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Abstract
An algorithm for data analysis and regression by orthogonalized-variable-based stepwise regression
(SROV) has been developed and was implemented as a MATLAB toolbox. The program uses QR
decomposition based on Gram-Schmidth orthogonalization, which is highly resilient to numerical error
propagation, for regression. Variables are selected to enter the regression model according to their level of
correlation with the dependent variable and they are removed from further consideration when their
residual information gets below noise level. The use and benefits of SROV are demonstrated by two
examples. The first one involves removing non-influential dimensionless groups from a regression model.
In the second one the nonlinear terms that should be included in an optimal thermodynamic property
correlation are selected.

1. Introduction
Analysis, reduction and regression of experimental and process data are critical ingredients of various

CAPE activities, such as process design, monitoring and control. The accuracy and reliability of process
related calculations depend on the accuracy, validity and stability of the regression models fitted to the
experimental data. It is usually unknown, a priori, how many explanatory variables (independent
variables and/or their functions) should be included in the model. An insufficient number of explanatory
variables result in an inaccurate model, where some independent variables that under certain
circumstances significantly affect the dependent variable, are omitted. On the other hand, the inclusion of
too many explanatory terms renders an unstable model. Shacham and Brauner (1997) and Brauner and
Shacham (1998 a, b) provide several examples where regression models published in the chemical
engineering literature are grossly inaccurate and/or unstable. Shacham and Brauner (1999) have
established the theoretical basis for considering precision of the data in determining how many and which
explanatory variables (independent variables and their nonlinear functions) should be included in an
optimal regression model. An optimal model is a stable model of highest possible accuracy. An algorithm
for carrying out an orthogonalized-variable-based stepwise regression (SROV) process for the
construction of optimal regression models have been developed and was implemented as a set of
MATLAB  script files  (toolbox, Shacham and Brauner, 2001). The toolbox contains the SROV programs
for fitting linear, quadratic, polynomial and general (linear combination of various nonlinear functions of
the independent variables) models to data. The toolbox can be downloaded from the ftp site:
ftp://ftp.bgu.ac.il/shacham/SROV.

In this paper the use of SROV for removing non-influential dimensionless groups from a model and
for selecting the nonlinear terms that should be included in an optimal regression model for vapor
pressure correlation are demonstrated. In the next section the two motivating examples are presented.
After that the SROV algorithm is described briefly and the solutions of the motivating examples using
SROV are presented. The computations reported in the paper were carried out with MATLAB 5.3
(trademark of The Math Works, Inc., http://www.mathworks.com) and POLYMATH 5.1 (copyrighted by
M. Shacham, M. B. Cutlip and M. Elly, http://www.polymath-software.com)
.
2. Motivating Examples
2.1 Fitting a regression model to heat transfer data (Dow and Jacob, 1951; Lapidus, 1962)
Dow and Jacobs (1951) proposed the following dimensionless equation for representing experimental
data dealing with heat transfer between a vertical tube and a fluidized air-solid mixture,
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with hm � heat transfer coefficient, Dt � tube diameter, Dp � solid particle diameter, L- heated fluidized
bed length, ε � void fraction of fluid bed, G � gas mass velocity, kg, ρg, Cg, µg- properties of gas phase and
Cs, ρs � properties of solid phase.

Dow and Jacob (1951) and Lapidus (1962) tested the appropriateness of this model by regression of
the linearized form of Eqn. (1) (linearized by taking logarithm of both sides of the equation) with the data
shown in p. 354 in Lapidus (1962).  Regression results obtained using the multiple linear regression
option of the POLYMATH program for the linearized five-parameter model are shown in Table 1. The
results include the parameter values, the 95% confidence intervals on the parameter values, the variance
and the linear correlation coefficient (R2).

The overall impression is that the model represents the data adequately. The residual plot (not shown)
displays a random distribution of residuals with a maximal error of about 2% and R2 = 0.99. But
comparing the parameter values with their confidence intervals indicates potential faults of the regression
model. For two of the parameters ( ln(a1) and a4) the confidence intervals are larger than the parameter
value, meaning that  the value 0 (zero) is inside the confidence interval.  Such a situation usually arises if
non-influential independent variables are included in the model or/and there is collinearity between some
of the variables. In this particular case a1 (=1), and N3 can be omitted from the fit. In section 4, the SROV
program will be used for identifying the cause of the wide confidence intervals and to select the
influential dimensionless groups from among the ones that were proposed.

