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Abstract
A robust hybrid control strategy, that coordinates feedback and switching, is pro-
posed for a broad class of hybrid nonlinear processes with constrained inputs and
uncertain dynamics. The proposed strategy involves the coordinated synthesis,
via multiple Lyapunov functions, of a family of bounded robust nonlinear feedback
controllers that stabilize the constituent modes of the hybrid system, together with
robust switching laws that orchestrate safe transitions between these modes and
their respective controllers, in a way that respects input constraints and guaran-
tees stability of the overall switched uncertain closed-loop system. The proposed
strategy is illustrated using a chemical process example with switched dynamics,
input constraints, and model uncertainty.
1. Introduction
The study of hybrid systems in process control is motivated by the fundamentally
hybrid nature of process transients, which depend on an intricate interaction be-
tween discrete and continuous variables. The continuous behavior typically arises
from the underlying physical laws, such as momentum, mass, and energy conser-
vation, and is described by continuous-time differential equations. Discrete events,
on the other hand, may arise from inherent discontinuities in the continuous dy-
namics (e.g., phase changes), instrumentation with discrete actuators and sensors,
or from the use of logic-based switching for supervisory and safety control.

The abundance of hybrid phenomena in many engineering systems in general,
and in the chemical process industries in particular, together with the need to
design control and supervisory schemes for these systems has fostered a large and
growing body of research work in this area (see, e.g., (Grossman et al., 2001;
DeCarlo et al., 2000; Bempporad and Morari, 1999; Hu et al., 1999). Recently,
we have developed in (El-Farra and Christofides, 2001a) a nonlinear hybrid con-
trol methodology for a broad class of switched nonlinear systems with input con-
straints. These are hybrid systems that comprise of a finite family of continuous
nonlinear dynamical modes, subject to hard constraints on their manipulated in-
puts, together with higher-level supervisors that govern the transitions between
the constituent modes. The key feature of the proposed methodology was the
integrated synthesis, via multiple Lyapunov functions (MLFs), of: 1) lower-level
feedback controllers that stabilize the constituent constrained modes and provide,
simultaneously, an explicit characterization of the stability region for each mode,
and 2) upper-level switching laws that orchestrate the transitions between the
continuous modes and their respective controllers, in a way that ensures stability
of the overall switched closed-loop system despite its constrained and changing
dynamics.

In this paper, we extend the scope of our previous work to deal with switched
nonlinear systems whose dynamics are both constrained and uncertain. Typical
sources of uncertainty include plant-model mismatch (e.g., modeling errors, un-
known process parameters) as well as time-varying exogenous disturbance inputs.
To address the problem, we propose a robust hybrid control strategy that uses
multiple Lyapunov functions to: 1) synthesize a family of robust bounded nonlin-
ear feedback controllers that enforce robust stability in the constituent constrained
uncertain modes, 2) explicitly characterize the stability region for each mode under
uncertainty and constraints, and 3) design robust switching laws that coordinate



safe transitions between the modes in a way that guarantees closed-loop stability
of the overall switched closed-loop system. The proposed approach is successfully
applied to a switched exothermic chemical reactor with input constraints, and
model uncertainty.
2. Switched nonlinear processes with uncertain dynamics
2.1 State space description
We consider the class of switched uncertain nonlinear processes described by the
following state-space representation:

ẋ(t) = fσ(t)(x(t)) + Gσ(t)(x(t))uσ(t) + Wσ(t)(x(t))θσ(t)(t)
σ(t) ∈ I = {1, · · · , N} (1)

