
Integrating Mixture Design within the Property Clustering Framework 
Proceedings of European Congress of Chemical Engineering (ECCE-6) 
Copenhagen, 16-20 September 2007 
 

 

Integrating Mixture Design within the Property Clustering 
Framework 
 
Charles C. Solvasona, Fadwa T. Eljacka,b, Ninshanth G. Chemmangattuvalappila, 
Mario R. Edena 

 
aDepartment of Chemical Engineering, Auburn University, Auburn, AL, USA 
bDepartment of Chemical Engineering, Qatar University, Doha, Qatar 
 

Abstract 
Mixture Design is a Design of Experiments (DOE) tool used to determine the 
optimum combination of chemical constituents that deliver a desired response (or 
property) using a minimum number of experimental runs.  While the approach is 
sufficient for most experimental designs, it suffers from combinatorial explosion 
when dealing with multi-component mixtures.  To circumvent this problem, a recently 
developed design technique called Property Clustering is applied [1].  In this type of 
design the properties are transformed to conserved surrogate property clusters 
described by property operators, which have linear mixing rules even if the operators 
themselves are nonlinear.  Product and process property targets are then used to 
describe a feasibility target region.  To solve the mixture design, components are 
mixed according to property operator models in a reverse problem format until the 
mixture falls within the feasibility target region.  Once candidate solutions are found, 
they can be screened with additional criteria per the experimenter’s preference.  The 
degree of accuracy of this modeling technique depends heavily on the ability of the 
property operator models to adequately describe the property within the studied 
design space.  This work focuses on the utilization of linear Scheffe and Cox models 
as the property operators and discusses the implications of negative regressors on 
property clustering design space. 
 
Keywords: design of experiments, property clusters, mixture design, principal 
component regression, pharmaceutical synthesis 

1. Introduction 
The terms product synthesis and design designate problems involving identification 
and selection of compounds or mixtures that are capable of performing certain tasks 
or possess certain physical properties.  Since the properties of the component or 
mixture of components dictate whether or not the design is useful, the basis for 
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solution approaches in this area should be based on the properties themselves.  
However, the performance requirements for the desired component are usually 
dictated by the process and thus the identification of the desired component properties 
should be driven by the desired process performance.  Where as numerous 
contributions have been made in the areas of molecular synthesis and Computer 
Aided Molecular Design (CAMD) e.g. Harper and Gani [2], Marcoulaki and Kokossis 
[3], and Eljack et al. [4], little focus has been on utilizing experimental design 
techniques in situations where property prediction tools are insufficient in describing 
the mixture’s properties.  Early in experimental mixture design, Scheffe [5,6] and Cox 
[7] developed techniques to obtain property operator models while minimizing 
experimental runs or design points utilizing simplex diagrams of the chemical 
constituent design space.    However, visualization of the solution in the chemical 
constituent design space leads to combinatorial explosion.  Viewing the problem in 
the property space avoids this problem while also offering insights into the 
effectiveness of the design.  While other methods such as Principal Component 
Regression (PCR) and Partial Least Squares on to Latent Surfaces (PLS) are typically 
utilized under these conditions, it will be shown in an additional paper that these 
works also benefit from utilizing property clustering.   

2. Objective 
The overall objective of this contribution is to integrate the property clustering 
framework with existing mixture design techniques.  Specifically, using property 
clusters to visualize the response in the property domain rather than the component 
domain to aid in the physical understanding of the experiment in cases of 
combinatorial explosion.  The two most common mixture designs, Scheffe canonical 
models and Cox polynomial models, were evaluated.  The results of the exercise will 
be used to develop additional techniques for visualization of PCR and PLS score plots 
under combinatorial explosion that will be published in a later document. 

3. Experimental Design 
Design of Experiments (DOE) is a form of experimental design that utilizes statistical 
methods to plan and execute informative experiments [8].  A model is postulated to 
represent the response surface.  Experimental design points are placed in areas where 
observations can be collected to which the model can be fitted.   In the final step, the 
adequacy of the model is tested.  The procedure may require much iteration until the 
fitted equation is determined by the experimenter to be sufficient [9].  The most 
effective choice of model and location of design points is the focus of the 
experimenter.  The best set of points is chosen under the following constraints:  (1) 
the size and shape of the experimental region, (2) the number of desired experimental 
runs, and (3) the type of model used for constructing the “map” of the response [10].  
Most often, the polynomial model is selected to represent the response surface since it 
can be expanded through a Taylor series to the desired level of accuracy [9].  Either a 
first or second degree polynomial is usually chosen to represent the surface since it 
requires fewer observations. Third degree or higher ordered models are seldom 
utilized.  The point estimate forms of the models are listed in equations 1 and 2. 
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The response y is the point estimate of unbiased estimator of the response.  βo,  βi, 
and βij, are the point estimates of the regression coefficients.  The total number of i or 
j chemical constituents is u.  Least squares regression is the technique of choosing the 
regression coefficients that maximize the model sum of squares and minimize the 
residual sum of squares.  Forms of least square regression can be found in many 
techniques such as Classical Least Squares (CLS), Inverse Least Squares (ILS), 
Multiple Linear Regression (MLR), Principal Component Regression (PCR), and 
Partial Least Squares applied to Latent Surfaces (PLS).    
  