2.2 Stepwise regression of vapor pressure data
Wagner (1973) proposed the following equation to represent vapor pressure data between the triple

point and the critical point:
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where a1, a2, a3 and a4 are adjustable parameters, TR is reduced temperature (TR = T/TC , where TC is the
critical temperature), PR is the reduced pressure (PR = P/PC , where PC  is the critical pressure) and τ = 1 -
TR. This equation was fitted to vapor pressure data of nitrogen provided by Wagner (1973). The data set
includes 68 data points between the triple point: T = 63.148 K, P= 0.1252 bar and the critical point: TC  =
126.2 K, PC = 34.002 bar. Regression results obtained using the multiple linear regression option of the
POLYMATH program for the Wagner equation are shown in Table 2. The results include the parameter
values and their 95% confidence intervals, the variance and the linear correlation coefficient (R2).

Wagner�s equation represents the data very well. There is a random distribution of residuals, the
error in lnPR is well below 0.1% over most of the region and R2 = 1.0 Wagner (1973) applied stepwise
regression on a model containing 27 linear and nonlinear terms in order to arrive at the model of Eqn. 2.
The question arises whether Wagner�s model is really unique and optimal, or similar and even better
models can be derived. In section 4 the SROV program will be used for identifying the terms that should
be included in an optimal model, from among the following linear terms proposed by Wagner:
1. τ-1,  2. τ-0.5, 3. τ 0.5, 4. τ  5. τ 1.5, 6. τ 2, 7. τ 2.5, 8. τ 3, 9. τ 3.5, 10. τ 4, 11. τ 4.5, 12. τ 5, 13. τ 5.5, 14. τ 6, 15. τ 6.5,
16. τ 7, 17. τ 7.5, 18. τ 8, 19. τ 8.5, 20. τ 9, 21. ln τ , 22. (1- τ)2ln(1- τ) and 23. lnT

3. The SROV (Stepwise Regression using Orthogonalized Variables) algorithm
The SROV program has been described in detail in Shacham and Brauner (1999 and 2001).  Here only a
brief explanation, which is necessary in order for understanding the results presented, is given.

A standard linear regression model can be written as:
εxxxy ++++= nnββββ !22110                        (3)



where y is an N-vector of the dependent variable, xj(j = 1,2, � n) are N vectors of explanatory variables,
•0, •1� •n, are the model parameters to be estimated and • is an N vector of stochastic terms
(measurement errors).  It should be noted that an explanatory variable can represent an independent
variable or a function of one or more independent variables. The vector of estimated parameters:
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T βββ !=β is calculated via QR decomposition when the orthogonal Q matrix is constructed
using the Gram-Schmidth method. This method is highly resilient to numerical error propagation. The QR
decomposition is carried out simultaneously with the selection of the variables that should be included in
the regression model. This is done in sequential steps, where at each step one of the explanatory variables,
say xp, is selected to enter the regression model. The explanatory variables which have already been
included in the regression model (at previous stages) are referred to as basic variables, and the remaining
explanatory variables are the non-basic variables. At each step, the non-basic variables are updated to
include the residual information that is orthogonal to that represented by the basic variables.

Variable selection is based on the indicator |YXj|, which represents the correlation between y and xj.
The value of |YXj| is in the range [0,1].  In a case of a perfect correlation between the dependent variable y
and the explanatory variable xj (y is aligned in the xj direction), |YXj| = 1.  In case y is unaffected by xj

(the two vectors are orthogonal), |YXj| = 0. Two indicators are used for removing explanatory variables
from consideration because of  an insignificant signal-to-noise ratio. The indicator TNRj measures the
signal-to-noise ratio in an explanatory variable xj. A value of TNRj >> 1 indicates that the explanatory
variable xj, contains valuable information.  On the other hand, a value of TNRj ≤ 1 implies that the
information included in xj is mostly noise, and therefore, it  should not be added to the basic variables.
The indicator CNRj measures the signal-to-noise ratio ratio of  |YXj|. A value of CNRj >> 1 signals that
the correlation between xj  and y is significantly larger than the noise level.  But when CNRj ≤ 1 the noise
in |YXj| is as large as, or even larger than |YXj|. If this is the case, the respective variable should not be
included in the regression model. At each step, the variable with the highest  |YXj| | value is selected to
enter the basis (the model), provided that both TNRj>1 and  CNRj>1. The selection of new variables (from
among the non-basic variables) to be added to the basic variables stops when for all the non-basic
variables either CNRj ≤1  and/or  TNRj ≤1.

The SROV algorithm consists of two phases.  In the first phase, an initial (optimal or nearly optimal)
solution is found.  In the second phase, the variables are rotated to change the order of their selection in
an attempt to improve the model. In this phase, the variables in the basis are rotated so that each of them
is tested versus the non-basic variables for its reselection as the last one to enter the basis. If rotation
results in replacement of a basic variable by a non-basic one, a better solution of lower variance, has been
found and a new rotation starts. The rotation is terminated when none of the basic variables can be
replaced.

