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Abstract

In this article we propose a combined signed directed graph (SDG) and qualitative trend

analysis (QTA) framework for incipient fault diagnosis. The SDG is the �rst level in our

framework and provides a possible candidate set of faults based on the incipient response

of the process. The search for the actual fault is performed based on a QTA, which

uses the temporal evolution of the sensors for further resolution. It is shown that this

framework provides fast, reliable and accurate incipient fault diagnosis.

Key Words: Qualitative Trend Analysis, SDG, Incipient Fault Diagnosis, Tennessee

Eastman Challenge Problem

1 Introduction

Quick fault detection and diagnosis are key issues for safe and optimal process operation.

Quick corrective action can help in minimizing the quality and productivity o�sets, and

reduce the hazardous consequences in abnormal situations and so on. Further, quick

detection and diagnosis allows more time to the operator for counter-measure planning.

Hence incipient fault diagnosis (IFD) is an important area of research. Among many

models such as fault trees, completely numerical models, probabilistic models etc., signed

directed graphs (SDG) have been widely used for IFD. Despite considerable work on SDG,

large-scale applications are seldom seen in the literature. Also, till recently, very little

attention has been given to automatic development of digraphs and their analysis.

Recently, Maurya et al. [5] have made an attempt towards thorough analysis of the algo-

rithms for digraph generation, methodologies for digraph analysis and their applications.

It is well known that similar to many other qualitative techniques, SDG-based analysis

su�ers from generation of numerous spurious solutions due to loss of information while

going from quantitative to qualitative domain. Hence integration of SDG-based analysis

and some quantitative approach is highly desirable to reduce the number of spurious so-

lutions. Qualitative trend-analysis (QTA), being a data-driven technique, is well-suited

for the above task [3, 4]. Further, selection of key variables to be measured plays a key

role in IFD and hence its very important to select and use the correct sensors for fault

diagnosis (FD). In this paper, we propose a two-level strategy for incipient fault diag-

nosis. The �rst level uses SDG for incipient fault diagnosis. The sensors that are used

for SDG-based fault diagnosis are chosen using the algorithm proposed by Bhushan and
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Rengaswamy [1]. QTA is used in the second level to improve resolution. This paper is

organized as follows.

In the next section we present an overview of our previous work on SDG development

and analysis. We also brie
y present SDG-based sensor-location. Integration of SDG

and a fuzzy qualitative trend matching based diagnostic approach for IFD is discussed

in section 3. Finally, in section 4, the utility of the proposed approach is demonstrated

on the Tennessee Eastman case study. Due to space constraint, only minimal essential

description of various concepts has been provided.

2 SDG Analysis and SDG-based Sensor Location

In this section, we discuss our previous work on the generation and analysis of SDG

followed by SDG-based sensor location.

� Algorithms for SDG generation: Algorithms for generating digraphs for systems

described by di�erential equations (DE), algebraic equations (AE) and di�erential alge-

braic equations (DAE) of index one have been presented by Maurya et al. [5]. Essentially,

the explicit causality (for DE systems) or pseudo causality (precedence ordering in AE

systems) is captured through directed arcs in a digraph.

�Methods for SDG analysis: An exhaustive analysis of the SDGs for various systems

has been presented by Maurya et al. [5]. It has been shown that initial response of DE

systems (and DAE systems with only one perfect matching) can be predicted by using

propagation through the shortest path(s) in the SDG and an initial-response table (IRT)

can be prepared. This table is used in designing sensor-location. SDG-based IFD is

performed by comparison of the measured sign pattern with the sign patterns in the IRT

corresponding to various faults.

� SDG-based sensor-location: Bhushan and Rengaswamy [1] have presented an algo-

rithm for SDG-based sensor-network design. The IRT is used to formulate the optimiza-

tion (selection of minimum number of sensors to guarantee observability and to ensure

maximum fault resolution) problem. Fault resolution is maximized by selecting at least

one sensor from the sets of discriminating sensors (identi�ed by calculating the symmet-

ric di�erence between the sets of a�ected sensors by two di�erent faults) corresponding

to all fault pairs.

3 Integrated Framework for Incipient Fault Diagnosis

The proposed (novel) integrated framework is based on a two-step architecture. In typ-

ical large-scale plants, the number of possible faults (including external disturbances,

parametric faults, control loop malfunctions etc.) may be as large as thousands. In a

data-driven approach like QTA, the similarity index between the measured signal and

the signal corresponding to an assumed fault is between 0 and 1 [3, 4]. As the number

of possible faults increases, the separation between similarity indices corresponding to

various fault scenarios decreases and decision making (based upon comparison with a

threshold) becomes diÆcult. Also, computational complexity increases linearly with re-

spect to the number of fault scenarios stored in the fault-signature database. SDG-based

incipient fault diagnosis is a viable alternative to reduce the size of the set of candidate

faults for a given scenario to be diagnosed. This forms the �rst step of the framework.



The SDG-based analysis is robust in the qualitative linear regime (the region in which

the sign of the arcs in the SDG do not change) and hence is used in the �rst level to

enhance completeness.

