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Abstract 

In this paper a general procedure for tuning multivariable model predictive controllers 
(MPC) with constraints is presented. It has been applied to tune the control system of 
an activated sludge process control in a wastewater treatment plant. Control system 
parameters are obtained by solving a mixed sensitivity optimization problem, defined 
in terms of the H∞ norms of different weighted closed loop transfer functions matrices 
of the system, and a set of constraints, some of them expressed using the l1 norm. The 
use of linear models for the control allows for the specification of many convex 
performance criteria to state stability conditions and some desired closed-loop 
behaviour.  The mathematical optimization for tuning all controller parameters is 
tackled in two iterative steps due to the existence of integer and real numbers. First, 
integer parameters are obtained using a special type of random search, and secondly a 
sequential programming method (SQP) is used to tune the real parameters.  
 
Keywords: Model predictive control, robust control theory, l1 norm, mixed sensitivity 
problem, constrained multiobjective optimization 

 

1. Introduction 

 
Model based predictive control (MPC or MBPC) has become the leading form of 
advanced multivariable control in the process industries. The popularity of MPC is 
due to the successful results, the natural way of incorporating constraints, and its 
simplicity for operators. 
 
MPC controllers have been tuned traditionally through a number of different 
parameters including prediction horizon, number of computer input moves, input and 
output weights in the objective function, and, in some cases, artificially imposed 
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input/output constraints. The tuning task can be difficult if the system is of 
multivariable nature since the whole set represents a formidable array of possible 
tuning combinations and also because many of these parameters have overlapping 
effects on the closed-loop performance and robustness. In these cases the advantages 
of using automatic MPC tuning methods is clear.  
 
In the literature, many works dealing with the automatic tuning of MPC can be found. 
In [2], Ali and Zafiriou proposed an off-line procedure for tuning the parameters of a 
nonlinear predictive controller specifying time-domain performance criteria. For 
linear MPC, Al-Ghazzawi [1] has developed an on-line tuning strategy based on the 
parametric and linear approximation between the closed-loop predicted output and the 
MPC tuning parameters, but without considering output constraints on the on-line 
optimization step. Another approach is given by Li [6], which uses fuzzy decision 
criteria to determine optimal real MPC tuning parameters, but leaving apart the 
horizons.  Frequency domain methods for tuning linear optimal controllers have been 
studied since the beginning of 1980’s (see Doyle and Francis [3] for a review). Lee 
and Yu [5] presented tuning rules based on frequency analysis of the closed loop 
behaviour of MPC controllers.  
 
In [4] we already have proposed a methodology for the on-line automatic tuning of 
the whole set of parameters of linear Model Based Predictive Control Systems, and it 
was carried out by minimizing the Integral Square Error (ISE) norm as performance 
index. An important drawback of this work is that within the optimization procedure 
dynamical simulations have to be carried, making the procedure extremely slow.  
 
At the view of previous works, we propose a new approach for the optimal automatic 
tuning of MPC which is based on the frequency domain robust control theory [9], and 
the optimization theory. The more relevant aspects of the actual proposal are: 
 
• It is based on the resolution of a mixed sensitivity optimization problem defined 

in terms of the H∞ norms of different weighted closed loop transfer functions of 
the system and a set of controllability and operation constraints, expressed by 
means of the l1 norm. The optimal tuning parameters evaluation for a linear MPC 
control scheme is carried out by solving a MINLP/DAE optimization problem. 

 
• The use of the proposed automatic tuning approach within an Integrated Design 

framework is straightforward which is very useful to perform at the same time the 
design of the optimal plant for activated sludge process and the optimal linear 
MPC for this process.  

 
• The approach has been validated on a simulated example based on a real 

wastewater treatment plant. Real scenarios have been considered in the simulated 
model by means of real data records of the main disturbances to make a more 
realistic analysis of the results. 
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The paper is organized as follows. First, the method for automatic tuning of the MPC 
is posed and explained in detail. Second, the activated sludge process model, selected 
for validation, is described. Third, the control problem and the application of the 
tuning method is stated. Then, some results are presented, to end with conclusions. 
 

2. MPC formulation 

The MPC considered is based on a linear state space model of the plant and calculates 
manipulated variables by solving the following on-line constrained optimization 
problem subject to constraints on inputs, predicted outputs and changes in 
manipulated variables. 
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where k denotes the current sampling point, ˆ( |y k i k+  is the predicted output vector at 
time k+i, depending of measurements up to time k, ( |r k i k)+  is the reference trajectory, 

 are the changes in the manipulated variables, HûΔ p is the upper prediction horizon, 
Hw is the lower prediction horizon, Hc is the control horizon, Wu is a vector 
representing the weights of the change of manipulated variables and Wy is a vector 
representing the weights of the errors of set-points tracking.   
 