To derive the regressor solution for CLS, it is convenient to switch to matrix notation.  
Without it, the formulas become unmanageable when the number of explanatory 
variables increases [11].  Rewriting equation 1 in terms of matrix notation, 
 

BXY =  (3) 
 
Where Y, B, and X are matrices of the predicted responses, estimated regression 
coefficients, and components fractions, respectively. 
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Where q represents the total number of experiments.  In terms of matrices, equation 3 
can be rewritten as equation 7 [11]. 
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Solving for the best fit regressors gives equation 8 which is the central result of 
Classical Least Squares (CLS) analysis.  The same procedure can be extended to 
second order and third order models.  
 
3.1. Multiple Linear Regression (MLR) 
Instances where more than one property or response needs to be optimized 
simultaneously require the use of Multiple Linear Regression (MLR).  MLR is an 
extension of classical least squares regression to more than one response.    Rewriting 
equations 4-6 in terms of multiple responses gives equations 9-11. 
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Equation 10 demonstrates that many possible solutions exist for the regressors.  
However, due to the construction of the matrices, the least squares solution derived in 
equation 8 is still a viable method for determining which combination of regressors 
gives the best estimate of the responses.  For the inverse of the identity matrix X’X to 
exist, X must have as many rows as columns.  Since X has one row for each sample 
and one column for each component, then it follows that there must be at least as 
many samples q as components u to be able to compute equation 8.  The rules 
governing MLR relating to samples and components are summarized by Geladi and 
Kowalski as the following [12]: 

• For q > u, there is no unique solution unless one deletes the independent 
variables. 

• For q = u, there is one unique solution. 
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• For q < u, a least-squares solution is possible.  For q = u and q > u, the matrix 
inversion can cause problems (e.g. collinearity). 

 
Likewise, any linear dependence among the rows or columns of X will create a 
singular X’X matrix and its inverse will not exist [13].  This is a key observation that 
will be discussed later.   
 
3.2. Factorial Design 
In factorial design each of the studied factors may be either quantitative or qualitative 
in nature.  The factors are set to vary over a design range, the exact location of the 
design points depending on the base of the design.  The most common base for 
designs is base 2 where the factors are observed at both the higher and lower bounds 
of the range.  In base 3, center points are added, equidistant from the higher and lower 
bounds.  For all of the designs, the design points are located around a nexus that is as 
close to the expected target as possible.  The number of experiments used in the 
design is set according to the type of model chosen to reflect the response.  It has been 
shown that polynomial models are the most efficient models for describing 
experimental designs [9].  The ability to tailor the model by expansion to higher 
orders and/or the inclusion of interaction terms depending on the objective of the 
experiment provides the necessary flexibility for successful experimental design.  For 
instance, if a screening design is chosen, then linear models without interaction 
effects are usually adequate.  If indicators suggest non-linearity, then the original 
design can be augmented with more design points and a second order model can be 
applied.  If optimization of the design space is the objective, still more design points 
are required.  There are many established designs to choose from, but the trend has 
been away from set designs and toward designs that maximize optimality.  One type 
of optimality design is the D-optimal design which utilizes an algorithm to maximize 
the design space within a specified number of points [14].  The designs are 
particularly useful when a constrained region is studied and no classical design is 
available [15].   Montgomery gives a more detailed discussion of D-optimal designs 
and other alphabet designs [16]. 
 
The number of experiments grows rapidly with an increasing number of factors, thus 
when dealing with i > 5 variables or components, a full factorial design is not the best 
option for screening.  Rather the fractional factorial becomes the choice in design and 
allows the experimenter to increase the number of factors for the same number of 
experiments.  The trade off in using fractional factorial design is the confounding of 
factors with one another.  With some forethought, this situation is handled by 
maximizing the resolution of the design.  Typically, a resolution four (RIV) design is 
chosen that ensures that all main factors are protected from two-way interactions.  
Sometimes when experimental runs are constrained resolution three (RIII) designs 
may be chosen which confounds some 2-way interactions with the main factors.  In 
those cases, the experimenter may use previous knowledge to dismiss the infeasible 
two way interactions prior to executing the experiment. 