Thus the �rst step of the framework uses SDG-based IFD to reduce the size of the set

of candidate faults. The second step uses QTA-based fuzzy trend matching between the

signal to be diagnosed and the signals corresponding to the reduced set of candidate

faults. The essential idea is to allow 0/1 as well as fractional matching index between

two primitives. An interested reader is referred to the articles by Dash et al. [3, 4]. It is

expected that the number of faults in the reduced set would be much less as compared to

the set of all the fault scenarios considered in the database. Thus the separation between

the concerned similarity indices would increase and computational complexity would

decrease. The integrated framework is shown in Figure 1. A case study is presented in

the next section to show the application of the SDG-QTA framework.

Measured signals
Candidate
fault set

Rank ordered list
of candidate faultsIdentify candidate

incipient fault diagnosis
faults using SDG−based

Level 1 Level 2

Perform QTA using the
candidate faults and
assign rank

Figure 1: SDG-QTA based integrated framework for incipient FD

4 Case Study: Fault Diagnosis of Tennessee Eastman Flowsheet

The Tennessee Eastman problem has been considered as a benchmark problem for a

number of applications such as MPC, sensor-location, causal-map based FD etc. Only

FD-relevant description is given here. A detailed description is presented by Bhushan

and Rengaswamy [2]. There are 33 fault nodes (16 bidirectional faults and 1 unidirec-

tional fault) in this case study (including three control loops). These faults have been

categorized by their sign (`+' or `-') and type (such as sensor bias, control valve bias etc.).

Total number of nodes in the SDG is 165. Only single fault scenarios have been con-

sidered in this case study. The SDG-based sensor location is used to identify placement

of sensors. Based upon the sensor-network thus obtained, 14 process variables (explicit

notation/description not provided) are measured. Sampling rate is 100 samples per hour.

SDG-QTA based IFD is presented next.

4.1 SDG-QTA based incipient fault diagnosis

As mentioned in section 2, an initial response table is prepared. The sign of the initial

evolution of measured variables is compared with sign pattern in the initial response

table to �nd the candidate fault set. Thus SDG-based IFD can be performed as soon as

non-zero signs are detected. During the second step, QTA is performed explicitly on the

candidate fault set (generated by SDG-based IFD) only and hence correct measurement

of the sign of initial evolution is extremely important. As the signals evolve with time, the

qualitative trends (represented as a string of primitives) of measurements are continuously

compared with the signatures of the candidate faults and the candidate faults are rank

ordered in decreasing order of similarity measure between the measured signals and the



fault signatures stored in the database. The most probable fault is the fault with highest

similarity measure.

4.2 Results

All the single fault scenarios (including malfunction inside control loops) have been tested.

The results (of 27 fault scenarios3) are presented in Table 1. The faults f16-18, 25-27g

and f19-21, 28-30g are related to control loops 1 and 2, respectively. The second column

of Table 1 shows the set of candidate faults generated by SDG-based IFD. The remaining

columns list the top two faults with highest similarity measures at 4 di�erent times as

the process evolves. Figure 2 shows that similarity measure between two similar fault

scenarios is high (fairly above 0.5). The similarity measures shown in Table 1 and Figure 2

are the minimum of the similarity measures among 14 signals. Thus the highest similarity

measure (for the most probable fault) need not be very close to one. Important results

from Table 1 are-

1. The size of candidate fault sets is about 20% of the total number of fault scenarios.

Thus computational complexity of level 2 is reduced considerably (5 times faster).

2. The similarity measure of the second most probable fault is well below the highest

similarity measure. Thus a better similarity measure spread is achieved.

3. For the introduced fault scenarios 6, 7, 14 and 15, the SDG-based candidate fault

set (column 2) does not include the actual fault. Thus four false negatives and false

positives are generated as a result of incorrect measurement of the initial response due

to large amount of noise. The true signal gets masked by the large noise during initial

evolution. Another reason is that the system might not exhibit the initial response for a

large enough time period for it to be detected. However, this is not a serious concern due

to the very small sampling rates that can be achieved in the DCS nowadays. Thus as long

as noise level is low, SDG-based IFD approach should be generally applicable. Ofcourse,

it is assumed that a good model (that captures the initial response well in the absence of

noise) is used to develop the SDG to start with. Another important observation in this

case study is the following. A signal with low signal to noise ratio (SNR) is not useful

for QTA-based FDD as useful features get masked by the noise. As the SNR becomes

very high, a large number of primitives are identi�ed to represent the data which might

be undesirable. One way to overcome this problem would be to let the noise level in the

QTA algorithm be a tunable parameter. However, in general, the QTA is able to capture

the important features of the sensor trends to provide a high resolution of faults in the

proposed integrated framework.

5 Conclusions

Based on SDG and QTA, a two level framework has been presented for incipient fault di-

agnosis. The application of the integrated framework has been shown through Tennessee

Eastman case study. The single fault scenarios have been tested exhaustively. Correct

fault diagnosis is achieved for 85% of the cases. The proposed framework combines the

completeness property of SDG with the resolution property of the QTA to provide a

promising framework for incipient fault diagnosis.
3Fault types are: s- sensor bias, set- set point change, v- control valve bias, o- other faults.
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Figure 2: Sensor trends for simulated fault 1 and identi�ed fault 1
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