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Abstract

Acoustic chemometrics is a new Process Analytiadhhology (PAT) approach for
on-line monitoring of industrial processes. Acotistnemometrics concerns capturing
system vibration characteristics, e.g. generateda byanufacturing process or by
transportation flow. The resulting vibrations caa measured by non-intrusive,
"clamp-on" sensors. Acoustic signatures carry eméeédnformation about physical
and chemical parameters, such as compositionf@jlammonia, buttermilk, glycol,
ethanol), mixing progress, fiber length, flow, dénstemperature as well as system
state. For extraction and quantification of thegpes of specific analytes and
parameters of interest, domain transforms (FFT, AAd PLS-regression is essential
for multivariate calibration (process chemometrics)

Acoustic chemometrics is here applied for monitgriaf industrial production

processes, a feasibility study of fluidized bedngtation of a fertilizer product (urea)
(Semi-Industrial Pilot Plant: SIPP), illustratingpet main acoustic chemometrics
features and benefits. We also present examplesnaiitoring of ammonia

concentrations also caused by turbulent flow. Weally discuss monitoring for

visualization of critical situations - early operatwarnings. With acoustic

chemometrics it is possible to monitor both procsisge and product quality for
industrial process control. Relevant early warnitggger the process operator to
change relevant process parameters to control praglality or to prevent critical

shut-down situations.

Successful validation of these types of PLS-preatictnodels signify that acoustic
chemometrics has matured into a proven on-linentolgy in the Process Analytical
Technologies (PAT) domain.
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1. Introduction

In this study we show the development of a new owtto monitor industrial
granulation processes [1], as well as an indusapalication example where acoustic
chemometrics is used to predict concentrationsnohania. Earlier papers [2, 3, 4]
describes the first forays of small-scale pilotexxments, and gave an introduction to
the acoustic chemometric approach both for liqudavfin pipelines and industrial
granulation processes.

An introduction to acoustic chemometrics has badsliphed earlier [3, 4]; Acoustic
chemometrics concerns capturing passive systenatiobr characteristics, e.g. from
two-phase systems (gas-solids/liquid-solids) gaedrhy a manufacturing process or
by transportation (flow in pipelines). The resuitivibrations generated by the
process itself can be easily measured by non-imgus'clamp-on" sensors
(accelerometers). Vibrations/acoustic emission i@ded noise) from industrial
processes is often considered as audible noise lomiyn this paper we show that the
vibrations or “noise” contains relevant informatidior processes monitoring
purposes.

Intensive signal processing is necessary to extraetvant information. The raw
signals are preprocess by Fourier transformatiah the resulting spectra we call
acoustic signatures. Acoustic signatures carry eohbe information about a whole
range of system-relevant physical and chemicalmeters e.g. composition (oil, fat,
ammonia, glycol, ethanol), mixing progress, fibemdth, flow, density, temperature -
as well as system state. For extraction and queatidn of these types of specific
analytes and parameters of interest PLS-regre$S]aa essential to extract relevant
information regarding the parameter of interestchijbration of a regression model
based on empirical acoustic data and referencesdtr the parameter(s) of interest.

Acoustic chemometrics for fluid flow quantification

Acoustic emission from fluid flow trough an orifigglate inserted in a pipeline
contains information which can be used to prediatameters of interest e.g.
composition [4]. Acoustic signatures from fluid ilcare affected by several factors
e.g. flow rate, differential pressure over theioefplate, static pressure downstream
etc. Several application examples showing appboatexamples of e.g. trace
concentrations of oil in water has been reportdd Figure 1 shows liquid flow
trough an orifice plate. The relatively high di#etial pressure loss leads to
cavitation downstream of the orifice plate. Cawiat occurs when the local
hydrostatic pressure is lower that the vapor presand micro bubbles are generated
as can be seen in figure 1. The vibrations/soundymed by the micro bubbles which
are affected by surface tension, viscosity, baticcand differential pressure.

