also, the fixed 
charge ck is assigned the value γjk for that same variable. Finally, the constraints Ω(y) involve 
logic propositions in terms of Boolean variables. 
For the nonlinear case of problem (GDP), Lee and Grossmann (2000) have developed 
reformulations and algorithms that rely on obtaining the algebraic description of the convex 
hull of the nonlinear convex inequalities.  The reformulations lead to tight MINLP problems, 
while the algorithms generally involve branch and bound methods where branching is 
performed on disjunctions.  For the case of process networks, Türkay and Grossmann (1996) 
proposed a logic-based Outer-Approximation algorithm. This algorithm consists of solving 
NLP subproblems in reduced space, in which constraints that do not apply in the disjunctions 
are disregarded, with which both the efficiency and robustness can be improved.  In this 
method the MILP master problems correspond to the convex hull of the linearization of the 
nonlinear inequalities. Also, several NLP subproblems must be solved to initialize the master 
problem in order to cover all the terms in the disjunctions. Penalties can also be added to 
handle the effect of nonconvexities as in the method by Viswanathan and Grossmann (1990).  
The logic-based Outer-Approximation algorithm has been successfully applied for solving 
GDP models of individual distillation columns and superstructures (Yeomans and Grossmann, 
2000a; 2000b), as well as to reactive distillation columns (Jackson and Grossmann, 2001). 
Different approaches can be used with this formulation depending on which trays are defined 
as permanent in the configuration. It is this issue that has been analyzed in depth by Barttfeld et 
al. (2003). 
A major difficulty that arises in the MINLP and GDP approaches is dealing with the 
nonlinearities that are involved in distillation models, which complicates the convergence of 
solvers and often leads to infeasible solutions. Therefore, developing methods for the 
initialization and bounding of the variables involved in the problem is an essential part for the 
successful application of optimization formulations and algorithms for distillation columns.  



Fletcher and Morton (2000) examined the infinite reflux case for generating good initial values 
for the NLP solution of general distillation columns. Buggemann and Marquardt (2001) have 
proposed a short cut method based on the Rectification Body Method (RBM) that provides 
qualitative insights for rigorous simulations. The method gives information on the minimum 
energy demand involved in a separation by a trial and error procedure. Given the products and 
feed compositions as well as the operating pressure, an estimate of the energy demand is 
determined to calculate the pinch points to construct the rectification bodies related to both 
column sections. The energy involved in the separation under minimum reflux is achieved 
when the bodies intersect in exactly one point. An automatic initialization scheme based on the 
successive solution of NLP and MINLP optimization problems was presented by Barttfeld and 
Aguirre, (2002). These authors developed rigorous and robust optimization models that 
approach reversible conditions in order to initialize and bound zeotropic distillation models. No 
external parameters have to be tuned in the model to achieve convergence.  

3. Optimization of single columns 

3.1 MINLP Models 
The simplest type of distillation design problem is the one where there is a fixed number of 
trays, and the goal is to select the optimal feed tray location. Figure 1 shows that a 
superstructure that can be postulated is one where simply the feed is split into as many streams 
as there are trays, excluding condenser and reboiler. This is in essence the superstructure that 
was proposed by Sargent and Gaminibandara (1976). The model can easily be written as an 
MINLP model by considering all the mass and enthalpy balances, and phase equilibrium 
equations (MESH equations), in addition to the following mixed-integer constraints. Let zi, 
i∈LOC, denote the binary variable associated with the selection of i as the feed tray; i,e., zi  = 1 
if i is the feed tray. Let Fi, i∈LOC denote the amount of feed entering tray i. 
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The last constraint in (1) expresses the fact that if tray i∈LOC   is selected as the feed tray, 
then, the amount of feed entering other candidate locations is zero. This follows from the fact zj 
= 0, j≠ i i∈LOC. In addition, there may be constraints on purity, recovery, or reflux ratio. 
The MINLP problem, then, is to minimize (or maximize) a given objective function (e.g. 
minimize energy cost). Note that in this model, the variables zi are binary, while all other 
variables are continuous. 
An interesting property of the MINLP for fixed number of trays is that computational 
experience has shown that this problem is solved almost always as a relaxed NLP. The physical 



explanation is that one can expect the optimal distribution to be one where the feed is all 
directed into a single tray where the tray composition matches closely the composition of the 
feed. Our computational experience has supported this observation many times (e.g. see 
Viswanathan and Grossmann, 1990, 1993; Barttfeld et al., 2003). 
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Figure 1:  Superstructure for feed tray location. 
 