where x(t) ∈ IRn denotes the vector of continuous-time process state variables,
u(t) = [u1(t) · · ·um(t)]T ∈ U ⊂ IRm denotes the vector of control inputs taking
values in a nonempty compact convex subset of IRm, θ(t) = [θ1(t) · · · θq(t)]T ∈
Θ ⊂ IRq denotes the vector of uncertain (possibly time-varying) variables taking
values in a nonempty compact convex subset of IRq. The uncertain variables θ(t)
may describe time-varying parametric uncertainty and/or exogenous disturbances.
σ : [0,∞) → I is the switching signal which is assumed to be a piecewise continuous
(from the right) function of time, implying that only a finite number of switches
is allowed on any finite interval of time. For each value that the discrete state σ
assumes in I, the temporal evolution of the continuous state, x, is governed by a
different set of differential equations. Processes of the form of Eq.1 are therefore of
variable structure; they consist of a finite family of N continuous-time uncertain
nonlinear subsystems (or modes) and some rules for switching between them. This
class of systems arises naturally in the context of coordinated supervisory and
feedback control of chemical process systems (see section 4 for an example). Note
that, by indexing the uncertain terms in Eq.1 by σ, the constituent modes are,
in general, not assumed to share the same uncertain variables nor be equally
impacted by them. The uncertainty is therefore allowed to influence the dynamics
of different modes, differently.

Throughout the paper, the notation tik
and tik+1 is used to denote, the k-th

times that the i-th subsystem is switched in and out, respectively, i.e. σ(t+ik
) =

σ(t−ik+1) = i. With this notation, it is understood that the continuous state evolves
according to ẋ = fi(x) + Gi(x)ui + Wi(x)θi for tik

≤ t < tik+1. It is assumed that
all entries of the vector functions fi(x), the n×m matrices Gi(x), the n×q matrices
Wi(x) are sufficiently smooth on IRn and that Wi(0) = 0 for all i ∈ I. We also
assume that the state x does not jump at the switching instants, i.e. the solution
x(·) is everywhere continuous. Finally, we recall the definition of a robust control
Lyapunov function which will be used in the development of the main result of
this paper.
Definition 1 (Freeman and Kokotovic, 1996): A robust control Lyapunov
function for a system of the form ẋ = f(x) + G(x)u + W (x)θ is a smooth, proper,
and positive definite function V : IRn → IR with the property that for every fixed
x 6= 0:

LGV = 0 =⇒ sup
θ∈Θ

{LfV + LW V θ} < 0 (2)

where LfV = ∂V
∂x f(x), LGV and LW V are row vectors of the form [Lg1V · · ·LgmV ]

and [Lw1V · · ·LwqV ], respectively, with gk and wk referring to the k-th columns of
the matrices G and W, respectively.
2.2 Problem formulation
Consider the switched nonlinear process of Eq.1, where, for each i ∈ I, a robust



control Lyapunov function, Vi, is available, the vector of control inputs, ui, is
constrained by |ui| ≤ umax

i , and the vector of uncertain variables is bounded
by |θi| ≤ θbi. Given that switching is controlled by a higher-level supervisor,
the problem is how to coordinate switching between the constituent modes, and
their respective controllers, in a way that respects the constraints and guarantees
closed-loop stability in the presence of uncertainty. To address the problem, we
formulate the following objectives. The first is to synthesize, using a family of
Lyapunov functions, a family of N bounded robust nonlinear feedback control
laws of the general form

ui = −ki(Vi, u
max
i , θbi)(LGi

Vi)T , i = 1, · · · , N (3)

that: 1) enforce robust asymptotic stability, for their respective closed-loop sub-
systems, and 2) provide, for each mode, an explicit characterization of the set of
admissible initial conditions starting from where this mode is guaranteed to be
stable in the presence of model uncertainty and input constraints. The gain, ki(·),
of the LGV controller in Eq.3 is to be designed so that |ui| ≤ umax

i and the energy
of each mode, as captured by Vi, is monotonically decreasing whenever that mode
is active. The second objective is to construct a set of robust switching laws that
supply the supervisor with the set of switching times that guarantee stability of
the constrained uncertain switched closed-loop system.
3. A robust hybrid control strategy
This section contains the main result of this paper. Theorem 1 below provides
the formulae for the family of bounded robust feedback controllers together with
the appropriate switching rules that guarantee the desired properties in the con-
strained switched closed-loop system. The proof of this theorem is omitted due to
space limitations.
Theorem 1: Consider the switched uncertain nonlinear process of Eq.1 under the
following family of bounded nonlinear feedback controllers:

ui = −ki(Vi, u
max
i , θbi, χi)(LGiVi)T , i = 1, · · · , N (4)

where

ki(·) =





L∗fi
Vi +

√
(L∗fi

Vi)2 + (umax
i |(LGiVi)T |)4

(|(LGiVi)T |)2[1 +
√

1 + (umax
i |(LGiVi)T |)2]

