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Abstract
Bifurcation theory provides a powerful tool for analyzing the nonlinear dynamic behav-
ior of process systems. However, although the theory in principle applies to lumped as
well as distributed parameter processes, it is in practice necessary to reduce the order of
distributed (PDE) models prior to application of the theory. In this paper we consider the
problem of determining an appropriate model reduction method for this task. We first
show that simply applying some ad hoc discretization method, such as finite differences
or finite elements, can result in spurious bifurcations and erroneous predictions of stabil-
ity. To avoid this problem we propose a method for estimating the error introduced by
the model reduction. Apart from simply providing a label of confidence in the obtained
results, the estimated error can be used to improve the model reduction. We here propose
a method based on moving the discretization mesh such as to spatially equidistribute the
total error. The method is applied to the analysis of a heat-integrated fixed bed reactor.

1 Introduction

The problem we consider in this paper is the determination of the possible stationary
dynamic behaviors of a given distributed parameter dynamic system described by a set of
1-D partial differential equations, here written on the explicit 2nd order form

ut = F (t, x, u, ux, uxx, p) (1)

with appropriate initial and boundary values. The independent variables t and x denote
time and position, respectively, and p is a set of system parameters. Extension to higher
dimensional systems is relatively straightforward, but we restrict ourselves to 1-D models
here in order to keep the exposition at a reasonable level.
By applying a homotopy method combined with continuation and bifurcation analysis, it
is possible to trace out all possible behaviors of the system (1). Homotopy methods are
used to determine all possible steady-state solutions for a given value of the parameters p.
Starting at these steady-states, continuation can then be used to trace out the branches of
steady states as a function of the parameters p. Bifurcation analysis implies monitoring
the eigenvalues of the linearized model along the branches of steady-states, and deter-
mining those points where eigenvalues cross the imaginary axis. Such points are called
bifurcation points, and bifurcation theory ensures that around such points a system locally
has more than one stationary solution. Two commonly encountered types of bifurcations



are Saddle-Node bifurcations (SN), in which a single real eigenvalue crosses the imagi-
nary axis, and Hopf points (HB), in which a complex conjugate pair of eigenvalues cross.
Around a Saddle-Node point the system possesses multiple steady-states and around a
Hopf point the system possesses a limit cycle coexisting with a steady-state. When Hopf
points are encountered, the resulting limit cycles can be traced as a function of the param-
eters p using continuation and bifurcation analysis as outlined for steady-states above.
For an introduction to numerical continuation and bifurcation analysis, see e.g., Seydel
(1994).
The analysis method as outlined above is quite standard for the case of finite dimensional
systems, i.e., systems described by ordinary differential equations (ODE). Powerful soft-
ware available for this task include for instance AUTO (Doedel, 1997). For the case
of PDEs, however, the problem is somewhat more involved. First, steady-states can be
solved without lumping (discretization) by simply solving the boundary value ODE prob-
lems resulting when ut = 0 in (1). Similarly, the eigenvalues of steady-state solutions can
in principle be computed by linearizing the corresponding PDE and solving the eigenvalue
problem. However, due to the existence of, in general, a countable infinity of eigenval-
ues it is not trivial to determine a bifurcation point. Rather, bifurcation points is best
determined by an inverse problem formulation in which some eigenvalue(s) are forced
to exist on the imaginary axis, and the eigenvalue problem is solved with respect to the
corresponding parameters p. Finally, in order to trace out limit cycles, and determine their
bifurcations, it is in general required to apply some form of model reduction of the PDE,
so as to obtain a finite set of ODEs. Because of the heavy computational burden associ-
ated with continuation and bifurcation analysis of limit cycles, it is usually required that
the reduced order model is of relatively low order. For instance, with AUTO, a typical
practical limit is models of orders around 50-60.
In practice, when performing bifurcation analysis of distributed parameter processes,
model reduction is usually applied prior to performing bifurcation analysis of steady-
states as well as limit cycles. Usually some ad hoc method, such as finite differences,
orthogonal collocation or finite elements, is used for the discretization, or model reduc-
tion. In most cases also the order of the reduced model is chosen more or less ad hoc. The
problem with this approach, however, is that it is difficult to determine to what extent the
obtained results can be attributed to the underlying PDE.
In this paper we illustrate, through a reaction-convection-diffusion problem, some po-
tential pitfalls in employing an ad hoc discretization method for bifurcation analysis of
distributed parameter systems. We then propose a method in which the error introduced
by the discretization can be estimated and monitored. In order to reduce the model order
required for a given level of accuracy, we also propose to control the discretization mesh
dynamically so as to minimize the error.