When the objective is to optimize not only the feed tray, but also the number of trays, the 
complexity of the model greatly increases. One possible configuration that was proposed by 
Viswanathan and Grossmann (1993) involving variable reflux location is depicted in Figure 2. 
The basic idea here is to consider a fixed feed tray with an upper bound of trays specified 
above and below the feed. The reflux is then returned to all trays above the feed, and the reboil 
returned to all trays below the feed. In essence this representation determines the “optimal 
feed” of the reflux and reboils streams. In order to assign the actual number of trays 0-1 
variables are assigned to the existence of each of the reflux and reboil returns. The problem 
then leads to an MINLP mode, which has as constraints the MESH equations, and mixed-
integer constraints for the return of reflux and reboil streams. While in principle this model is 
suitable for optimizing the feedtray location and number of trays, it has the difficulty that trays 
not selected above the feed only handle vapor flow since the liquid flow is zero, rendering the 



phase equilibrium equations redundant. A similar situation arises with trays not selected below 
the feed. This means that the vapor liquid equilibrium (VLE) conditions are have to be satisfied 
in in non-existing trays where no mass transfer takes place. This feature clearly showed in the 
work by Viswanathan and Grossmann (1993) a marked increase in computation time versus the 
case of fixed number of trays. 
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Figure 2: Variable reflux and reboil location with fixed heat exchangers. 

3.2. Disjunctive Model for Single Column 
Yeomans and Grossmann (2000a) have proposed a Generalized Disjunctive Programming  
(GDP) model that overcomes difficulties of the MINLP models by allowing the “by-pass” of 
those trays that are not selected. Figure 3 shows the column representation for this approach. 
Consider the conditional trays. For each existing tray the mass transfer task is accounted for 
and modeled with the MESH equations: the component mass balances, the tray energy balance, 
the equilibrium equations and the summation of liquid and vapor mole fractions to 1. For a 
non-existing or inactive tray the task considered is simply an input-output operation with no 
mass transfer, which gives rise to trivial mass and energy balance equations (inlet and outlet 
flows and enthalpies are same for the liquid flows and the vapor flows). Because the MESH 
equations include the solution for trivial mass and energy balances, the only difference between 
existing and non-existing trays is the application of the equilibrium equations. As for the 
permanent trays, all the equations for an existing tray apply.  
The general form of the GDP model is given by equation (GDP-C) where a disjunction is 
postulated for each conditional tray. 
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The advantage of the disjunctive modeling approach is that the MESH equations of the non-
existing trays do not have to be converged, and no flows in the column are required to take 
values of zero, making the convergence of the optimization procedure more reliable. Also, by 
using Generalized Disjunctive Programming (GDP) as the modeling tool, the computational 
expense of solving the problem can be reduced. 
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Figure 3: Structure of disjunctive model with permanent and conditional trays. 

3.3. Different Representations for MINLP and GDP Models 
Barttfeld et al., (2003) have recently studied the impact of different representations and models 
that can be used for the optimization of a single distillation column. General models 
comprising different column configurations were presented for the MINLP and GDP 
formulations. Figure 4 shows two possible representations that are different from Fig. 2 to 
determine optimal feed tray and number of trays with the MINLP formulation. In part (a) of 
this picture, a condenser and a reboiler are placed in all candidate trays for exchanging energy. 
This means that a variable reflux (reboil) stream is considered by moving the condenser 



(reboiler). Otherwise, in the representation of variable reflux location (Figure 4 (b)), the 
condenser and reboiler are fixed equipments in both column extremes. The reflux (reboil) flow 
location is variable and not the condenser (reboiler) itself. These two alternatives are the same 
if one fixed equipment is considered at each column ends. However, when heat exchange 
variable locations are modeled as part of the tray optimization procedure as seen in Fig. 4 (c), 
some differences arise. In one case, the problem consists in finding the optimal location for the 
energy exchanged, while in the other the optimal location for a “secondary” feed stream 
(reflux) is considered. The variable heat exchange representation has an important advantage. 
The energy can be exchanged at intermediate trays temperatures, possibly leading to more 
energy efficient designs. 

 
Figure 4: MINLP distillation column representations. 