Oil in water reduces the surface tension of theewahd generates a dramatic change
in the vibrations/sound emitted from the orifice.
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Vibrations are recorded using acoustic sensorsel@@meters) which can be
mounted on the surface of the pipeline. The senaseasy to install and are so-
called non intrusive which means there are no rfeedlrilling holes trough the
pipeline.

Pt |

Figure 1. Liquid flow trough an orifice plate, natavitations downstream generated
by the relatively high pressure loss causing tleall@ressure to drop below the
vapor pressure. (photo by Lienhard & Stephenson)

Acoustic chemometrics for monitoring of particlegyranulation processes

This approach is here used in order to gain acousBasurements of vibrations
produced by process equipment or product (partitleyement in a semi-industrial
granulator, used in the experiments to produceite s specialized fertilizers; the
present study focus on Urea.

Granulation of Urea is a complex process, whiatoistrolled by experienced process
operators. The parameters used to monitor the @om process are so-called
standard process measurements such as tempepagsyre and flow. The standard
measurements have no information (or are only iretiyectly related) to e.g. particle
size, clogging of the reactor or the accumulatiegasitory layering on the bottom
plate — and often with a quite unacceptable defag.tA sample of layering cake on
the bottom perforated plate, taken out of the wraafter several days in production is
shown in figure 2, already a serious process impedi. When the layering cake
develops further, the perforated bottom plate af thactor necessarily becomes
increasingly clogged with a resultant fluidizaticairflow decrease. Decreased
fluidization in turn leads to a situation with lesgitation of the particles; the result is
often deformation of big lumps, which can quickdadl to a shutdown of the reactor,
and a significant economic loss (reactor downtinmel general production flow
stoppage during clean-up).
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Figure 2. Layering on the perforated bottom platéhe semi industrial granulator
after several days of production.

A measurement system that can predict the thickoidsyering cake, particle size, or
give an early warning of lump formation is thushiigwanted. Similarly, an acoustic
chemometrics prediction facility for general prazesate monitoring is of equally
critical importance.

One of the major goals of the feasibility studytds relate process state trends,
presented as chemometric score plots, to speafiditions/qualities of the product
inside the reactor. The process operators canubeithis “new” information to better
operate the process, with an ultimate objectivadaificantly reduce costly shutdown
situations. On-line measurements of particle charstics such as particle size
distribution together with properties of the liqd&kd to the sprayer nozzles makes it
manifestly easier to control the process.

The results concentrates on the results from aerexpntal trial period of several
months, involving a suite of induced deviationgtwé general production process in
order to learn as much as possible about the féBsdf acoustic chemometrics.
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Experimental

The objectives of the experiments reported inpliger are divided into 3 major
themes:

1. Investigate different sensor positions on (isgmi-industrial granulator
2. Assessment of the feasibility of acoustic chemimits to:

» Concentration of Urea melt

» Crystallisation point temperature of liquid Ureadeto the granulator

* Moisture content in the granules

* Monitoring of ammonia concentration flowing in pijpes
3. Monitor the overall granulator process statedépect critical situations and to
visualize these situations as early warnings inoparator-friendly fashion (lump
formation and clogging of the bottom plate are thest important mishaps in the
industrial production setting).

The experimental equipment consists of a semi-imidipilot fluidized bed reactor,
illustrated in figure 3, which highlights five défent sensor positions [A, B, C, D].
All the four sensors are mounted with screw-fitiranto a metal surface (in order to
secure a stable sensor pick-up efficiency). Sepsaition A is mounted onto an
orifice plateon the main supply line of liquid urea to the teasozzles, following
Esbensen et al. 1999 [4]. Sensor positions B, Claage mounted directly onto the
wall of reactor chambers 1, 2 and 4 respectively.