4. Application of SROV for the motivating examples
4.1 Example 1
The file that includes the commands for generating the data and error files and for changing default
program parameter values for Example 1 is shown in Appendix A. The data for this problem (Lapidus,
1962)  is stored in the text file: heatrans2.dat. This file is loaded and its contents are transferred to the
five vectors: N1, N2, N3, Re and Nu. The SROV requires specification of the estimated error for each data
point. For a model comprised of general (non-polynomial) functions of the independent variables an error
matrix (of the same dimension as the data matrix) has to be provided. The generation of the error matrix
is done in several steps. First, an average error level for each variable is specified. If no estimate of the
average experimental error is available (as in this case), the assumption that the data are accurate to all
reported figures, subject only to rounding error (Stewart, 1987) can be used. Based on this assumption,
the expression 0.3*10-t is used, where t is the digit at which rounding occurs.  The error levels,
determined according to these assumptions, are stored in the scalars (N1_el, N2_el, N3_el, Re_el and
Nu_el).  Next, a random and normally distributed error, with the mean set at the average error level and a
variance of one, is added to all the data points. The resultant values are stored in vectors (N1_e, N2_e,



N3_e, Re_e and Nu_e) Finally, the data required by the linearized model are generated by taking the
logarithm of the data and error matrices. The results are stored in xyData0 and xyErr0, respectively (both
variable names are recognized by the SROV program).

Problem title can be specified for documentation purposes, by entering it into the variable prob_title.
By specifying data_file_type = 1, the program is informed that both data and error matrices are provided.
By default, the program carries out standardization of the data, in this case we use the original data
without any transformation (transform=0). To use a linear (non-quadratic) model, the parameter model is
set at zero. To obtain both residual and normal probability plots, plot_level = 2 is specified (the default is
plot_level = 1, residual plot only). The second part of Appendix A shows the results that are displayed
during the initial base selection phase, when the interactive mode of operation is selected.

At every step of this phase the indicators |YXj| (shown as x*y (norm.)), TNRj and CNRj are displayed
for the three explanatory variables with the highest |YXj| values. The program selects the variable with the
highest absolute |YXj| value to enter the basis (the model) next (provided that both TNRj>1 and  CNRj>1)
but the user can override this selection. After a variable has entered the basis the respective parameter
value (Beta) and confidence intervals, as well as the current model variance are displayed. In this
particular example, |YX1| = 0.7279 (|YXj| associated with the independent variable N1) has the highest
valueand is thus the first variable selected for the basis. The order of the first three non-basic variables
(according to their YXj values) after completion of the first step is Re, N2 and N3 where all TNRj>1 and
CNRj>1. Re is selected to enter the basis at step two. This addition leads to a significant reduction of the
variance and the corresponding parameter value is significantly different from zero. Now, the order of the
two remaining non-basic variables (according to their YXj values) is N2 and N3 and still the corresponding
TNRj>1 and CNRj>1.  After selecting N2 to enter the basis, the variance is reduced by an order of
magnitude. The resultant |YX3|<<1 ( ≈ 0.002) and CNR3<1, indicating that the residual component of N3 is
non influential (nearly orthogonal to the residual of y).  Hence, N3 is not included in the initial basis.  The
second, rotation phase does not identify a better model or any additional acceptable (sub-optimal) models.

The final results of this analysis are shown in the right part of Table 2.  For this four-parameter
model, all the parameter values are significant and the variance is even smaller than that of the five-
parameter model. Thus, based on the available data, there is no justification to include the N3 group in the
model.

4.2 Example 2.
The average error levels for the various variables in this example are determined using the same
assumptions as in Example 1, implying an average error of 0.003 ûC for the temperature and an average
relative error of 0.03% for the pressure. Since this is a large-scale example, the details of the
computations are not provided. All calculations are carried out by the SROV automatically, without any
user intervention. The results shown in Table 3 include only the final results of the initial model selection
and the final optimal and sub-optimal models identified during the second rotation phase.

At the end of the initial phase, a regression model containing five variables:  τ , τ 1.5 ,τ 3.5 ,τ 9 and  lnT,
is identified with a variance of s2 = 5.303e-8. Three consecutive rotations yield three additional solutions
with consecutively decreasing variances. All four models include five variables with all parameters values
significantly different from zero. The solution of the lowest variance is obtained at the completion of the
3rd rotation. This model contains the variables: τ , τ 0.5 ,τ 1.5 ,τ 3.5 and τ 6  with a variance of  s2 = 4.1534e-8.
The variance of the other four sub-optimal models are either smaller or slightly larger than that of the
Wagner�s model (s2 =4.729e-8). This example demonstrates the benefits of employing the SROV
program for the automatic selection of stable and of highest precision regression models in cases where a
large number of potential explanatory variables are to be considered.