The results by Barttfeld et al., (2003) have shown that the most efficient MINLP representation 
involves variable reboiler and feed tray location (Fig. 4 (a)). In addition these authors also 
found that the most convenient formulation involves the use of total flows and compositions, 
and variable energy demand for the variable reboiler location representation. In a similar way 



as in the case of the MINLP models, Barttfeld et al., (2003) considered different representations 
for the GDP model, with fixed and variable feeds as shown in Figure 5. The computational 
results showed that the most effective structure is the one with fixed feed (Fig. 5 (a)), which 
was the original representation used by Yeomans and Grossmann (2000a). 

 
Figure 5: GDP distillation column representations 

3.4 Initialization Procedures 
Due to the complexity, nonlinearities and nonconvexities involved in both, the MINLP and 
GDP models, good initial values and bounds are essential in order to achieve convergence. 
Barttfeld et al., (2002) proposed a preprocessing phase to generate a good initial solution. The 
column topology in this phase corresponds to the one used for the economic optimization, 
except that the number of trays is fixed to the maximum specified. This means that the same 
upper bound on the number of trays has to be employed as well as the potential feed and 



product location.  The initial design considered is the one that involves minimum reflux 
conditions as well as minimum entropy production. This reversible separation provides a 
feasible design and hence a good initial guess to the economic optimization.  
In the preprocessing phase, for the case of zeotropic columns, overall mass and energy balances 
are formulated as an NLP problem to compute the reversible products. This preliminary 
formulation is a well-behaved problem that provides initial values and bounds for the rigorous 
NLP tray-by-tray preprocessing formulation. Barttfeld et al., (2003) have shown that 
convergence is greatly enhanced including the preprocessing procedure. Also, these authors 
have described an initialization procedure for azeotropic columns. 
It is also interesting to note that the MINLP formulation can be solved with a reduced number 
of binary variables. The reason is that the NLP relaxation yields a number of trays that is often 
very close to the integer optimal design. This relaxation also provides a good lower bound on 
the objective function value. Therefore, the solution of the relaxed problem can be employed to 
reduce the domain of the variable tray location such that they contain few additional trays 
compared to the ones at the relaxation solution. In the case of the GDP model one cannot take 
advantage of the relaxation since only NLP subproblems with fixed number of trays are solved.  

3.5 Numerical performance 
Barttfeld et al., (2003) solved several example problems to evaluate the robustness and 
performance of the MINLP and GDP models for the optimal design of single columns. For the 
examples studied, the MINLP formulation with preprocessing and domain reduction yields 
designs involving lower total costs. In the azeotropic example, the distillate composition 
achieved in the economic solution crosses the distillation boundary. In all cases, the MINLP 
solution times were considerably longer than the ones of the GDP models. The robustness of 
the MINLP formulations was observed to depend very much on the solution scheme. If a good 
initial guess is generated with the preprocessing phase and the domain reduction for the binary 
variables is applied, an integer solution is often obtained in few iterations. However, the total 
solution time is long because the convergence of the NLP subproblems is usually very difficult 
to achieve. Also, the MILP subproblems include constraints, which were generated by 
linearizing the original constraints of the problem at zero flows.  
On the other hand, the GDP formulations were found to be more robust and faster than the 
MINLP model. It was also observed that the GDP formulation is not as strongly dependent of 
the initial guess as the MINLP formulation. If a good initial solution guess is provided, the 
convergence of the initial NLP problems is guaranteed without tuning external parameters and 
also, better solutions can be found. It should be noted that the relaxed solution of the GDP 
formulation does not provide a useful distribution of trays as it was the case of the relaxed 
MINLP solution. Interestingly, despite the greater robustness of the GDP models, solutions 
with about 1% lower cost were found with the MINLP models when they converged. As an 
example in an equimolar mixture of butane, toluene and xylene, with minimum purity of 98% 
of butane at the distillate and a minimum recovery of 98%, and an upper bound of 60 for the 
number of trays, the results were as follows: 
 



Table 1. Comparison for butane/toluene/xylene mixture 

MINLP model GDP Model 
26 trays 19 trays 
Feed tray: 13 Feed tray: 8 
Cost: $79,962/yr Cost: $80,720/yr 
648 CPU sec 211 CPU sec 

4. Classification Superstructures 
In the application of mathematical programming techniques to design and synthesis of 
distillation systems it is necessary to postulate a superstructure of alternatives. This is true 
whether one uses a high level aggregated model, or a fairly detailed model. (1999a) have 
characterized two major types of superstructure representations for process synthesis. The first 
is the State-Task Network (STN) which is motivated by the work in scheduling by Kondili et 
al., (1993). The basic idea here is that the representation makes use of two types of nodes: 
states and tasks. The assignment of different pieces of equipment is usually assumed for each 
separation task. Figure 6 provides an example of an STN superstructure for the sharp separation 
of 4 components. 
It is clear from that figure that using detailed tray-by-tray models in such a superstructure leads 
to a problem of large dimensionality. 
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Figure 6: State Task Network superstructure representation for distillation sequence. 