2 Example Process

As an example process we will consider a reaction-convection-diffusion process, in the
form of an adiabatic fixed-bed reactor in which the effluent is used to preheat the feed.
The dimensionless pseudohomogeneous model is
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where α is the conversion and θ a dimensionless temperature. The reaction term is given



by

R(α, θ) = (1 − α)rexp
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The boundary conditions are
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where f represents the efficiency of the effluent-feed heat-exchange. See also Jacob-
sen and Berezowski (1998). We will here consider the reactor behavior as a function
of the Damkohler number Da (reactor size). Thus, we fix all other parameters as σ =
0.001, P eh = Pem = 200, γ = 15, r = 2, β = 0.4, f = 0.3.

3 Model Reduction using Finite Elements

As stated above, the steady-state bifurcation diagram for the model (2)-(6) can in principle
be determined without performing any prior model reduction, i.e., spatial discretization,
of the PDE model. However, determination of the bifurcation points via the eigenvalue
equations is computationally quite involved, and furthermore not the common approach
to this problem. Neither are we aware of any available software packages that offers
this possibility. Here we therefore adopt the typical approach, and hence choose some
standard discretization method to reduce the PDEs (2)-(3) into a set of ODEs, prior to
performing continuation and bifurcation analysis. For the model reduction we choose to
employ orthogonal collocation on finite elements (Carey and Finlayson, 1975), and use 4
elements, each with collocation based on polynomials of order 5. This results in a model
containing a total of 38 ODEs.
We employ AUTO (Doedel, 1997) for continuation and bifurcation analysis of the result-
ing ODE model. The continuation is in this case started at the trivial unique extinguished
steady-state solution for Da = 0. Figure 1 shows the resulting bifurcation diagram in
terms of the conversion at the outlet of the reactor as a function of the parameter Da. In
the figure, solid lines denote stable steady states and dashed lines unstable steady-states.
As seen from the figure, the reactor undergoes two saddle-node bifurcations (SN) and a
total of ten Hopf bifurcations (HB). The periods of the limit cycles born at the Hopf points
are predicted to approximately 1.0 (HB1), 0.5 (HB2), 0.33 (HB3) and 0.25 (HB4), where
the time unit equals the thermal residence time in the bed. The steady-state of the reactor
is found to be unstable for Da above 0.1.
It is tempting to assume that the above results can be attributed to the original PDE model.
However, the problem here, as in most similar problems, is that we do not have any clear
idea about how well our reduced order model fits the original PDE model. In fact, it
is well known from numerical analysis that discretization can introduce instability in an
otherwise stable problem. Thus, it is not obvious whether the stability properties and
bifurcations predicted using the discretized model should be attributed to the underlying
PDE or the discretization method. Since this is essential knowledge, we should be able to
somehow monitor the accuracy of our reduced order model as we perform continuation.
In the next section we discuss how this can be done in a relatively simple way.
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Figure 1: Bottom: steady-state bifurcation diagram for reactor with fixed mesh discretiza-
tion. Outlet conversion α(1) as a function of the reactor size Da. Solid (dashed) lines
denote stable (unstable) steady-states. Top: residuals from model reduction with fixed
(solid) and moving (dashdotted) mesh.

4 Error Estimation and Control

One important motivation for choosing orthogonal collocation on finite elements for the
model reduction above was, apart from its efficiency, that it is quite straightforward to
calculate the residuals of the original PDEs at non-collocation points.
To discretize equation (1), introduce the notation xij , i = 1, · · ·n, j = 1, · · ·m+2 for the
computational mesh, in which n and m denote the number of elements and their interior
nodes, respectively. Apply the collocation method within each element, i.e.,

uij(t)
def
= u(xij , t) =

m+2
∑

p=1

lip(xij)uip(t) (7)

where li is the (m+1)-th order Lagrange polynomial in element i. The elements are here
connected by letting ui1 = ui−1,m+2.
The approximation error within each element can now determined from residual computa-
tions, i.e., by substituting the approximate solution (7) into the original PDE (1) at selected
non-collocation points. We here evaluate the residuals at the midpoints between the col-
location points x̂ir, r = 1, . . . , m+1. Define the (m+1) by (m+2) matrix Q̂rj = lij(x̂ir).
We then have

