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Abstract
In this work, we propose a computationally efficient method for the solution of
dynamic constraint optimization problems arising in the context of spatially-
distributed processes governed by highly-dissipative nonlinear partial differential
equations (PDEs). The method is based on spatial discretization using combi-
nation of the method of weighted residuals with spatially-global basis functions
and approximate inertial manifolds. We use the Kuramoto-Sivashinsky equation,
a model of wavy behavior, to demonstrate the implementation and evaluate the
effectiveness of the proposed optimization method.
1. Introduction
The standard approach for the solution of the dynamic nonlinear programs (NLPs)
with dissipative PDE constraints involves the discretization of the spatial and tem-
poral domain using finite-element or finite-difference techniques and subsequently
the solution of the resulting large-scale nonlinear program (NLP) using optimiza-
tion techniques for sparse NLPs, such as reduced gradient and reduced successive
quadratic programming methods (see, for example, [1,2]). The main limitation
of this approach is that the nonlinear program resulting from the temporal and
spatial discretization is typically of very high-order (in order to compute the opti-
mal solution with the desired accuracy), and thus, it cannot be efficiently solved.
The reason for which this approach may be computationally inefficient is that a
brute force discretization with finite differences/elements does not account for the
inherent characteristics of the PDE equality constraints.

To overcome this limitation, we recently employed [3] a new approach to the
solution of steady-state optimization problems arising in the context transport-
reaction processes (described by parabolic PDEs) which is based on spatial dis-
cretization using the method of weighted residuals with empirical eigenfunctions
as basis functions. The empirical eigenfunctions are constructed by applying
Karhunen-Loève (K-L) expansion to process solution data. This approach to
spatial discretization takes into consideration the presence of dominant spatial
patterns in the solution of the parabolic PDEs and leads to reduced-order NLPs
that can be solved significantly faster compared to NLPs resulting from spatial
discretization using the finite-difference method (see [3] for detailed comparisons).

In this work, we propose a computationally efficient method for the solution
of dynamic constraint optimization problems arising in the context of spatially-
distributed processes governed by highly-dissipative nonlinear partial differential
equations (PDEs). The method is based on spatial discretization using combina-
tion of the method of weighted residuals with spatially-global basis functions and
approximate inertial manifolds. The proposed method accounts for the fact that
the dominant dynamics of highly-dissipative PDE systems are low-dimensional in
nature and lead to approximate optimization problems that are of significantly-
lower order compared to the ones obtained from spatial discretization using finite-
difference and finite-element techniques, and thus, they can be solved with signifi-
cantly smaller computational demand. We employ backward finite-differences (im-
plicit Euler) to perform temporal discretization and solve the nonlinear programs
resulting from temporal and spatial discretization using reduced gradient tech-
niques (MINOS). We apply the proposed optimization method to the Kuramoto-
Sivashinsky equation.
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2. Formulation of the optimization problem
We focus on spatially-distributed processes modeled by highly dissipative PDE
systems with the following state-space description:

∂x

∂t
= A(x) + f(t, x, d) (1)

subject to the mixed-type boundary condition and the initial condition:

g(x,
dx

dη
, . . . ,

dno−1x

dηno−1
) = 0, on Γ, x(z, 0) = x0(z) (2)

In the above PDE system, x(z, t) ∈ IRn denotes the vector of state variables,
t ∈ [0, tf ] is the time (tf is the terminal time), z = [z1, z2, z3]∈ Ω ⊂ IR3 is the
vector of spatial coordinates, Ω is the domain of definition of the process and Γ its
boundary. A(x) is a dissipative, possibly nonlinear, spatial differential operator
which includes higher-order spatial derivatives, f(t, x, d) is a nonlinear, possibly
time-varying, vector function which is assumed to be sufficiently smooth with
respect to its arguments, d(t) ∈ IRp is the vector of design variables which are

assumed to be piecewise continuous functions of time, g(x,
dx

dη
, . . . ,

dno−1x

dηno−1
) is a

nonlinear vector function which is assumed to be sufficiently smooth (no is the

order of the PDE of Eq.1),
dx

dη

∣∣∣∣
Γ

denotes the derivative in the direction perpen-

dicular to the boundary and x0(z) is a smooth vector function of z. A general
optimization problem for the system of Eqs.1-2 can be formulated as follows:

min

∫ tf

0

∫

Ω

G(x(z, t), d(t))dzdt

−∂x

∂t
+A(x) + f(t, x, d) = 0,

x(z, 0) = x0(z), g(x,
dx

dη
, . . . ,

dno−1x

dηno−1
) = 0 on Γ

g(x, d) ≤ 0, ∀ z ∈ Ω, t ∈ [0, tf ]