The second representation is the State Equipment Network (SEN) which is motivated by work 
of Smith and Pantelides (1995), and where the basic idea is to work with two types of nodes: 
states and equipment. The tasks in this case are treated implicitly through the model.  Figure 7 
shows the example again for the 4 component system. It is clear that if rigorous tray-by-tray 
models are to be used SEN superstructures should lead to much more compact formulations. In 
fact Yeomans and Grossmann (1999a) have developed generic GDP models for each of the two 
different types of representations. These can then be used for solution with a GDP algorithm, or 
they can be used for reformulation as MILP or MINLP problems, depending on the complexity 
of the model. 
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Figure 7: State Equipment Network superstructure representation for distillation sequences. 

5. Superstructure Optimization of Complex Columns 

5.1 The Sargent Gaminibandara Superstructure 
In the previous section we presented superstructures for the case of sharp splits. The separation 
of more than two components by continuous distillation is often accomplished by simply 
arranging columns in such systems. However, even under the assumption of minimum reflux, 
past work has shown that complex column arrangements can yield significant savings in the 
operating costs. Most of the effort in the field of distillation synthesis has been applied to 
develop short-cut and simplified methods (Fidkowski and Krolikowski, 1986; Glinos and 
Malone, 1988; Triantafyllou and Smith, 1992; Annakou and Mizsey, 1996), mainly because of 
the convergence difficulties of rigorous formulations. As an example of recent work, Caballero 
and Grossmann (2003) have presented a systematic approach for generating all the 



thermodynamic equivalent structures for a given sequence. If our objective is to be able to 
synthesize complex columns possibly Petlyuk columns, columns with side strippers and side 
rectifiers, it is clear that more complex superstructures are needed compared to the ones in 
Figures 6 and 7. 
The generation of complex column configurations has been principally developed by Sargent 
and Gaminibandara (1976), Agrawal (1996) and Fidkowski and Agrawal (1995, 1996). Other 
superstructures include for instance the one by Koehler et al. (1992) who consider 
thermodynamic aspects. However, the problem for systematically obtaining the optimal design 
out of superstructure was not addressed by these authors. Some recent work has applied 
mathematical programming tools to rigorously solve the distillation design problem. The 
superstructure most commonly used in the literature is based on the one proposed by Sargent 
and Gaminibandara (1976) for ideal mixtures (see Figure 8) and later extended for azeotropic 
cases (Sargent, 1998). It is interesting to note that the superstructure in Figure 8 can be derived 
from the functional State-Task-Network shown in Figure 9, which in fact corresponds to a 
zeotropic mixture (see Sargent, 1998). A different superstructure that is not so commonly used 
is the one proposed by Bauer and Stichlmair (1998) that uses thermodynamic information in 
the representation itself. These authors applied this representation in the design of azeotropic 
sequences. 

 
Figure 8: Sargent-Gaminibandara superstructure for complex columns. 

As for other superstructures, Dunnebier and Pantelides (1999) have considered the optimal 
design of thermally coupled distillation columns and dividing wall columns for ideal mixtures 
using detailed distillation models and mathematical optimization. Yeomans and Grossmann 
(1999b) presented the rigorous synthesis of heat integrated sequences applying disjunctive 
programming techniques to formulate the problem. These authors have also developed a 



modeling disjunctive programming procedure for the optimal design of single ideal and 
nonideal single distillation units and separation sequences (Yeomans and Grossmann, 2000a) 
as well as complex sequences (Yeomans and Grossmann, 2000b). In these two methods, the 
major challenge is that the optimal design of distillation columns configurations involves the 
solution of large, highly nonlinear nonconvex optimization problems. 
 

  
Figure 9: Sargent-Gaminibandara STN representation for a four component zeotropic mixture. 