Cooling Cooling Spraying Spraying Spraying

Malt
Product

Figure 3. Semi-industrial granulator used in aletexperiments reported in t;is' .

paper. Sensor positions A, B, C and D are indicated
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The semi-industrial granulator displayed in fig@rés identical to an industrial full-
sized granulator except for size, which is 1:10gidy. The granulator is divided into
five chambers, three injection (spraying) chamlsrd two cooling chambers. The
injection chambers each have several nozzles wigriel urea is sprayed into the
granulator at a certain process temperature. Thierbf the reactor is a perforated
plate, which allows fluidization air to jet intodhreactor, to interact with the growing
particles and keep all particles in the bed in xogs agitation. The cooling chambers
are used to cool down the granules before theyasxihe final product: urea granules
with a specified size and size range (importanaipeters for agro-industrial product
use).

Sensor A is mounted onto an orifice plate insertethe main supply pipeline for
liquid urea. The orifice has a smaller hole-diamétan the pipeline, which induces
turbulencein the flowing urea downstream the orifice. Therations produced by
this turbulence will be detected by sensor A. Sen8p C and D are mounted on the
vertical wall on the granulator, about 30 cm abthe perforated bottom plate; they
are supposed to detedgbrations produced by the granules when they interact with
the reactor wall. Thus sensors B, C and D are ts@dbnitor the process conditions
inside the granulator, while sensor A is used tmitoo the liquid supply of urea. The
sensors used in this trial are four high-tempeeafizcelerometers.

The present measurements were recorded in a "fliggy mode, as other process
experiments - in themselves not related to acowusinometrics - were carried out.
This resulted in many days with stable conditiomghe reactor, and no particular
variations in the acoustic signals. Therefore tlhvegee only a limited number of days
(hours), which display the necessargriation in process parametersvhich are
necessary for successful multivariate calibratidmese still turned out to constitute a
satisfactory basis for the present full feasibifitydy however.

Semi-industrial reactor experiments and results

Concentration of urea melt:

A model for urea concentration in the melt sprayed the granulator was developed
based on acoustic spectra recorded from sensdiquo#i, during a trial period of 5
hours. Sensor A is mounted onto an orifice plaserted in the main supply pipeline
of liquid urea (full information about the princgs of acoustic chemometrics in fluid
flow systems using orifice plates can be foundd4y}).[The reference values used to
calibrate the model are based on pressure measureméhe pipeline, which is used
to calculatethe concentration in a standard fashion acceptatéindustry involved.
The reference in figure 4 is a indirect measurehef concentration; it is not even
converted to concentration [%], as we can equalil véehow the prediction
performance using this industrial concentration sueas for both predicted and for
measured (reference) values.
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Flgure4 PLS-1 model for urea melt concentratipraged into the granulator in
chamber 1, 2 and 3. Sensor A was used in this matiéth is based on 7
components. The model was validated with 10-seg@uendss validation. Predicted

vs. measured (top) and predicted vs. time (bottom).

‘Measu

The model presented in figure 4 shows that it isspgie to get a satisfactory
prediction of the concentration of the liquid ur&bope = 0.93 - Relative RMSEP =
13%.

Acoustic data were also calibrated against the aaeiparticle size as well as the
spread (variance) of particle sizes, which werewated from laboratory sieving
samples. The results for average particle size weran equal satisfactory footing as
those shown above (not shown here). While the &boy analysis of particle size
and — variances were of quite satisfactory accuyrey actual physical sampling of
the products were suboptimal w.rrepresentative samplingn the sense of the
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Theory of Sampling, Gy [7, 8] due to very tightoasces in the present pilot study,
which had one overriding constraint: no adverseerfatence with the ongoing
industrial production process. The particle spreawistitute the prime parameter for
further development of the present approach as asoih has been included in the
industrial on-line monitoring scheme.