6  C. Solvason et al. 
  
 
3.3. Mixture Design 
Mixture design is an extension of DOE that utilizes chemical constituents as the 
factors in the design.  By definition the constituent fractions must sum to one and 
each constituent fraction must lie between zero and one. 
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This equation imposes a collinearity effect by removing the independence of the 
factors.  While it does not affect the utilization of the model, it does impact the 
interpretation of the regression coefficients.  The reason for using the constraint is to 
provide a means for visually representing more data by using a ternary diagram or 
simplex to describe the design space as shown in figure 1.  As was the case for 
factorial design, a model is first postulated to represent the response surface.  The 
number and location of the design points are selected based on the objective of the 
experiment.  Scheffe developed the first simplex-lattice designs which many 
researchers considered to be the foundation of mixture design [9].  To develop these 
designs, Scheffe noted that the location of the response of a mixture made up of 
exactly zero constituents must be identically zero meaning that the coefficient βo is 
zero [5, 6].  Furthermore, the use of equation 12 means that the quadratic terms can be 
rewritten as equation 14. 
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Combining these observations, Scheffe derived the canonical models in equations 15 
and 16. 
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The effect of these canonical models is to remove the quadratic and higher terms from 
analysis and leave behind only the modified pure component properties and 
interaction effects.  However, it must be noted that the modified regressors βi

* and βij
* 

do not represent only pure component properties or only interaction effects.  On the 
contrary, because of the collinearity introduced in the derivation of the canonical  
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Figure 1: Mixture simplex diagram of polyethylene (x1), polystyrene (x2), and polypropylene (x3) 
using experimental data from Cornell [9]. 

   
Figure 2: The design of a three-component experiment with the observed response values of thread 
elongation (kgf), knot strength (lbf), and specific volume (cm3/g) at the design points [9]. 
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models, the modified regressors are amalgams of the pure component, interaction, and 
quadratic effects, as shown in equations 17 and 18.   
 

ijii ββββ ++= 0
*  (17) 

jjiiijij ββββ −−=*  (18) 
 
The first and second order canonical models are postulated to represent over 66% of 
all mixture designs encountered.  In situations where a higher order cubic design is 
desired, the same procedure may be applied to the cubic polynomial equation to make 
the cubic canonical model. 
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To execute a mixture design using canonical models, Scheffe proposed using lattice 
points on a simplex diagram as shown in figure 2 [5, 6].  This technique simplifies the 
least squares calculation of regression coefficients.  Since the design is a boundary 
design with as many points as regression terms, then the estimated terms may be 
taken directly from the responses at each design point [17].  It should be noted that for 
canonical models, the regression coefficients are no longer represented by half the 
response; rather, they represent the pure properties of the constituents and are no 
longer orthogonal.  The true property value, or orthogonal effect, is estimated by 
taking the difference in the value of the response at pure and infinitely dilute solutions 
while holding all other constituents constant.  Cox noted that Scheffe’s simplex lattice 
and simplex centroid models require pure components and a range of constituent 
fractions from zero to one.  In his paper he points out that Scheffe’s models have the 
following drawbacks [7]: 

1. If two replicate experiments on the same system have the same expected 
responses except for a constant difference between replicates, it is obvious that 
on fitting separate replicates all of the regression coefficients will be different 
in the two replicates. 

2. The absence of squared terms makes it meaningless to consider the direction 
and magnitude of curvature of the response to a particular component. 

3. The interpretation of the regression coefficients is in terms of the responses for 
simple mixtures. 

 
In addition Kettaneh-Wold points out that the removal of the constant term to 
generate the canonical model makes it impossible to center these models which often 
leads to an ill-conditioned X’X matrix in equation 23 [10].  An ill-conditioned matrix 
is not symmetrical about the main diagonal, which means that the order of 
differentiation is important which can lead to errors during inversion.  It is of the 
utmost importance that the constituents be independent when performing CLS and 
MLR regressions.  Collinearity may also result from additional constraints such as the 
upper and lower bounds on components [17].   
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Figure 3:  The parameterization of the component space in terms of a standard reference mixture (s) 
such that the incremental change Δi in the proportion of the component i is indicative of its effect on 
the response [9]. 