5.2. Reversible Distillation Sequence Model Superstructure 
The superstructure considered by Barttfeld et al. (2004) is based on the Reversible Distillation 
Sequence Model (RDSM) proposed by Fonyó (1974), which allows the introduction of 
thermodynamic aspects in the design (for details of the RDSM theory see Koehler et al., 1992; 
Barttfeld and Aguirre, 2003). The motivation in using such a superstructure is that it is tied 
closely to a robust initialization scheme similar to the one that was described for single 
columns. The RDSM superstructure can be automatically generated for zeotropic as well as for 
azeotropic mixtures. In the latter case, a composition diagram of the mixture is assumed to be 
available. The RDSM-based superstructure can also be generated using the STN representation 
of Sargent (1998). For the RDSM-based superstructure the states are defined in the same way 
as in the Sargent-Gaminibandara superstructure, but the tasks in this representation are different 
as seen in Figure 10 for a four component zeotropic mixture. In order to approximate 
reversibility conditions, only products having the same composition can be represented in one 
state. As an example, in the RDSM STN, two different states are defined for the mixture, BC, 
as shown in the representation of Figure 10. These states come from states, ABC, or BCD, and 
do not necessarily have the same composition. As a consequence of this fact, for separating a 
NC-zeotropic mixture, the RDSM-based superstructure has the same number of levels as the 
Sargent-Gaminibandara representation, but a larger number of columns, given by 2 . 1NC



The representation of the equipment for the RDSM-based superstructure for a four component 
zeotropic mixture is shown in Figure 11a. Note that in this representation, columns 2 and 3 
(second level) cannot be coupled. However, other representations are possible for the RDSM 
superstructure (see Koehler et al., 1992). 
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Figure 10: STN representation of the RDSM-based superstructure. 
 
In the RDSM representation considered, column coupling is only possible in those columns 
that yield pure products, that is, in the last level of the superstructure. Note that columns 4 and 
5 are integrated to produce product, B as well as columns 6 and 7 to produce pure product C 
(see Figure 11b). Therefore, in the proposed superstructure it is not possible to represent in a 
level all the columns by one single unit as in the representation of Sargent and Gaminibandara 
of Figure 8. Only 2NC-3

. columns integrations (single columns) can be found in the last level of 
the superstructure. Each column in the superstructure of Figure 11 is represented by an 
adiabatic unit, and with one condenser and one reboiler. The trays in each unit can be classified 
as intermediate or permanent trays (see Figure 3). This representation is the one that has been 
found to be the most effective to model distillation columns with GDP formulations (Barttfeld 
et al., 2003). Those trays that can disappear in the superstructure optimization are the 
intermediate trays. Note that the column sections contain intermediate trays and each section is 
located between two permanent trays. An upper bound on the number of trays is assigned to 
each section of a column. The columns in the superstructure are interconnected by feeds and 
products streams. The columns where multicomponent separations take place (columns 1, 2 
and 3, Figure 11 (a)), are coupled by the feeds and products streams. Each column can be fed 
by primary and secondary feeds. Compared to the Sargent and Gaminibandara superstructure, 
the RDSM representation excludes certain configurations that involve mixing of streams as 
would be the case of a Petluk column. However, if desired additional streams can be added to 



the RDSM superstructure in order to account for the same alternatives as in the Sargent and 
Gaminibandara superstructure. 
It should also be noted that the RDSM superstructure can also be extended for azeotropic 
distillation. Due to the existence of distillation boundaries, the order of the relative volatility of 
the components cannot be predefined. Therefore, a composition diagram showing the 
distillation boundaries is needed to define the feasible states that can be achieved from a given 
feed (see Barttfeld et al., 2004). 
 

 
Figure 11: RDSM-based superstructure for a four component mixture. 

5.3 Decomposition Strategy 
Tray-by-tray distillation synthesis models are very difficult to optimize due to the highly 
nonlinear and nonconvex equations that are involved, as well as to the large size of the 
corresponding formulations. Furthermore, formulating and solving a single optimization 
problem to simultaneously establish the existence of columns as well as the feed tray location 
generally leads to a very difficult problem that often fails to converge. Convergence problems 
are often found when solving complex MINLP models (Dunnebier and Pantelides, 1999; Bauer 
and Stichlmair, 1998). Also, although the disjunctive formulation increases the robustness, it is 
still quite difficult to solve these problems as was reported by Yeomans and Grossmann 
(2000a, b). Barttfeld et al., (2004) have developed a computational strategy that exploits the 
nature of the decisions involved in the GDP model in order to yield robust and computationally 
effective models. 