Multivariate Statistical Process Control (MSPC) moritoring as an early warning

of critical situations (shut down situations):

One of the main objectives in this project was $sess the acoustic chemometric
potential to monitor the general process state aithaim to give a so-called “early
warning” if a critical situation occur in the bedl.critical situation in the bed is often
a result of lump formation and/or layering on th&ttbm plate of the reactor. 15.
February 2001 such a critical situation occurrethenbed, which was (definitely) not
according to the experimental plan, and thus vergi¢ome”. Lump formation which
probably been building over several hours, suddeabulted in an uncontrolled
shutdown around 16:30 the same day. Analysis ofattmustic data recorded in the
period immediately leading up to this critical petishows an interestingend ling
figure 5.

PC2 Scores

Acoustic data-PCA Normal operating conditions

100 - Early warning 15:57 pm

PC1

T T T
-1400 -1200 -1000 -800 -600 -400 -200 0 200

RESULT2, X-expl: 92%,5%

Figure 5. Score plot of PCA-components 1 and 2s&eB was used because lump
formation first started in chamber 1. Acoustic wiathappears as early as 15:57,
approximately 30 minutes before reactor shutdowsmg@are with Fig. 7, which
shows the same situation as delineated by tradgitiprocess parameters only
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From the trending score plot in figure 5 it candeen that an operator (in an on-line
situation) would have had early warning at leastnd@utes before the shutdown.

According to the extensive, process-specific operaxperience, this would very

likely had been enough time to take the necessayeptive action, needed to bring
the granulator back into normal conditions withawghutdown occurring.

Figur 6 shows the loadings from the PCA analysikictv clearly shows that the
progress in the direction of principal componenh the figure above is caused by
lump formation in chamber 1 measured by sensor B.
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Figure 6. Loadings for principal component 1 shdhet the lump formation started
in chamber 1 (sensor B).

A similar PCA-analysis was performed on the stadgeiocess data only for the same
time period. Note that here the warning first shaypsat 16:20, which cannot be

called “early”, but rather late, probably too latccording to the same process
operator consensus. The results from the analydiseoprocess data can be seen in
figure 7 below for comparison.
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Figure 7. Score plot of PCA-component 1 and 2 efgtocess parameters alone. A
warning that something is wrong first appears 16:@0ly some 10 minutes before
shutdown of the reactor, which is usually deemsdfiitient for process recovery.

This means that the acoustic chemometric appr@etuch more sensitive to
changes in the process state(s) of the bed rethetorthe traditional process data
alone. Of course an implemented acoustic chemorsgirbcess monitoring facility
would use both these sets of parameters togettierappropriate chemometric data
analysis (PCA, PLS).

Model calibrated on data from the full trial periofif5 months:
A model for granule moisture content was calibratéti data from the full 5-months
trial period.

Granule moisture content

To test the acoustic chemometric potential to mtegranule moisture content, the
same 1032 object 5-month data set was used, whergrst 900 objects were used
for calibration and the last 132 as a test setTBf data matrix was also further re-
samples slightly because the acoustic data had talibrated against laboratory tests
of moisture content which were only available wathrelatively low sampling rate;
still plenty of results were at hand to allow al fassessment of the prediction
performance re.granule moisture. The results casebs in fig. 8.

10
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Figure 8. Predicted vs. measured plot for granut@sture contents, calibrated on
data from five months of production. Sensor B wiun this model (8 PLS-
components). The model was validated with 10-segsegimented cross validation.
Predicted vs. production time. Grey curve: measubtack curve: predicted

In spite of the fact that this model has a relaRMSEP of 14%, the generall ability
to pick up the important production treadangess already at an acceptable level.