The MPC prediction model used in this paper is a linear discrete state space model of 
the plant obtained by linearizing the model equations [8]. The reference trajectories 
r(k) approach the set-point trajectories exponentially from the current output values, 
with Tref  as the ‘time constant’ of the exponentials and T the sampling period. 
 
When the MPC controller is linear and unconstrained, it can be represented with a 
transfer function KMPC. The full closed loop system with measured disturbances has 
been represented in Figure 1. 
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Figure 1 : Closed loop system with measured
disturbances 

Figure 2 : Equivalent closed loop system   
 
 
The controller block is multivariable, so the transfer function is 
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where Ki  are the transfer functions between the control signal and the different inputs 
(r,y,d) which depend on the control system tuning parameters (Wu, Hp, Hw,, Hc and 
Tref).  Particularly, in our MPC formulation 2K K= −  (see [8]) and the block diagram 
of figure 1 can be transformed in the diagram of figure 2.  
 
Consequently, taking into account control law and the transfer function of the open 
loop system, the closed loop response can be obtained from 
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where d  are the filtered disturbances %

 
( )3 dd GK G d= +%      (4) 

 
In order to define the automatic tuning problem, we define the sensitivity function S’ 
between  the load disturbances (d) and the outputs (y) and M’ the Control Sensitivity 
transfer function  defined between the load disturbances (d) and the control signals (u) 
when the reference is zero. Their calculation is straightforward applying block algebra 
to diagram of figure 2: 
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3. Automatic tuning of MPC 

3.1. Mixed sensitivity optimization problem 

The problem of finding an optimal MPC is stated as a mixed sensitivity optimization 
problem that takes into account both disturbance rejection and control effort 
objectives, in the same tuning function. The problem definition is then 
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subject to the set of constraints explained below. 
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K1 and K3 are the MPC control compensators (see block diagram of Figure 2) which 
depend on the tuning parameter vector defined by ( ), ,p c uc H H W= . Wp and Wesf are 
suitable weights for optimization. Note that control efforts rather than magnitudes of 
control are included in the objective function by considering the derivative of the 
transfer function M’. 

3.2. Performance constraint 

In order to ensure that disturbances are properly rejected we impose   
 

1pW S
∞
′⋅ <     (7) 

 
Wp is selected for the specification of load disturbances rejection, what means that its 
inverse must be smaller in magnitude than the inverse of disturbances spectrums. 

3.3. Limits on control and output variables 

The maximum value of the control (umax) and the output variable (ymax) for the worst 
case of disturbances can be constrained to be less than certain limits by means of its l1 
norm and the following conditions:  
 

max1
M u′ <   max1

S y′ <   (8) 

3.4. Multiobjective optimization approach 

The optimization problems for optimal automatic tuning can be stated as 
multiobjective optimization problems by considering constraints (8) as objectives fi 
together with constrained optimisation of N

∞
. Then the multiple objectives are: 

 
1f N
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In this method the objectives must approach fixed goals, giving with these parameters 
different importance to every objective. 
 

3.5. Algorithm description and implementation 

The main problem when solving this optimization problem is that involves real and 
integer variables. In this work we propose a two iterative steps algorithm that 
combines a random search based on the Solis method [10] for tuning the horizons, 
and the classical Sequential Quadratic Programming (SQP) for tuning weights Wu.  
 
The controller implementation is based on the MPC Toolbox of MATLAB® and some 
modifications of Maciejowski [8]. The real part of the optimization problem is tackled 
with the goal attainment method, implemented in MATLAB function fgoalattain. 
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4. Activated sludge process and model predictive controller 

4.1. Plant description 

The plant layout is represented in Figure 3, consisting of one aerobic tank and one 
secondary settler [11]. The basis of the process lies in maintaining a microbial 
population (biomass) into the bioreactor that transforms the biodegradable pollution 
(substrate) when dissolved oxygen is supplied through aeration turbines. Water 
coming out of the reactor goes to the settler, where the activated sludge is separated 
from the clean water and recycled to the bioreactor to maintain there an adequate 
concentration of microorganisms. 
 
The whole set of variables is presented in Figure 3. Generically, “x” is used for the 
biomass concentrations (mg/l), “s” for the organic substrate concentrations (mg/l), “c” 
for the oxygen concentrations (mg/l) and “q” for flow rates (m3/h). 
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        Figure 3: Plant and controller layout                  Figure 4: Substrate disturbances at the influent (si) 

4.2. Control problem 

The control of this process aims to keep the substrate at the output (s1) below a legal 
value despite the large variations of the flow rate and the substrate concentration in 
the incoming water (qi and si), which are the input disturbances and one of the main 
problems when trying to control the plant properly. Another control objective is to 
keep dissolved oxygen concentration (c1) around 2 mg/l, concentration that is 
necessary for the proper working of activated sludge process.  
 
The set of disturbances used in dynamic simulations (Figure 4) has been determined 
by COST 624 program and its benchmark. 
 