 
To address these issues, Cox proposed a variable transformation with an arbitrary 
reference mixture that would allow for the use of existing polynomial models with 
additional constraints involving a reference mixture called the standard mixture [7].  
Shown in figure 3 is a simplex diagram with a standard mixture s and a mixture x with 
a larger proportion of constituent xi.  Noting that a x lies on a line from s to the xi 
vertex, then the ratio of the other u-1 constituents are in the same relative proportions 
as the standard mixture.  The proportions are written as equations 20 and 21. 
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Rewriting the first and second degree models, equation 1 and 2, in terms of the 
change in constituent i, Δi, gives equations 22 and 23 which provide a direct link 
between the regressors and the position of the design points to the reference mixture 
[9].   
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Where y(x) is the expected response at design point x and y(s) is the expected 
response at the standard reference mixture.  The estimated response surface contours 
generated by the two model forms are identical [9].   Hence, as Smith and Beverly 
point out, the gradient, or change in response per unit change in xi, at s along the Cox-
effect direction is called the effect of xi, provided xi is free to range from 0 to 1 [18].  
While this transformation of the original Scheffe polynomials removes the primary 
collinearity introduced by equation 24, it leaves the secondary collinearities such as 
those introduced by constraints on the constituent ranges.  Kettaneh-Wold suggests 
that the best solution maybe to refrain from interpreting the coefficients and rely on 
the predictions only but notes this solution is not acceptable in practice since the 
interpretation of regression coefficients is a necessity when the objective is to find 
component effects in screening situations [17].  It is in this arena that Kettaneh-Wold 
suggests the use of Principal Component Regression (PCR) and Partial Least Squares 
on to Latent Surfaces (PLS) [17].   However, Property Clustering is another method 
that may help in the interpretation of the regressors. 
 

4. Property Clustering 
Property Clustering was developed as a tool for tracking properties in a conserved 
manner by Shelley and El-Halwagi [19].  It was later applied to process and product 
design by Eden et al. [1].  As a design tool, the technique challenges conventional 
design by reversing traditional mixture designs to solve for chemical constituents that 
meet property constraints prior to experimentation.  Essentially, the technique 
converts properties into conserved surrogate property clusters that are described by 
property operators, which have linear mixing rules, even if the operators themselves 
are nonlinear.  In equation 53, the property, y, is described by a linear property 
operator equation.  
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Although the property operator equation must be linear, the property operator itself 
may be nonlinear.  For example, if the property operator describes density, then to 
meet the linear criteria imposed by equation 53 we would use specific volume as the 
property operator, ignoring any interaction effects from mixing, as shown in equations 
25 and 26.  
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This step is often difficult as many properties can not be described adequately by 
linear models.  In this situation the experimenter must weigh the benefits of the 
method versus the loss of solution certainty.  In most cases, this caveat leads the 
experimenter to limit the application of this method to high volume screening designs. 
 
After the property operator equations are defined, the method is straightforward and 
universal.  As shown in equation 27, the property operators are non-dimensionalized 
by dividing by a reference property operator [1].  
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This step serves the purpose of scaling the property design space to facilitate an easier 
graphical design space.  As shown later in this paper, it is also used to ensure a 
solution to mixtures whose property operator equations contain negative regression 
coefficients.  The non-dimensionalized properties are then summed into the 
Augmented Property Index (AUP) [19].  
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A cluster is then defined by dividing the non-dimensionalized property by the 
property cluster, as shown in equation 29. 
 

i
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Shelley and El-Halwagi have shown that this property cluster is conserved through 
mixing and can be used to track the property through mixing functions [19].  To 
graphically represent, the cluster, a ternary diagram, or simplex, is used in much the 
same way as a mixture design (Figure 4).  Each of the vertices represent a pure  
property cluster.  In situations where more than 3 properties are needed to describe the 
system, an algebraic approach may be used [20].  The properties of each pure 
component, as predicted from the property operator equations, are plotted on the 
simplex.  Due to collinearities in the property operator equations, the prediction may 
be outside of the cluster space.  However, this situation can be handled by using 
pseudo clusters to augment the property cluster design space as discussed later. 
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Figure 4:  A property cluster simplex diagram using Scheffe property operators.  Property clusters 
1, 2, and 3 represent the properties thread elongation, knot strength, and specific volume.  
Components 1, 2, and 3 represent polyethylene, polystyrene, and polypropylene, respectively. 

 
Also shown in figure 4 is a feasibility region, which is mapped to the design space 
using targets specified by the product designer. To solve the design problem, the 
components are mixed according to linear mixing rules [1]. 
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Where the relative cluster arm δi is defined using the proof for inter-stream 
conservation of clusters given by Eden and Shelley and El-Halwagi, resulting in 
equation 31 [1, 21].   
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To successfully meet mixing criteria, mixtures must meet three conditions [1]: 

 
Rule 1. Cluster value of the source (or mixture of sources) must be contained 

within the feasibility region of the sink on the cluster ternary diagram. 
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Rule 2. The values of the Augmented Property Index (AUP) for the source or 
mixture of sources and the sink must match. 

Rule 3. The flow rate of the source (or mixture of sources) must lie within the 
acceptable feed flow rate for the sink. 