(3)

where
∫ tf

0

∫

Ω

G(x, d)dzdt is the objective function and g(x, d) is the vector of

inequality constraints which may include bounds on the state and design variables.
Both G(x, d) and g(x, d) are assumed to be sufficiently smooth functions of their
arguments. We focus on the computation of a local optimum.
3. Method of weighted residuals
In this subsection, we derive finite-dimensional approximations of the infinite-
dimensional nonlinear program of Eq.3 by using the method of weighted residuals.
To simplify the notation, we consider the optimization program of Eq.3 with n = 1.
We initially expand the solution x(z, t) in an infinite series in terms of a complete
set of basis functions φk(z):

x(z, t) =
∞∑

k=1

ak(t)φk(z) (4)

where ak(t) are time-varying coefficients. Substituting the expansion of Eq.4 into
Eq.3, multiplying the PDE and the inequality constraints with the weighting func-
tions, ψν(z), integrating over the entire spatial domain, and truncating the se-
ries expansion of x(z, t) up to order N and keeping the first N equations (i.e.
ν = 1, . . . , N), the infinite-dimensional program of Eq.3 reduces to the following
one with ODE equality constraints, where the optimization parameters are the
design variables d(t) and the time varying coefficients akN (t):



min

∫ tf

0

∫

Ω

G(
N∑

k=1

akN (t)φk(z), d)dzdt

−
N∑

k=1

ȧkN (
∫

Ω

ψν(z)φk(z)dz) +
∫

Ω

ψν(z)A(
N∑

k=1

akN (t)φk(z))dz

+
∫

Ω

ψν(z)f(t,
N∑

k=1

akN (t)φk(z), d)dz = 0

∫

Ω

ψν(z)g(
N∑

k=1

akNφk(z), d)dz ≤ 0

(5)

where akN (t) is the approximation of ak(t) obtained by an N -th order truncation.
From Eq.5, it is clear that the form of the algebraic equality and inequality depends
on the choice of the weighting functions, as well as on N . Owing to the smoothness
of the functions G(x, d), A(x), f(t, x, d), g(x, d) and the completeness of the set of
basis functions, φk(z), the nonlinear program of Eq.5 is a well-defined approxima-
tion of the infinite-dimensional program Eq.3 in the sense that its optimal solution
converges to the optimal solution of the program of Eq.3 as N →∞.
4. Approximate inertial manifolds
In this section, we propose an approach to the solution of the program of Eq.3
which is based on combination of the method of weighted residuals with the con-
cept of approximate inertial manifolds. Following the derivation of a large-scale
discretization of the PDE system using the method of weighted residuals (con-
sider the dynamic nonlinear program of Eq.5 with N large), the central idea is to
use the concept of inertial manifold to reduce the ODE system that describes the
dynamics of the higher-order (fast) eigenmodes to an algebraic one. To present
this procedure and simplify the notation, we rewrite the program of Eq.5 in the
following form:

min

∫ tf

0

G(aN , d)dt, ȧN = f̃(aN , d), g̃(aN , d) ≤ 0 (6)

where aN (t) = [a1N · · · akN ]T is the vector of the time-varying coefficients of the
basis eigenfunctions and the explicit form of f̃ and g̃ can be directly derived from
Eq.5. We consider the optimization program of Eq.6 and let as(t) be the vector
of the modes that are associated with the dominant dynamics of the PDE system
and af (t) be the modes that are associated with dynamics that decay very fast
but are important in terms of capturing the long-time behavior of the PDE. Using
this decomposition, the dynamic nonlinear program of Eq.6 can be written as:

min

∫ tf

0

G(as, af , d)dt, ȧs = f̃s(as, af , d), ȧf = f̃f (as, af , d), g̃(as, af , d) ≤ 0
(7)