The general structure of a multivariable controller applied to the activated sludge 
process can be seen in figure 5. Three manipulated variables are considered: recycling 
flow (qr1), purge flow (qp) and aeration factor (fk1); and three outputs: substrate (s1), 
biomass (x1) and dissolved oxygen (c1) in the reactor. Here the biomass is only a 
constrained variable for a good performance of the process and it is not controlled. In 
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this work we will focus on substrate control, although the methodology proposed is 
general and could be also extended to oxygen control. 

Ref. s1 

Ref. c1 c1 

fk1 

Controller 

qr1 s1 

x1 
 

PROCESS qp 

 

Figure 5: General controller structure 

5. Tuning Results 

The controller considered is a linear MPC with constraints applied to the nonlinear 
plant model, with sample period of 0.5 hours, suitable for representing the process 
dynamics.  Disturbances si and qi are assumed to be measured and scaled to make 
methodology improvement clearer. Biomass concentration x1 is only a constrained 
variable. The selected plant is fixed with dimensions V1=7668 m3 and A=2970.88 m2; 
and a steady state point defined by  s1=58.445 and qr1=220. 

 

5.1.  H∞  mixed sensitivity problem considering objectives f1 and f2 

In table I the numerical results for three cases are presented.  First a comparison of 
results with two different weights Wp (cases 1 and 2 of table I) is presented in figure 
6, keeping Wesf constant.  
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Figure 6: Comparison of substrate responses and sensitivity functions S’ for two weights Wp1 (solid 
line) and Wp2  (dashed dotted line) (cases 1 and 2) 
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In this figure can be seen that disturbance rejection is better when using Wp1 because 
the closed loop system bandwidths allowed are larger than with Wp2. 
 
A comparison with two Wesf weights (cases 2 and 3 of Table I) is presented in figure 
7, keeping now Wp constant. In this figure can be seen that for case 3 the control 
efforts are more relaxed than for case 2, producing a better disturbance rejection 
although with more energy consumption.  
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Figure 7: Comparison of substrate responses and sensitivity to control efforts functions s.M’ for two 
weights Wesf2  (dashed dotted line) and Wesf3   (solid line) (cases 2 and 3) 

 
 

TABLE I TABLE II 
RESULTS SUMMARY FOR MPC TUNING (5.1) 

 Case 1 Case 2 Case 3 
Wu 0.0023 0.0118 0.0011 
Hp 9 8 6 
Hc 2 3 2 
max(qr1) 1179.5 1092 1232 
max(s1) 64.2 65.52 63.94 

RESULTS SUMMARY FOR MPC TUNING (5.2) 
 Case  4 Case 5 
Wu 0.0019 0.0091 
Hp 9 10 
Hc 2 4 
max(qr1) 1185.5 1096.6 
max(s1) 64.17 65.33 

N
∞
 1.44 1.04 0.73 N

∞
 4.41 1.87 

1
M ′  3995 1946 4416 1

M ′  4053.5 1983.7 
1

S′  6.47 14.44 5.39 1
S′  6.24 13.1 

 

pW S
∞
′  1.00 1.00 0.72 

Weights  Wp1 Wp2, Wesf2 Wesf3
Computational 
time (min) 

3.44 0.81 1.66 

pW S
∞
′  0.95 0.97 

Weights  Wp1 Wp2
Computational 
time (min) 

10.8 5.89 

5.2.  H∞  mixed sensitivity problem considering objectives f1 and f3 

The second approach consists of considering objective f3 instead of f2. A comparison 
of substrate outputs with the previous two Wp weights is presented in figure 8. In 

 8 



 

Table II numerical results are presented. For case 4 the disturbance rejection is better 
than for case 5 because Wp1 is more restrictive than Wp2 
 

 
 

Figure 8: Comparison of substrate responses for two weights Wp1 and Wp2 

 
In the last rows of Tables I and II can be seen the computational time referred to a 
Pentium IV 2,4 GHz computer. This time is relatively low because nonlinear 
simulations are not needed to calculate system norms. The cost bound for the 
convergence criteria is 0.001, enough to assure no further controller adjustment in the 
optimization.  
 

6. Conclusions 

In this work a method for tuning model predictive controllers has been developed, 
based on several plant dynamical performance indexes. This method has been tested 
in MPC applied to the activated sludge process, and the closed loop responses for 
substrate concentration in the reactor show that obtained controllers are properly 
tuned, taking into account the large magnitude of influent disturbances. 
 
The methodology proposed here is a general one, and any other performance criteria 
can be considered. The use of linear models also allows for the specification of 
convex performance criteria within an LMI framework. 
 
Finally it is important to show that the developed method is particularly suitable for 
its inclusion in the resolution of the Integrated Design optimization problem, which 
determines the optimum controller and the optimum plant at the same time. 
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