 
The original rule 3 must be modified slightly to meet the criteria of mixture design.  
Since each source must be considered as a pure component, then the constituents are 
subject to the additional constraint of summing to unity as imposed by equation 28.  
Therefore, a more appropriate statement of Rule 3 is  

 
Rule 3. The constituent fraction of the candidate mixtures must match the 

constituent fractions of the sink 
 
In addition to these three rules, the experimenter may wish to apply additional 
constraints, such as limiting the mixture size, type, or cost.  These constraints assume 
an optimization role in the design to further reduce the generated list of potential 
candidate mixtures. 
 
In summary, property clustering can represent the multitude of response plots 
normally associated with experimental design on a single simplex for systems with up 
to 3 properties.  Additional properties are either represented with additional diagrams 
or solved algebraically.  Property clustering also consolidates the numerous effects of 
components on the response into distinguishable values which may be used to surmise 
which of the components has the largest effect and is thus most important.  Both of 
these property clustering attributes can be used to increase the efficiency of the 
existing experimental designs.   
 

5. Integration of Property Clustering with Mixture Design 
As discussed earlier, property clustering is a transformation technique which 
facilitates a reverse problem solution.  Instead of sampling to determine property 
values, or estimating property values based on constituent values, the property value 
is specified and the appropriate constituent mixture is determined empirically to 
match the solution.  Utilizing property clustering in a reverse problem solving role not 
only avoids combinatorial explosion, but offers the potential for solving process, 
mixture, and molecular design problems simultaneously [4].  The key to successful 
modeling with property clustering is to utilize appropriate property operator models.   
Traditionally these have been based on established property models tailored to a 
linear format.  However, in situations where models with the necessary degree of 
accuracy do not yet exist, models drafted from experimental research are used.  These 
models can be incorporated into the existing property clustering framework while 
providing additional benefits not found in the traditional experimental design.  First, 
the experimental design points on which the model is based can be mapped into the 
property cluster space to determine if the feasibility region is completely explored as 
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Figure 5:  The experimental design points of a three-component mixture of polyethylene, 
polystyrene, and polypropylene mapped to property cluster space. 

 
shown in figure 5.  This visualization technique is appropriate regardless of the 
number of components investigated, thereby providing a means for ensuring the space 
has been properly explored. 
 
Second, most experimental based models utilize regression coefficients as estimates 
of the effects of each property on the response.  Depending on the type of regression 
utilized, the interpretation of these regression coefficients can be quite difficult.  
Visualizing the problem in property space consolidates each components impact on 
the mixture, aiding in the ability to screen components.   
 
5.1. Visual Solution using Scheffe Models 
Avoiding the interpretation of the regression coefficients, the Scheffe model can be 
used for modeling the design space.  In fact the solution achieved by using the 
Scheffe and Cox models is the same even though the regression coefficients are 
different [9].  The reason for this result is that the regression coefficients represent 
different entities in each model.  In the Scheffe model, the values of each constituent 
in the cluster space represents a combined effect comprised of contributions from the 
pure component property, collinear effects, and nonlinear effects.  The Cox models 
remove some of the collinearities in mixture design, but depend on good experimental 
design controls to limit the effect of other collinearities and nonlinearities.  This 
observation also explains why some regression coefficients can be negative.  If the 
coefficients only represented pure component values, then the property would always 
be positive.  It follows then that a negative regression coefficient is indicative of a 
strong collinearity and/or nonlinearity effect overwhelming the weak linear effect.   
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Figure 6:  A property cluster simplex diagram of a seven-component system using property 
operators derived from an Acetaminophen excipient design [21].    Clusters 1, 2, and 3 represent the 
properties repose angle, water content, and compressibility.   

 
This situation can cause problems within the traditional property clustering 
framework, but is not unsolvable.  In figure 6 a ternary cluster diagram containing 
property models with negative regression coefficients is shown.  In the situations with 
negative regression coefficients, the combined effect of the component resides outside 
the ternary diagram.  Hence, it can be theorized that when using models comprised of 
regression coefficients, some solutions may require mixing with chemical constituents 
outside of the cluster space defined by the ternary diagram.  The region outside of the 
cluster space is defined as negative cluster space and the region inside the simplex 
shall be referred to as positive cluster space.  The total number of visual cluster 
regions, NR, is a function of the number of properties, P.   
 

PN R 2=  (32) 
 
The negative cluster region is comprised of six distinct regions for a three property 
solution.  These regions are of two types:  those with property clusters greater than 
one are called Type I regions and those with negative property clusters are called 
Type II regions.   
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Figure 7:  Details of negative property cluster space for a three-property system.   
 
These regions are related to one another since in the derivation of property clusters, 
Eden notes that the clusters must sum to one [1]. 
 

1
1

=∑
=

p

k
kiC  (35) 

 
For the three property example equation 35 implies that two negative property 
clusters equate to a third cluster with a value greater than one.  Likewise, two clusters 
with a value greater than one equate to a third cluster with a value less than one.   The 
number of different types of regions NT are related to the number of properties 
evaluated according to equation 36. 
 