, |(LGiVi)T | 6= 0

0 , |(LGiVi)T | = 0




(5)

L∗fi
Vi = LfiVi + χi|(LWiVi)T |θbi (6)

Vi is a robust control Lyapunov function for the i-th subsystem and χi is a tunable
parameter that satisfies χi > 1. Let Ω∗i (u

max
i , θbi) be the largest invariant set

embedded within the region described by the inequality

LfiVi + χi|(LWiVi)T |θbi ≤ umax
i |(LGiVi)T | (7)

and assume, without loss of generality, that x(0) ∈ Ω∗i (u
max
i , θbi) for some i ∈ I.

If, at any given time T , the following conditions hold:

x(T ) ∈ Ω∗j (u
max
j , θbj) (8)

Vj(x(T )) < Vj(x(tj∗+1)) (9)



for some j ∈ I, j 6= i, where tj∗+1 is the time when the j-th subsystem was last
switched out, i.e. σ(t+j∗+1) 6= σ(t−j∗+1) = j, then setting σ(T+) = j guarantees that
the switched closed-loop system is asymptotically stable.
Remark 1: The robust feedback controllers given in Eq.4-5 are synthesized by
reshaping the gains of the LGV controllers proposed in (El-Farra and Christofides,
2001a) (see also (Lin and Sontag, 1991)), in order to account for the uncertain
variables. This procedure allows us also to obtain an explicit expression, via
Eq.7, that can be used to characterize the limitations imposed by uncertainty and
constraints on the stability regions of the constituent modes (see (El-Farra and
Christofides, 2001b) for details on how to construct the stability regions). In the
absence of uncertainty, with θbi = 0, the controllers of Eq.4 together with the
expressions for the stability regions, Ω∗i , reduce to those developed in (El-Farra
and Christofides, 2001a).
Remark 2: The switching rules of Eq.8-9 determine, implicitly, the times when
switching from mode i to mode j is allowed. The first rule tracks the temporal
evolution of the continuous state, x, and requires that, at the switching time, the
continuous state, x, be inside the stability region, Ω∗j (u

max
j , θbj), associated with

the target mode. This ensures that, once this mode is activated, its Lyapunov
function continues to decay for as long as the mode remains engaged. Note that
this condition applies at every time that the supervisor considers switching from
one mode to another. In contrast, the second switching rule of Eq.9 applies only
when the target mode j has been previously activated. In this case, Eq.9 requires
that the gain in energy, Vj , from the last ”switch out” to the current ”switch in”
be less than unity. This guarantees that by the time a given mode is re-activated,
its energy has not been adversely impacted by the other modes.
Remark 3: For the case when the uncertain variables are non-vanishing, i.e.
Wi(0) 6= 0 in Eq.1 (see section 4 for an example), it can be shown that, under
the conditions of Theorem 1, the trajectories of the switched closed-loop system
remain bounded and converge, in finite time, to an arbitrarily small neighborhood
around the origin.
4. Application to a switched chemical reactor
Consider a continuous stirred tank reactor where an irreversible first-order exother-
mic reaction of the form A

k→ B takes place. The reactor has two inlet streams,
the first of which continuously feeds pure A at flow rate F , concentration CA0

and temperature TA0, while the second has a valve that can be turned on or off,
depending on operational requirements. When the valve is on, the second stream
feeds pure A at flow rate F ∗, concentration C∗A0 and temperature T ∗A0. Under
standard modeling assumptions, the mathematical model for the process takes the
form:

V
dCA

dt
= F (CA0 − CA) + σ(t)F ∗(C∗A0 − CA)− k0e

−E

RT CAV

V
dT

dt
= F (TA0 − T ) + σ(t)F ∗(T ∗A0 − T ) +

(−∆Hr)
ρcp

k0e

−E

RT CAV +
Q

ρcp

(10)
where CA denotes the concentration of A, T denotes the reactor temperature, Q
denotes the rate of heat input to the reactor, V denotes the reactor volume , k0, E,
∆H denote the pre-exponential constant, the activation energy, and the enthalpy
of the reaction, cp and ρ, denote the heat capacity and density of the fluid in the
reactor. The process parameters and steady state values for this example can be
found in (El-Farra and Christofides, 2001a) σ(t) is a discrete variable that takes
a value of zero when the valve of the second inlet stream is closed and a value of



one when the valve is open. Initially, it is assumed that the valve is closed (i.e.
σ(0) = 0). During reactor operation, however, it is desired to open this valve and
feed in more reactant material through the second inlet stream (i.e. σ = 1) in
order to enhance the product concentration leaving the reactor.