5. Conclusions
The use of the new SROV toolbox has been demonstrated for performing stepwise regression and

data analysis. It was shown that in modeling of data in terms of dimensionless groups, apparent adequate
representation of the data by the model, is not enough for justifying the inclusion of all the groups in the



correlation. In such cases, the SROV can be used to remove the non-influential groups from the model.
In modeling of thermodynamic properties with a large bank of potential terms, SROV can provide the
optimal model in addition to several sub-optimal models. The sub-optimal models provide flexibility for
incorporating additional considerations, besides stability and minimal variance, in the selection of the best
correlation to be used.
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Appendix A
Commands file and partial results of the SROV program for Example 1
1. Commands file
load heatrans2.dat N1_e(:,1)=N1(:,1)+R(:,1)*5*N1_el/3;
N1=heatrans2(:,1); N2_e(:,1)=N2(:,1)+R(:,1)*5*N2_el/3;
N2=heatrans2(:,2); N3_e(:,1)=N3(:,1)+R(:,1)*5*N3_el/3;
N3=heatrans2(:,3); Re_e(:,1)=Re(:,1)+R(:,1)*5*Re_el/3;
Re=heatrans2(:,4); Nu_e(:,1)=Nu(:,1)+R(:,1)*5*Nu_el/3;
Nu=heatrans2(:,5); xyData0=[log(N1) log(N2) log(N3) log(Re) log(Nu)];
randn('state',0); xyErr0=xyData0-[log(N1_e) log(N2_e) log(N3_e)
R=randn(size(heatrans2));            log(Re_e) log(Nu_e)];
N1_el=0.0003; %absolute error in N1 prob_title=(['Heat transfer in fluidized bed  ']);
N2_el=0.3; %absolute error in N2 data_file_type=1;
N3_el=0.3; %absolute error in N3 transform=0;
Re_el=0.3; %absolute error in Re model=0;
Nu_el=0.3; % absolute error in Nu plot_level=2;

2. Selection of the variables included in the model in the initial stage.
   Var. No.       x*y (norm.)       TNR          CNR

1 0.7279 4.15E+02 3.61E+02
3 0.67858 7.50E+02 5.19E+02
2 0.65617 574.87 435.3

The new base variable selected is var. No.1. Press enter to accept or type in a different number.
   Step No.          Beta        Variance     Conf. interval

1 1.0754 0.14938 0.51835
   Var. No.       x*y (norm.)     TNR          CNR

4 0.88594 470.52 424.88
2 0.46837 918.74 369.33
3 0.3728 1275.5 416.41

The new base variable selected is var. No.4. Press enter to accept or type in a different number.
   Step No.              Beta      Variance     Conf. interval

2 0.7988 0.034143 0.22163
   Var. No.        x*y (norm.)     TNR          CNR



2 0.95123 748.5 217.04
3 0.52642 1060.5 143.18

The new base variable selected is var. No.2. Press enter to accept or type in a different number.
   Step No.             Beta      Variance     Conf. interval

3 0.34522 0.003466 0.061618
   Var. No.        x*y (norm.)     TNR          CNR

3 -0.0021259 872.22 0.17183
 Initial base selection finished. Press a key to display the results

Table 1. Regression results for Example 1, five and four parameters models

Five parameters model Four parameters model
Parameter 95% confidence Parameter 95% confidence

Value interval Value interval
lna1 0.164374 1.028335 0.161584 0.634396
a2 0.740198 0.118044 0.739988 0.097800
a3 0.345383 0.080566 0.345224 0.064185
a4 -5.70E-04 0.160737 - -
a5 0.786533 0.078299 0.786489 0.073993

variance 0.003999 0.003714

Table 2. Regression results for Example 2, Wagner and minimal variance models

Wagner�s model Minimal variance model
Term Parameter 95% confidence Parameter 95% confidence

value interval value interval
τ0.5 - - -0.009526 0.002735
τ -6.101728 0.004510 -6.020998 0.017165
τ 1.5 1.147282 0.012326 0.970093 0.027056
τ 3 -1.056454 0.027035 - -
τ 3.5 - - -1.267259 0.147817
τ 6 -1.888232 0.087268 -1.274936 0.057905

variance 4.729E-08 4.156E-08

Table 3. Results of the SROV program for Example 2

Term Parm. value Parm. value Parm. value Parm. value
(base solutn.) 1st rotation 2nd rotation 3rd rotation

τ0.5 - - -0.007189 -0.009526
τ -6.077219 -6.072797 -6.039963 -6.020998
τ 1.5 1.060295 1.048628 1.006335 0.970093
τ 3.5 -1.531823 -1.479547 -1.425211 -1.267259
τ 6 - - - -1.274936
τ 7.5 - -1.842981 -2.093281 -
τ 9 -3.868830 - - -

lnT -6.307E-05 -7.477E-05 - -
variance 5.306E-08 5.069E-08 4.423E-08 4.156E-08
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