1−= PNT  (36) 
 
For example, in the case of four properties, three types of negative cluster space 
regions would occur.  The first two types plus a third type called Type III. 
 



Integrating Mixture Design within the Property Clustering Framework 17 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≠
>
>

=
lk

C
C

TypeIII li

ki

1
1

 (37) 

 
Like the three property case before, the Type III region can also be determined from a 
combination of two clusters greater than one or less than one. 
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Property clusters in the Type I and Type II regions may also be estimated from three 
negative clusters and three clusters greater than one, respectively. 
 
Also noteworthy when dealing with negative property clusters are the constraints on 
Augmented Property Index (AUP).  In equation 28, the non-dimensionalized 
properties are summed to create the AUP [1, 21].  While a negative regression 
coefficient may create a negative property operator, the advent of such constructs 
must be constrained by the following rule:   

 
Rule 4. All AUP values must be positive. 

 
In equation form,  the rule is written as equation 39. 
 

0>AUP  (39) 
 
Without the constraint of equation 39, a negative AUP is mathematically possible.  
When applied to the linear mixing rules, it gives an infeasible solution to the lever 
arm and violates inter-stream conservation as shown in equation 31.  This situation is 
therefore avoided by the applying the constraint of equation 39.  To ensure a positive 
AUP value, the property operator references are adjusted.  Although the adjusted 
references give different values for the clusters, the underlying property values are 
unchanged.  For example, the cluster diagram of the three component and three 
property mixture shown in figure 4 is altered by changing the reference values for the 
property operators, resulting in figure 8.  Although the clusters of the three 
components reside in a different location, their relative proximity to each other and 
the feasibility region remains the same.  Visual differences might change, but because 
the construct preserves the monotonically increasing rule, the comparative order of 
difference is the same.  For instance, for the three component mixture of figure 8, 
component 3 (polypropylene) will always be closest to the feasibility region while 
component 1 (polyethylene) will always farthest from the feasibility region regardless 
of the property operator reference chosen.  Furthermore, when candidate mixtures 
from the adjusted cluster diagram are transformed back to component space, the  
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Figure 8:  A three component system of polyethylene, polystyrene, and polypropylene 
mapped to cluster space using different property operator reference values.   
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resulting solutions are identical to the candidate solutions derived using the original 
references.  This is an important aspect of property clustering as the flexibility to 
adjust the property operator reference values maintains the positive AUP criteria of 
equation 39. 
 
5.2. Visual Solution using Cox Models 
The above discussion is a valid solution for mixing and developing list of candidate 
solutions.  However, if the objective is to screen constituents, then some knowledge 
of the pure component effects will be needed in order to avoid additional 
experimentation each time a new constituent is added to the list of candidates.  The 
goal of the screening design is to determine what characteristics in the constituents 
need to be avoided so that appropriate candidates can be selected in the future.  Since 
the objective of the screening design is to understand the effects of the constituents on 
the mixture, then the component clusters need to represent the pure property values 
void of collinearities and nonlinearities.  One method for removing the collinearities 
is to utilize the Cox modifications on the Scheffe canonical models.  In this method 
the major collinearity introduced by equation 12 is removed.   It has been shown by 
Cornell that the response surfaces for the Scheffe and Cox models are identical [9].  
This result is also true of the property clustering solutions utilizing the Scheffe and 
Cox models.  First it must be noted that the property operator equation now assumes 
the form of equation of equation 38 where  
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Inserting equation 40 in equation 22, the property operator expression assumes the 
form of equation 41. 
 

( ) ( ) zysyxy +=  (41)  
 
Where y(s) is the response at the standard mixture and yz is the pseudo property value 
that represents the property, k, contribution to the mixture.  It has been shown that the 
response at the standard mixture is equivalent to βo regressor [9].  The resulting 
property operator expression is then normalized by dividing by the reference property 
operator as shown in equation 42. 
 

z
k

s
kk Ω+Ω=Ω  (42) 

 
Likewise the augmented property index is rewritten as equation 43. 
 