Ammonia concentration — Industrial application exanple

An experimental industrial setup for prediction ahmonia concentration directly

from acoustic spectra has been tested in a fulesodustrial plant. Figure 9 shows

the bypass loop with the orifice plate. The acausgnsor was mounted onto the
orifice plate [4]. To ensure constant differentakessure and temperature of the
ammonia two pressure transmitters and one temperatansmitter was used in

conjunction with the orifice plate. Reference sagsplvas taken at the sample valve

shown in figure 9.
- @

Fow —(r1)
. Acoustic
Orifice plate - SerEor
Ammonia
Tank —

Reference
samples
= ()

f// Pump

Figure 9. Experimental setup for assessment of sil@mahemometrics ability to
predict concentration of ammonia directly from asticiemission generated by
cavitation/turbulent flow. Full-scale industriallpt study.
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Calibration of the model for prediction of ammoniaconcentrations

Acoustic spectra were calibrated using Partial t&ipiares regression PLS-R with
six ammonia concentration levels, each charactéribg 5 replicate acoustic
measurements. Figure 10 shows the concentrativelslespanning 0 to 8 % of
ammonia concentrations.
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T
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Figure 10 Ammonia concentration reference leve8.9, 1, 2, 5 and 8 % ammonia, 5
replicate measurements on each level.

Results
Figure 11 shows the PLS-R prediction results védidavith cross validation.
Pradictad ¥ .
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SEP: 0485918
5§ — Bias 0000886 | o B o
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-1 0 1 2 2 4 5 & 7 8
Figure 11 Prediction results for ammonia validatedh 2-segment cross validation,
RMSEP = 0.48 % ammonia.

This pilot study included only 6 concentration lsvéVith a 5-component PLS-model
there is a potential danger for modeling overBwen a 2-segment crosss-validation

12
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iS no absolute guarantee [6]. However, there waddainly appear promising
possibilities for further, significantly extendedlibration work.

Prediction of Urea crystallization point temperature — Industrial experiments
X-matrix: Acoustic spectra from sensor located on orificelin the UREA feed to

the granulator, Fig. 12.
Water
vapour

Separator

S——

Heater

Measurement
point

N
concentrated

> .
4@ ] urea solution
14

Pump
urea | Steam
solution “| condensate

Flowsheet of the liquid feed to the Urea granulatmocess

Figure 12. Acoustic sensor mounted on orifice
plate in liquid feed line to granulator
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A PLS-regression model based on X (acoustic speeral Y (crystallisation-
temperature) was established. The X-matrix conthihebjects, each with 1024

variables (frequencies 0 - 25 kHz). An overviewtlt# X-data is shown in figure 13,
in which can be appreciated systematic changelseiratoustic signatures following
the object (samples) succession.

-51.489 -39 561 -27 632 -15.704 -3.775 5.153

030714140~ 4

030714340¢
0307145400
m 0307151402 N
P 0307153404 h N s00 1000
| 03071554 bt &00 5
R 0307161404 00 400 . b I
S a r

Figure 13. X data matrix of acoustic spectra usedalibration

The objects span a nominal urea concentration ra&8tgb to 91.4 %. The PLS model
will be built on experimental Y-reference valuesrygtallisation-temperature),
spanning 92 - 10P7C. A model for urea concentrations can also bebéshed
following appropriate laboratory data (not shownehe
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Results from multivariate calibration (Y = xx-tennpgure):

15 Y-wariance Reasidual Vaiidation Variance

04

o
e
| |- | |- |

. :
PCs

FPc o0 FPc 01 Pc 02 Pc 03 Pc 04 Pc 05 Pc 06
RESULTA, Variable: v Tolal

Figure 14. Y-validation variance modelled vs. numifecomponents in the model

The crystallisation-temperature model (no outlieéssable to describe 87% of the Y-
variance with 3 PLS-components, Fig. 15; this isa@isfactory modelling with this
relatively small calibration range for crystalliset temperatures.
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Figure 15. Predicted vs. measured plot for UREAs@&lisation-temperature

The Predicted vs. Measureplot in Fig. 15 shows the degree to which the atiou
signatures are able to predict crystallisation-terapure: RMSEP := 1.87C
corresponds to a relative prediction uncertaintyapprox. +/- 4% (2 STD).
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Figure 16 shows an alternative illustration of #lteuracy of the prediction values,
when compared to reference values in their promessrelationships (N.B. truncated
Y-axis).

