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Abstract. This paper proposes an unconstrained optimization approach to the design and
upgrade of sensor networks. The proposition is motivated by the fact that current methods
require threshold values for different instrumentation network attributes, which are in turn
very difficult to determine. In fact, these attributes are, after all, related to the process
economics and therefore should not be arbitrarily constrained.  The methodology replaces a
recent trend in viewing the problem as a multi-objective one. In this sense, the
unconstrained objective can be considered as the proper utility function of the multi-
objective problem.
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Introduction

Instrumentation is needed in process plants to obtain data that is essential to perform several
activities. Among the most important are control of plants, assessment of the quality of products,
production accounting (sometimes called yield accounting) and detection of failures related to safety. In
addition, certain parameters that cannot be measured directly, like heat exchanger fouling or column
efficiencies, are of interest. Finally, new techniques such as on-line optimization require computer models
for which the estimation of process parameters is essential.

The problem of instrumentation network design and upgrade consists of determining the optimal
set of measured variables and selecting the accuracy and reliability of the corresponding instruments. The
goal is to obtain sufficiently accurate and reliable estimates of variables of interest while at the same time,
be able to filter bad data due to possible instrument malfunction, all this at minimum cost. Filtering of bad
data is related to gross error detectability while robustness of performance is related to residual precision
(precision in key variables that is left after gross errors are detected and eliminated) and resilience   (low
impact of undetected gross errors (Bagajewicz, 1997, 2000). In addition one can consider maintenance
costs as part of the total cost and require fault detection capabilities in addition to precision. Thus, the
simplest minimum cost model is:

       (P1) = Minimize  {Total Cost}
s.t.
     Desired level of Precision of Key Variables
     Desired level of Reliability of Key Variables
     Desired level of Gross-Error Robustness

where the total cost includes the maintenance cost, which regulates the availability of variables, a concept
that substitutes reliability when the system is repairable.



Several authors proposed methodologies to solve this problem. Almost all are described in detail
by Bagajewicz (2000). Recent work includes multiobjective optimization and two dimensional pareto
optimal graphs were developed (Bagajewicz and Cabrera, 2001b). This shows a departure from other
multiobjective approaches (Viswanath and Narasimhan, 2001; Carnero et al., 2001).  An MILP procedure
to design sensor networks was recently submitted (Bagajewicz and Cabrera, 2001a). This compares well
with the alternative approach by Chmielewski (2001).  Finally, the first attempt to unify the design of
sensor networks for monitoring with sensor networks for fault detection and resolution has been recently
submitted (Bagajewicz and Fuxman, 2001).

One of the difficulties of the present approach is that the model is based on thresholds of different
instrumentation features (residual precision, gross error detectability, resilience, etc), which are not
transparent to the process engineer. In other words, the process engineer has no feeling for what values to
request in a particular design and upgrade. In addition, maintenance has been taken into account through a
cost representation, but other features (availability of personnel, etc) were not considered. Thus, the
present formulation based on minimizing cost subject to threshold constraints on precision, reliability and
network robustness is clearly insufficient. Multicriteria approaches to the problem (Viswanath A. and S.
Narasimhan, 2001; Cabrera and Bagajewicz, 2001) address these problems to a certain extent. Indeed, the
cost-optimal formulation is nothing else than both a parametric decomposition and a value function
approach to obtain a multidimensional pareto-optimal solution of a multiobjective problem in which all the
network features are alternative objectives together with the cost. While exploring pareto optimal surfaces
is useful and can provide an idea of what value is obtained at different costs, this still leaves the
practitioner with a vague notion about the value obtained. For example, a practitioner may inquire about
the cost benefit relationship of increasing error detectability by one non-dimensional unit.

To ameliorate these difficulties, we propose to relate all sensor network properties (precision,
residual precision, error detectability, reliability and resilience) to lost/increased revenue functions
converting the problem into an unconstrained one based on cost or cost-benefit only.

This paper is aimed at introducing the concepts related to this technique but not to address its
numerical difficulties. The unconstrained formulation is first explained, some examples follow and finally,
a discussion on the incorporation of other network attributes in the objective function is performed.

Unconstrained Formulation

Consider the simple problem with only precision constraints:

(P2) = Minimize  {Investment Cost}
s.t.
          Desired level of Precision of Key Variables

We propose to introduce the value added of reliability and solve the following problem:

(P3) = Maximize {Net Present Value}

In this problem, one computes the net value as the present monetary value of the project, which
is normally obtained by discounting over time the value added of precision and subtracting from it the



investment. In more complete formulations one would also discount the maintenance costs. One can, of
course, continue with obtaining the net present value of reliability and other network properties.

We now turn to calculating the value added of precision. There is a variety of ways that
precision can be related to revenues. We will consider here that the value added because of precision is a
function of better product quality. Other definitions can be used, like for example the reduction of lost
revenue due to better assessment of product flows.

Let σi be the precision of the estimator of variable i, which in turn is obtained from redundant
measurements through data reconciliation. Therefore σi is directly calculated using the variance of the
instruments that are selected for installation. If one assumes that the estimators are normally distributed
N(µi σi), where µi is the estimator. Assume also that the measured variable is normally distributed.

For simplicity we consider a process with low variability (due to control and possibly other
factors), and with such variability being lower than the one that could be measured by the candidate
instruments or eventually by the best estimator that can be obtained by placing a large amount of
instruments in the systems. Such relation is depicted in Figure 1 where the both distributions are depicted.

Fig. 1.