Since the dynamics of the fast modes decay very fast, we can formally set the
time-derivative of af equal to zero to obtain the following approximate program:

min

∫ tf

0

G(as, af , d)dt, ȧs = f̃s(as, af , d), 0 = f̃f (as, af , d), g̃(as, af , d) ≤ 0
(8)

In the case of highly dissipative PDE systems, a rigorous justification of the above
approximation can be obtained through the concepts of inertial manifold and ap-
proximate inertial manifolds (see, for example, [4] for applications of this approach
to feedback control of parabolic PDE systems).
Remark 1: When there is a need to capture the evolution of the fast transients,
one can complement the dynamic nonlinear program of Eq.8 with an approxima-
tion of the dynamic nonlinear program of Eq.7 that captures its behavior in the
short-time interval, [0, τf ], needed for the dynamics of the fast modes to settle.



This approximate nonlinear program can be used to compute d(t) in the interval,
[0, τf ], and has the following form:

min

∫ τf

0

G(as(0), af (t), d)dt, ȧf = f̃f (as(0), af (t), d), g̃(as(0), af (t), d) ≤ 0
(9)

With the above formulation, one can solve the above program to compute d(t)
in the interval, [0, τf ], and then solve the nonlinear program of Eq.8 to compute
d(t) in the interval, [τf , tf ]. This type of two-time-scale decomposition may be
useful when the initial conditions associated with the fast modes are far from the
equilibrium manifold and therefore, the approximation 0 = f̃f (as, af , d) is not
valid for short times. The accuracy of this two-time-scale decomposition of the
nonlinear program of Eq.7 improves as the separation between the slow and fast
modes increases (which can be always accomplished by increasing the number of
modes included in the slow set).
Remark 2: The resulting dynamic nonlinear programs resulting from the above
discretization include equality constraints that constitute a low-order system of
coupled ordinary differential equations and algebraic equations, and can be then
solved with combination of standard temporal discretization and nonlinear pro-
gramming techniques. We employ backward finite-differences (implicit Euler) to
perform temporal discretization and solve the nonlinear programs resulting from
temporal and spatial discretization using reduced gradient techniques (MINOS).
5. Application to Kuramoto-Sivashinsky equation
In this section, we present an application of the proposed optimization method to
the Kuramoto-Sivashinsky equation with distributed actuation:

∂x

∂t
= −ν

∂4x

∂z4
− ∂2x

∂z2
− x

∂x

∂z
+ b(z)u(t) (10)

subject to the periodic boundary conditions and the initial condition:
∂jx

∂zj
(−π, t) =

∂jx

∂zj
(+π, t) , j = 0, . . . , 3, x(z, 0) = x0(z) (11)

where x(z, t) is the state of the system, z ∈ [−π, π] is the spatial coordinate, t is
the time and 2π is the length of the spatial domain, ν is the instability parameter,
x0(z) is the initial condition, u(t)] is the magnitude of the actuation, and b(z) is
the actuator distribution function. A direct computation of the solution of the
above eigenvalue problem for the spatial differential operator yields λ0 = 0 with

ψ0(z) =
1√
2π

, and λn = −νn4 + n2 (λn is an eigenvalue of multiplicity two) with

eigenfunctions φn(z) =
1√
π

sin(nz) and ψn(z) =
1√
π

cos(nz) for n = 1, . . . ,∞.