_| Procictad and ieasurag

85 —

Samples

T T T T T
03071354 bt 0307143064 03071520.6¢ 03071600 bt 03071630 t
RESULTS, (vvar, PC): (x-point,3) Predicted Measured

Figure 16. Predicted vs. measured UREA crystailisatemperature in relation to
the granulator experiment setting up an urea cotregion gradient
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Figure 17. Loading-weights for PLS component 1
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The prediction model is characterised by 1024 ssyo@ coefficients, alternatively 3
x 1024 loading-weights spectra from the full 3-cament PLS-model. From Figure
17 it can be observed several well-defined frequdrands in the lower 0-10 kHz
range contribute significantly to the model, whadl higher frequencies shows
extensive redundancy. This is a reflection of stablcoustic signatures, well
correlated with the changing crystallisation-tengpeire.

The experimental crystallisation-temperature prgaticmodel was evaluated using
12-segment cross-validation (full cross-validatjah)s can be considered acceptable
for such "small sample” data sets [6], althougly dot indicative estimates.

This pilot study shows that there would appear ¢éogood prospects to predict
crystallisation-temperature directly from the adausignatures of the liquid feed into
the granulator with an indicated prediction erl@MSEP = 4 % relative, 2 STD).

Discussion & Conclusion

Sensor positions, Sensor A (on the orifice plate) sensor B (chamber 1) showed the
overall best results for the industrial granulatdcoustic chemometrics can be used
to predict, a.o. fluidization airflow, reflux ofrfes to the reactor, granule moisture
content and general process states. The first madete calibrated with data from
one week only. Each week several other experimgraedmeters were changed so
that the conditions were only comparable withinstlimeframe. The resulting
predictions for the parameters investigated gatisfaatory results in this context.

Since the overall objective was to predict paranseta-line, the next step was to
calibrate the models with data from a longer penabtime to span all variations that
can occur for industrial production reactor runs.e Wonclude that acoustic
chemometrics provide the process operators witfiulggformation which can be

used to run the process with less critical shutdown

5-month calibration models:

These results, considering teetensivecompounding of the underlying non-acoustics
process conditions that had to be accepted, canohsideredpromising for the
potential of acoustic chemometric on-line granolatprocess monitoring for airflow
and liquid urea concentration. There remains aatedmount of focused calibration
work before more precise predictions of moistune loa expected.

All the above experiments have been set up so dsetoealistic scenarios w.r.t.
industrial MSPC-monitoring of granulation process@dSPC: = Multivariate
Statistical Process Control). The pilot plant gtatar is operated exactly as the
industrial scale counterpart. But the 5-month expents included much more severe
variation than what will usually be found in an etlise stable industrial production
situation of similar duration - e.g. it i®rmally not necessary to change nozzles, or to
change formulation (products) with similar shotenvals; also additives are certainly
not changed as often as in the present trial caynpaall of which goes to show that
the strength of the present positive validatioreassents are in fact strong indeed.

17
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Another argument for the above is that all the niogtortant parameter validations
(airflow, moisture and liquid concentration) dyeth based on identical 10-segment
cross-validations as well as propest setsEsbensen (2001) [6]. The latter have here
been displayed in their time-dependent fashionschviare most relevant for the
industrial process operators.

Process state monitoring:

We are currently experimenting further with diffetéypes of data visualization plots
of the type shown in Figures 6-7. We are involvprgcess operators directly in this
work, and their preliminary conclusions are gergnabsitive. More experience (e.g.
as to the usefulness of the "trend score-plotegsitlual variance plots" etc.) is
needed however before these prototype acoustic ainemic MSPC development
will achieve complete acceptance from this crititaiget group. It is relevant
however that the system described herein is alreagiemented on-line in the SIPP
reactor control room.

Together with papers [2,3,4,5] we have here takennmgortant first step towards
transforming on-line MSPC acoustic chemometricenfan experimental concept to a
proven technology.
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