Barttfeld et al., (2004) formulated the synthesis problem as a GDP problem that does not have 
to be solved simultaneously and is amenable to decomposition. Specifically, the GDP of the 
RDSM superstructure in Fig. 11 can be formulated in the following general form: 
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Note that model (GDP-S) involves embedded disjunctions. At the outer level the Boolean 
variables YS determine the selection of the sections in the columns (rectifying or stripping), 
while at the inner level the Boolean variables Yn determine the existence or non-existence of the 
trays that are postulated in each section. 
Based on the embedded disjunctions, Barttfeld et al., (2004) proposed an iterative 
decomposition strategy that exploits two major levels of decisions in the problem (see Fig. 12). 
In the first level, a configuration is derived by making the decision related to the selection of 
column sections (i.e. with the Boolean variables YS). In this level each section is assigned a 
maximum number of trays in order to produce a bounding solution. In the second level, the 
feed tray location and the number of trays of the selected sections are optimized (i.e. with the 
Boolean variables Yn). The algorithm solves the disjunctive programming model by iteratively 
solving an MILP for selecting the sections, an MILP for selecting the trays of that 
configuration and an NLP subproblem for optimizing the particular design. Integer cuts are 
only added to the MILP for trays and not the one for the sections in order to ensure proper 
optimization of the number of trays. Similarly as in the single column case, a thermodynamic 
based NLP is solved for the initialization of this decomposition strategy.  

5.4. Numerical experience 
Numerical examples were solved by Barttfeld et al., (2004) to test the performance of the 
formulations. Two zeotropic examples were solved and nontrivial configurations were found, 
which include column coupling. In the azeotropic example, the influence of the product purity 
specification was analyzed with respect to the azeotrope recycle. Also, the influence of 
including intercondensers in the first column was analyzed. In all the examples, the solutions 
were obtained with the proposed method, are non trivial and require reasonable solution times. 
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Figure 12: Decomposition strategy 

A specific example is presented in Figure 13, where it can be seen that even for an ideal system 
such as n-pentane, n-hexane and n-heptane a significantly improved design in the form of a 
complex column can be obtained ($140,088/yr)  versus a standard direct sequence 
($145,040/yr). Figure 14 shows the liquid profiles of the optimal design, and Table 2 shows the 
computational results. 

(a) (b) 
 

Figure 13: pentane/hexano/heptano example: (a) Superstructure with selected sections. (b) 
Optimal configuration in terms of two columns. 
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Figure 14: Liquid composition profiles f the optimal configuration 
 
Table 2: Computational results for pentane/hexane/heptane mixture 
 

  Constraints

Preprocessing Phase: NLP Tray-by-Tray Models 
Continuous Variables 3297 

 3225 
CPU time [min.] 2.20 

Model Description 
Continuous Variables 3301 
Discrete Variables 96 
Constraints 3230 
Nonlinear nonzero elements 3244 
Number of iterations 5 
NLP CPU time [min.] 6.97 
MILP CPU time [min.] 2.29 
CPU time [min.] 9.25 
Objective Value [$/year] 140,880 
Total CPU time [min.] 11.46 

 

6. Concluding remarks and future work 
We hope that this paper has shown that despite its great difficulty, there has been significant 
progress in the optimal synthesis of complex column configurations using tray-by-tray models. 



As has been seen the combination of novel representations for individual columns and 
superstructures, combined with disjunctive programming and robust initialization schemes has 
made it possible to solve with reasonable computational efficiency these problems. 
While the results reported in this paper have shown that there has been significant progress in 
the optimal design of complex distillation columns, it is clear that there is still cope for further 
progress in this area. For instance, while the approach proposed by Barttfeld et al., (2004) has 
been applied to azeotropic mixture (e.g. methanol, ethanol and water mixture), the extension 
for generating the superstructure to azeotropic systems of more than three components remains 
an open question. Also, while an extension of the GDP model for the case of reactive 
distillation columns has been proposed by Jackson and Grossmann (2001), the integration of 
such a model that is as part of a system of complex columns has not been addressed. Similarly, 
the heat integration or incorporation of rigorous distillation synthesis models that are part of a 
flowsheet superstructure has not been accomplished. At this point this has only been performed 
with short cut models (e.g. see Yeomans and Grossmann, 1999b). Finally, a major challenge 
that remains is the rigorous global optimization. The only work reported in this regard is the 
one by Smith (1996).  
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