ûir
def
= u(x̂ir, t) =

m+2
∑

j=1

lij(x̂ir)uij =

m+2
∑

j=1

Q̂rjuij

Using the formulation (1), the residuals at x̂ir can now be computed directly from values



of uij on the computational grid

R̂ir = ˆ̇uir − F̂ir =
m+2
∑

j=1

Q̂rj u̇ij − F̂ir

where F is the RHS of the original PDE (1). An overall integral residual can now be
computed, using e.g., quadrature, based on the non-collocation points. Note that the com-
putational load involved in computing the residual this way is negligible compared to the
computations involved in the continuation and eigenvalue calculations of the bifurcation
analysis.
By computing the residual as outlined above, it is possible to monitor the accuracy of
the model reduction, which in general will vary as the model parameters are varied. The
residuals for the bifurcation analysis performed for the fixed bed reactor above are shown
at the top of Figure 1. As seen from the figure, the residual is relatively small for small
values of the parameter Da, but increases significantly for values of Da larger than 0.21.
The residual computations thus indicate that the results for high Da values may be sig-
nificantly affected by the model reduction.
When the residuals exceed a certain threshold value, one remedy may be to increase the
order of the reduced model, e.g., by increasing the number of elements and/or the poly-
nomial order. However, as proposed in Liu and Jacobsen (2001), one may also utilize the
information contained in the residuals to adopt the mesh to the underlying PDE solution.
They propose to move the mesh dynamically with the aim of spatially equidistributing
the total residual. An inherent assumption is that the error is kept close to minimum by
equidistributing the residual, which seems reasonable. The method is based on simple
PI-control using the size of the different elements as manipulated variables, and adds a
total of n−1 ODEs to the reduced order model, where n is the number of elements. Note
that this method in general yields very different results than would be obtained by simply
adapting the mesh statically to the underlying steady-state solution, as is done in most
adaptive mesh methods. For details of the method, we refer to Liu and Jacobsen (2001).
Figure 2 shows the resulting steady-state bifurcation diagram for the example reactor
when residual control as discussed above is employed. Note that the steady-state solutions
are quite similar to those obtained with the fixed mesh in Figure 1, but that the stability
properties and bifurcations differs significantly for high Da values. In particular, we
now find that the reactor is stable for all Da values above 0.25. As seen from Figure
1, this is also around the region where the residual for the fixed mesh model starts to
increase significantly. However, as seen from the the dash-dotted line in Figure 1, the
residual for the moving mesh model is kept relatively small for all values of Da. Indeed,
by computing the bifurcation points from the original PDE (using continuation of the
corresponding eigenvalue problem), we find that the bifurcations and stability as predicted
by the moving mesh model differs only slightly from the true values. For instance, the true
region of steady-state instability is for Da ∈ [0.097 0.026], while the instability region
predicted with the moving mesh is Da ∈ [0.098 0.25]. The fixed mesh discretization,
however, predicted instability for all Da > 0.098. From the eigenvalue calculations we
also find that the original PDE model has exactly the four Hopf bifurcations predicted
by the moving mesh model, and thus the fixed mesh model has a total of six spurious
bifurcation points.
We finally note that the proposed method of residual monitoring and control of course
also may be used for continuation and bifurcation analysis of limit cycles born at Hopf
points. However, this is not included here due to space limitations.
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Figure 2: Bifurcation diagram for reactor with moving mesh discretization. The corre-
sponding residuals are shown in Figure 1.

5 Conclusions

We have in this paper stressed that care should be exercised when performing bifurcation
analysis based on discretized PDE models. In order to obtain a label of quality along
with the results of the bifurcation analysis, we proposed a method based on orthogonal
collocation on finite elements with a relatively simple evaluation of the resulting residuals.
We also proposed that the residuals should be used to move the discretization mesh in
order to minimize the residual. The usefulness of both the residual monitoring and control
was demonstrated by application to the model of a heat integrated fixed bed reactor.
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