zs AUPAUPAUP +=  (43) 
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Redefining the property cluster of equation 29 in terms of the pseudo property cluster 

z
kC and the standard property cluster s

kC  gives equations 44 and 45. 
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The sum of these clusters will not give the true cluster without correcting for the 
different AUP values.  This is done using a set of correction factors as shown in 
equations 46 and 47. 
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AUP
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Fz is the pseudo correction factor and Fs is the standard correction factor.  These are 
combined in equation 48 to give the relationship between the true property cluster, the 
pseudo property cluster, and the standard property cluster.   
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Rewriting equation 48 in terms of the mixture with pseudo properties and standard 
properties gives equation 49. 
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Rewriting the AUP of the mixture in terms of the correction factor gives equation 50. 
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Inserting the cluster definition of equation 45 in equation 50 and rearranging gives 
equation 51. 
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Noting that the left hand side of equation 51 is the same as the product of the pseudo 
correction factor and the pseudo property cluster of the mixture, the equation is 
rewritten as equation 52. 
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Inserting the pseudo cluster definition to remove property operator in favor of the 
cluster  and rewriting the AUP of the mixture in pseudo terms gives equation 53. 
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Equation 53 assumes a familiar form of the relative cluster arm using the pseudo 
relative cluster arm zδ as defined by equation 54. 
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The pseudo relative cluster arm maintains the monotonically increasing criteria 
imposed by Eden et al. provided that the all of the augmented property indices used in 
the solution of the problem are positive; a constraint placed on the solution by 
equation 39 [1].  A negative AUP would violate this relationship and prevent the 
proper cluster solution form being obtained.  Combining equations 53 and 54 into the 
final form for mixing pseudo clusters gives equation 55. 
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Visually inspecting the pseudo mixing rule in figure 9 shows that the relative cluster 
arms are indicative of a mix involving a pseudo feasibility region.  The pseudo 
feasibility region is defined in the same manner as the true feasibility region but 
corrects for the standard mixture property values using equation 48.  The resulting 
pseudo relative cluster arms represent the addition of the pseudo components to move 
the mixture into this region, only now each pseudo component better represents its 
contribution to the mixtures’ properties, void of most collinearities.  It can be seen in  
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Figure 9:  A three component system of polyethylene (x1), polystyrene (x2), and polypropylene (x3) 
mapped to cluster space using both Scheffe and Cox property operator models.   
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This is expected since the normal Scheffe and Cox mixing designs achieve the same 
property response plots [9].  Hence, for ease of use, the traditional property clustering 
method should be used with the Scheffe property operators, while the pseudo property 
clustering method using Cox property operators should be reserved for interpretation 
of component effects on the mixture properties.  An interesting benefit of using 
pseudo property clustering with Cox models over the traditional method is the ability 
to visualize the components impact on the mixtures properties simultaneously.  In the 
traditional techniques, each response plot is mapped onto the component space.  
Ignoring the combinatorial explosion issue for a moment, it can be seen that when two 
or more iso-properties are parallel or conflict in direction, it can be difficult to know 
where to move the mixture visually.  This problem is compounded exponentially 
when multiple components are evaluated, leading researchers to either limit the 
number of components in the experiment or use powerful statistical techniques such 
as PLS.  Pseudo property clustering offers a medium ground between the two 
methods and in some cases can be used in conjunction with PCR and PLS to further 
clarify solutions, especially when performing screening designs.   
 
Rules governing the interpretation of the cluster points in the property cluster space 
are listed as follows: 
 

Rule 5. The visual distance from the standard reference mixture to a component 
cluster point is indicative of the magnitude of the components effect on 
the response.   

Rule 6. If the constituents lie on opposite sides of a line which passes through 
the standard reference mixture, then the constituents are said to be 
inversely related.   

6. Case Study – Polymer Blend for Spun Yarn 
This case study is a combination of selected illustrative examples presented by 
Cornell [9].  Two of the three properties are taken directly from Cornell’s work.  The 
first of the two properties is thread elongation of spun yarn.  The second is knot 
strength.  Both of these properties are important attributes of fibers used for high tech 
rope selection in modern racing sailboats.  A third attribute added to the mix is 
density since flotation of rope in marine applications can prevent technical maneuvers 
from becoming catastrophic.  Other properties such as abrasion resistance, stiffness, 
or breaking strength may have been used, although the breaking strength would not 
have been completely independent of knot strength and would have needed to be 
handled accordingly.   
 
With the three properties chosen, the important step of choosing the property operator 
expressions comes next.  Using the mixture data for a three component system in 
figures 1 and 2, linear Scheffe and Cox models were developed for thread elongation 
and knot strength.  For the third property, density, no experimental data was gathered.  
However, a pure component property operator model was previously developed and 
will be applied here [1]. 
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3211 40.1640.970.11 xxxy ++=  (56) 

3212 98.1185.1259.9 xxxy ++=  (57) 

3213 07.198.030.1 xxxy ++=  (58) 
 