From the expression for the eigenvalues, it follows that for a fixed value of ν > 0
the number of unstable eigenvalues of A is finite and the distance between two
consecutive eigenvalues increases as n increases. This implies that for a fixed
value of ν > 0, the dominant dynamics of the KSE can be described by a finite-
dimensional system. We take ν = 0.12 in which case the spatially-uniform steady
state x(z, t) = 0 is unstable, and the state moves to a spatially-nonuniform steady-
state Therefore, we formulate the optimization problem as the one of computing
an optimal input trajectory u(t) for the actuators such that a meaningful cost that
includes penalty on the process response and the control action is minimized, in
the presence of constraints in the magnitude of the actuation. Mathematically,
this optimization problem is as follows:

min J =
∫ tf

0

∫ π

−π

(wsx
2 + wuu2) dz dt

∂x

∂t
= −ν

∂4x

∂z4
− ∂2x

∂z2
− x

∂x

∂z
+ b(z)u(t)

∂jx

∂zj
(−π, t) =

∂jx

∂zj
(+π, t) , j = 0, . . . , 3, x(z, 0) = x0(z), |u(t)| ≤ M



where M = 3.0, ws = 100 and wu = 20. We took x0 = 0.5
3∑

i=1

sin(iz) +

1.5
6∑

i=4

sin(iz), and assumed that two actuators with b1(z) = δ(z + 0.5π) and

b2(z) = δ(z − 0.5π) (point actuation applied at z = −0.5π and z = 0.5π) are
available. We initially tried to compute an optimal solution to the above problem
by performing spatial discretization using Galerkin’s method with the eigenfunc-
tions of the spatial differential operator (sinusoidal functions) as basis functions
and temporal discretization using implicit Euler. Optimal solution profiles of u(t)
were computed for different numbers of basis functions (in all these cases the
step of temporal discretization was appropriately adjusted to guarantee numerical
stability of the temporal integration). Figure 1 shows solution profiles of u(t), for
N=3,4,5,6. Clearly, these profiles show that convergence to a single optimal profile
improves as more basis functions are used. However, even for N = 6, convergence
of the input u1(t) to the optimal profile has not been obtained, and it is clear that
a higher-order discretization is needed to obtain a convergent profile for u1(t). To
be able to achieve convergence with a low-order approximation, we subsequently
used the proposed combination of Galerkin’s method with approximate inertial
manifolds to solve the optimization problem for the same initial condition. Figure
2 (top plots) shows solution profiles of u(t) for different orders of approximation.
Clearly, these profiles converge to a single optimal profile; note the small differ-
ence (especially for small times) in the optimal solution profiles for u1(t) and u2(t)
between the (3, 5) and (5, 5) dynamic nonlinear programs. Figure 2 (bottom plot)
shows the profile of the state x(z, t) under the u(t) obtained from the solution of the
(5, 5) dynamic nonlinear program. It is clear that the optimal input profile leads
to operation of the process close to the spatially uniform steady-state at a finite
time. The time needed to solve the optimization problem using this approach is
the fraction of the time needed to solve this problem when spatial discretization is
performed using finite-differences or through a high-order linear Galerkin trunca-
tion. Finally, to further improve the accuracy of the (3, 5) optimization program
for small times, the proposed combination of Galerkin’s method with modified
approximate inertial manifolds, formulation of Eqs.8-9, was used. Figure 3 (top
plots) shows optimal solution profiles of u(t) for different orders of approximation.
Clearly, the convergence properties have been substantially improved for small
times and the (3, 5) and (5, 5) optimization programs give identical results. Figure
3 (bottom plot) shows the profile of the state x(z, t). The optimal input profile
again leads to operation of the process close to the spatially uniform steady-state
at a finite time. In summary, we clearly see that the combination of Galerkin’s
method and approximate inertial manifolds, as well as the two-time-scale modifi-
cation of Eq.9 lead to improved results (in terms of the order of the convergent
approximation and the time needed to obtain the optimal solution), compared to
discretization using linear Galerkin’s method. The reason is that the chosen initial
condition excites higher-order modes of the KSE that cannot be captured with a
low-order ODE approximation.
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Figure 1: Profiles of u(t) in the case of using Galerkin’s method with sinusoidal
basis functions.
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Figure 2: Top two plots: Profiles of u(t) in the case of spatial discretization using
Galerkin’s method with approximate inertial manifolds. Bottom plot: Profile of
the state of the KSE for optimal u(t) (Galerkin+AIM (5,5)).
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Figure 3: Top two plots: Profiles of u(t) in the case of spatial discretization using
Galerkin’s method with modified approximate inertial manifolds. Bottom plot:
Profile of the state of the KSE for optimal u(t) (Galerkin+eAIM (5,5)).