The case where process variability is of the same magnitude or larger than the variance of the
estimator is left for future work.  Now the next step is to relate the variance of the estimator to product
loss associated with rejection of production due to bad quality. Indeed, assume the simplest scenario in
which the financial loss is K units for any product with deviation ±∆ from the specified value. Thus, for
an estimator with variance σi, the expected financial loss per unit of production is
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where it was assumed that the estimators probability distribution is normal.  Indeed, rejection due to poor
quality comes when an estimator is larger than  µi +∆ or smaller than µi -∆. Thus the probabilities of such
events are equal and are given by the integral shown in (1).   The next simplification is to make this
financial loss constant throughout time. Therefore for each period in the future obtains the following loss
due to bad instrument predictions
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In this expression, Fi  is the flowrate of product j rejected because of out of range property i and Tk  is the
length of the time period k. Since these are future losses, one should discount them appropriately. Thus,
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where dk  is the discount factor.  The net present value is composed of two parts. The first term is
composed of the difference of the expected loss between the case where there the estimator has a nominal
a-priori chosen variance ( 0

iσ ) and the case where the variance is eventually smaller (σi). Since we are
considering adding instrumentation, the former is larger than the latter. This is illustrated in Figure 2.

Fig. 2.

The shaded region corresponds to the difference of integrals in the first term. In retrofit cases,
0
iσ  corresponds to the current estimator variance, but in grassroots designs, one should consider using

variance of the cheapest instrument available to measure variable i. The second term is the extra
investment cost. Thus when no instrumentation is added, the investment is zero and the shaded area is
zero (both distributions coincide) and therefore, NPV=0, but when instrumentation is added, both the
investment cost and the value added increase.  In the extreme, when all possible instrumentation has been
added, the shaded region in Figure 2 is the largest possible, but the additional investment cost may
become too large.  We therefore recognize that there is a trade off and at some intermediate point the
maximum of NPV is reached.

Example

Consider the process of figure 3 (Bagajewicz, 1997). The flowrates are F = (151.1, 52.3, 97.8, 97.8).
Flowmeters of precision 3%, 2% and 1% are available at costs 800, 1500 and 2500, respectively. The set
of variables of interest is {S4}.  When  ∆ =2%, the interest rate used to calculate the discount factors over
5 years is 5% and K=20, only four solutions have positive NPV. They are depicted in Table 1.
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Fig. 3. Flow sheet for the Example

Table 1. Feasible solutions with Positive NPV (K=20, ∆ =2%)

NPV S1 S2 S3 S4

289.33 -- -- -- 1%
289.33 -- -- 1% --
112.53 -- -- -- 2%
112.53 -- -- 2% --

The solution, clearly states that instead of the minimum investment of installing a sensor of minimum
value (800) in S4 one can install one of 1% in S3 or S4 (they are equivalent).  As K is increased, the
solutions are shown in table 2.

Table 2. Selected Optimal solutions with Positive NPV (∆ =2%)

K NPV      S1  S2  S3  S4

0 � 17.091 0 --     -- -- 3%
17.091-66.084 0 � 4,873.18 --     -- -- 1%

> 66.084 >4,873.18 1% 1% 1% 1%

As one can observe, as K increases above 17.091, a direct jump to a 1% sensor is more profitable than a
transition to a 2% sensor. Similar direct jumps to higher precision and redundancy take place at
K=66.084.  When ∆ is smaller, then sometimes a less expensive network can be chosen for similar ranges
of K, but some other times a more expensive one is required. This behavior is shown in Table 3. Indeed,
for K in the range 17.091-21.456, a less expensive network is needed for ∆=0.8%, compared to the one
needed for ∆=2%. Conversely, for K in the range 45.969-66.084 a more expensive network is needed
when ∆=0.8%.

Table 3. Selected Feasible solutions with Positive NPV (∆ =0.8%)

K NPV      S1  S2  S3  S4

0 � 21.456 0 --     -- -- 3%
21.456 � 45.969 0 � 1,942.39 --     -- -- 1%

> 45.969 > 1,942.39 1% 1% 1% 1%

Discussion

Many formulations can be added or used alternatively for determining the value added of
instrumentation. For example, in the case of material balances, one accounting issue is the lost revenue
for underestimating sales and overestimating raw material purchases. In theory, if the probability
distribution is symmetric, these are the same, that is, one should overestimate as much as one
underestimate. However, in practice, one could be interested in assigning value to smaller overestimation
of products, but zero value to smaller underestimations. Conversely, one could assign value to smaller



underestimation of raw material flows and zero to overestimations.  The issue is also valid for gross error
detectability capabilities of the network.

Maintenance cost should be factored in negatively in the NPV. Maintenance cost, however, is
related to reliability of instruments, or more precisely to rate of failure. In addition, it is related to the
preventive maintenance policies.  Failure of instrumentation reduces precision, and therefore reduces
value added.

Conclusion
                In this paper, the basic principle for the design and upgrade of instrumentation networks using
unconstrained optimization (cost) has been presented.  The concept was illustrated for the case of the
value added of instrument precision and a brief discussion was made in relation to other ways of relating
instrument properties to value added.

Nomenclature
K Cost of rejection of production.
NPV Net present value
dk: Discount factor for year k.
ci: Cost of sensor i.
qi: Binary variable. qi =1 !A sensor is located in variable i.
Lσ,i: Expected financial loss per unit of production.
Dσ,i:: Total expected financial loss

Greek Letters:
0
iσ Original or minimum possible precision of variable i.
σi Precision of variable i.
µi: Mean value of variable i.
∆: Threshold deviation for quality assurance.
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