The above requirement clearly gives rise to two distinct operational modes for
the CSTR, between which switching is needed. These modes correspond to the
off(σ = 0)/on(σ = 1) conditions of the valve of the second inlet stream. Since the
initial operating mode (with σ = 0) has an open-loop unstable steady-state that
corresponds to T = 395 K, our control objective will be to stabilize the reactor
temperature at this point by manipulating the rate of heat input. However, since
switching to the “valve on” mode (with σ = 1) at some later point in time can
potentially disturb the process and cause instability, our switching objective will be
to carry out the transition between the two modes at the earliest ”safe” time that
does not jeopardize process stability. The control and switching objectives are to
be accomplished in the presence of: 1) hard constraints on the manipulated input,
|Q| ≤ 80 KJ/min, 2) time-varying external disturbances in the feed temperature
of both inlet streams, and 3) time-varying parametric uncertainty in the enthalpy
of reaction. For the purpose of simulating the effect of the uncertainty on the
process, we consider time-varying functions of the form

θk(t) = θbksin(3t) (11)

where the upper bounds, θbk, on the feed temperature disturbances are taken to
be 10 K for both streams, and the upper bound on the uncertainty in the enthalpy
is taken to be 15% of the nominal value.

To accommodate both the control and operational objectives, we follow the
strategy proposed in Theorem 1. With two quadratic Lyapunov function of the
form Vi = 1

2ci(T − Ts)2, where ci > 0, we initially use Eq.4 to synthesize two
bounded robust controllers, one for each mode, that enforce robust closed-loop
stability for their respective modes, and also achieve an arbitrary degree of atten-
uation of the effect of uncertainty on the reactor temperature. Then, with the aid
of Eq.7, we compute the region of guaranteed closed-loop stability associated with
each mode, which will be needed to implement the necessary stabilizing switching
laws. Details of these computations are omitted due to space limitations and will
be presented at the conference.

Several closed-loop simulations were performed to evaluate the proposed con-
trol strategy. Figure 1 depicts the controlled output and manipulated input profiles
when the reactor is operated in the σ = 0 mode and no switching is involved. We
observe that the controller for this mode successfully stabilizes the reactor tem-
perature at the desired steady-state and simultaneously attenuates the effect of
disturbances and model uncertainty on the reactor temperature. In order to in-
crease the product concentration, however, we decide to switch to the σ = 1 mode
at some point. Without using the switching laws of Theorem 1, suppose that we
set the switching time to be as early as t = 21 min. The result is shown in Figure
2 (dashed lines). It is clear that by switching at this arbitrarily chosen time, the
controller for the σ = 1 mode is unable to robustly stabilize the reactor temper-
ature at the desired steady-state. The reason is that at this time, the state of
the system is still outside the stability region for the σ = 1 mode and therefore,
the available control action is insufficient to stabilize the temperature, as can be
seen from the input profile. To avoid this instability, we use the switching scheme
proposed in Theorem 1. In this case, we start the reactor in the σ = 0 mode and
switch to the σ = 1 mode only when the condition of Eq.8 is satisfied (note that the
condition of Eq.9 is not needed here since the σ = 0 mode is never re-activated).
The controlled output and manipulated input profiles for this case are depicted
by the solid lines in Figure 2 which show that the controllers successfully drive



the reactor temperature to the desired steady state while attenuating the effect of
uncertainty. Switching becomes safe after about 24 minutes of startup.
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Figure 1: Controlled output and manipulated input profiles with valve closed (σ = 0).
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Figure 2: Controlled output and manipulated input profiles when valve opened at t = 21
min (dashed) and when valve opened at t = 24 min using the switching laws of Theorem
1 (solid).