Where the chemical constituents x1, x2, and x3 represent polyethylene, polystyrene, 
and polypropylene, respectively.  Using the traditional mixture design simplex, the 
chemical constituents are placed at the vertices and each of the three properties are 
mapped to the design space along with the feasibility region which is set by product 
targets.  The interpretation of the design is difficult since knot strength and density are 
nearly mutually exclusive.  This means that the influence of one chemical constituent 
may have competing effects on the mixture response; adversely effecting one property 
to the benefit of another.  Likewise, should an additive be chosen to supplement the 
design, an additional figure would be required to determine its impact and relationship 
to the previous design.  This is a less than ideal situation.  To prevent this 
combinatorial explosion and to provide an easier method of which to examine the 
impact of components on all the properties simultaneously, the property operator 
models are analyzed using property clustering.  First the property operator models are 
non-dimensionalized using a set of references chosen to assure a positive AUP.  The 
resulting property clustering diagram is shown in figure 4 with the vertices 
representing each of the three properties in their cluster forms.  As was shown in the 
traditional simplex, the third chemical constituent, polypropylene, is closest to the 
feasibility region, followed by polystyrene and then polyethylene.  It is now also clear 
that the addition of polyethylene and polystyrene have a much greater impact on the 
properties of the mixture than polypropylene, suggesting that polypropylene should be 
used as a filler.  Of the two remaining polymers, polyethylene appears to have a larger 
impact on the mixture properties.  However, since the properties were derived using 
Scheffe models, inherent collinearities exist in the property operator models.  To 
circumvent this problem, the Scheffe models are reparameterized as Cox models 
using the methods outlined by Cox [7] where the standard reference mixture is at 
location (0.653, 0.173, 0.173) as provided by Cornell [9]. 
    
 3211 30.470.240.010.12 xxxy +−−=  (59) 

3212 42.129.297.056.10 xxxy ++−=  (60) 

3213 133.0223.0096.0204.1 xxxy −−−=  (61) 
 
Separating the models into standard and pseudo clusters results in figure 9.  The 
pseudo mixtures represent the mixtures void of most collinearities and better represent 
each chemical constituents impact on the mixture properties.  Here it is confirmed that 
polypropylene has the smallest effect on the combined mixture properties.  However, 
by removing most of the collinearity in the model, the result now suggests that 
polystyrene has the strongest effect on the combined mixture properties and that 
polystyrene and polyethylene have inverse effects.  From the figure it can be seen that 
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polystyrene has the strongest effect on density (C3) and thread elongation (C1), both 
of which are negative effects.  It also has the strongest effect on knot strength (C2), 
which is a positive effect.  Conversely, polyethylene has the weakest effect on thread 
elongation, a smaller negative effect on knot strength, and a smaller positive effect on 
density.   
 
To evaluate the candidate solutions for the design it is necessary to create a pseudo 
feasibility region as shown in figure 9.  The feasibility region matches the true 
feasibility region when corrected with the standard reference mixture.  Using linear 
mixing rules a list of candidate solutions was found to match the candidate solutions 
found using Scheffe derived property operator models.  Since the resulting candidate 
solutions are the same using either the pseudo cluster method or the true cluster 
method, then the true cluster method with Scheffe models should be used to 
determine candidate solutions because it is easier to visualize.  If, however, insights 
regarding the impact of each of the chemical constituents are sought, then the pseudo 
cluster method with Cox models should be used.   
 
By evaluating the placement of the experimental design points in the property cluster 
space, insights into the effectiveness of the design are also gained.  In figure 5 the 
experimental design points are translated to the property cluster space.  Unfortunately, 
the design points are all outside the feasibility region and none of the candidate 
mixtures fall between the design points.  This is the same inference made when 
investigating figure 2.  This means that to obtain the candidate solutions the property 
operator models must be extrapolated, which introduces unneeded error into the 
solution and suggests an insufficient design.  To prevent this situation, the design 
points should be repositioned so that they cover the feasibility region.  The procedure 
for executing the repositioning must take into consideration the increase in accuracy 
of the property space at the expense of the optimality of the component space.  The 
added benefit by viewing the design in property space is that the points may always 
be viewed on a single diagram, regardless of the number of components studied as 
long as the number of properties measured are three or less.  In cases of three or more 
properties are studies, additional diagrams may be used or algebraic methods applied 
[20].  

7. Conclusions 
In this work, a systematic property based framework for solution of mixture design 
problems using property clustering has been presented. The recently introduced 
property integration framework has been extended to include experimentally derived 
property operator models: specifically first order Scheffe canonical and Cox 
polynomial models.  When interpretation of the chemical constituent’s impact on the 
mixture property is warranted, Cox derived property operator models are utilized such 
that the location of the pseudo chemical constituent relative to the standard reference 
mixture is indicative of its impact on the mixture’s properties.    The accuracy of the 
design is visually observed by placing the design points in the property design space.   
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A significant result of the developed methodology is that for problems that can be 
satisfactorily described by just three properties, the experimental mixture design 
problems are analyzed visually on a simplex diagram, irrespective of how many 
chemical constituents are included in the search space. However, algebraic and 
optimization based approaches can easily extend the application range to include 
more properties.   
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