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Abstract 

A new, fast and easy method for analysing the potential for improving reactor 
performance by replacing steady state by forced periodic operation is presented. The 
method is based on Volterra series, generalized Fourier transform and the concept of 
higher-order frequency response functions (FRFs). The second order frequency 
response function, which corresponds to the dominant term of the non-periodic (DC) 
component, G2(ω,-ω), is mainly responsible for the average performance of the periodic 
processes. Based on that, in order to evaluate the potential of periodic reactor operation, it is 
enough to derive and analyze G2(ω,-ω). The sign of this function defines the sign of the DC 
component and reveals whether the performance improvement by cycling is possible. The 
method is used to analyze the periodic performance of a continuous stirred tank reactor 
(CSTR), plug flow tubular reactor (PFTR) and dispersive flow tubular reactor 
(DFTR), after introducing periodic change of the input concentration. Simple 
homogeneous, isothermal, n-th order reaction mechanism is studied.  

Keywords: Forced periodic operation, Frequency response functions, Non-periodic 
(DC) component, Continuous stirred tank reactor, plug flow tubular reactor, 
dispersive flow tubular reactor, n-th order reaction 
 

1. Introduction 

Periodic operations of different chemical engineering processes, especially of 
chemical reactors, have been attracting attention of a number of research groups in the 
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last 20-30 years (Schlädlich et al., 1983; Nappi et al., 1985; Chanchlani et al, 1994; 
Silveston, 1998; Aida and Silveston, 2005). The attractiveness of the periodic 
operations lies in the fact that the average process performance corresponding to the 
periodic operation can be superior to the optimal steady-state operation, i.e., the 
conversion can be increased by cycling one or more inputs. In order to explain the 
possibility of conversion improvement, Figure 1 demonstrates the differences 
between steady state and periodic operation, for a simple reaction mechanism 
A→products. 

 

                                                 
Figure 1. A simplified representation of a favourable periodic reactor operation 

 

Let us assume that when the reaction is performed in a steady state operation sAic , and 

Asc  are the input and output concentrations of the reactant A, respectively.  If the 
input concentration is modulated periodically (e.g. in a co-sinusoidal way) around its 
steady-state value, the outlet concentration will also oscillate. If the reactor is a 
nonlinear system, the mean value of the outlet concentration m

Ac  will in principle be 
different from sAc , . The difference sA

m
A cc ,−=∆  can be negative, zero or positive, 

depending on the type of nonlinearity. If ∆<0, the periodic operation can be 
considered as favourable, as it corresponds to increased conversion, in comparison to 
the steady-state operation.  

Testing whether a periodic operation is favourable, i.e., whether it results with 
increased productivity, generally demands long and tedious experimental and/or 
numerical work. In this paper we present a new, fast and easy method for testing 
periodic processes, based on the Volterra series approach (Volterra 1959), nonlinear 
frequency response and the concept of higher order frequency response functions 
(Weiner and Spina, 1980). In Section 2 we give a brief overview of these tools. More 
details about the theoretical background can be found in (Petkovska, 2005). 

 

2. Frequency response method 

Frequency response (FR) is one of the most commonly used methods for investigation 
of process dynamics. It actually represents a quasi-stationary response of the system 
to periodic (sinusoidal or co-sinusoidal) input modulation. Contrary to FR of a linear 
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system, which is a periodic function of the same shape and frequency as the input, FR 
of a nonlinear system also contains a non-periodic (DC) component and an indefinite 
sequence of higher harmonics:  

L+ϕ+ω+ϕ+ω++=++++= )2cos()cos(...)( IIIIIIDCsIIIDCs tBtByyyyyyty (1) 

A convenient way to treat weakly nonlinear systems with polynomial nonlinearities in 
the frequency domain is to replace the nonlinear model G with a sequence of 
frequency response functions (FRFs) of the first, second, third, etc., order (G1(ω), 
G2(ω1,ω2), G3(ω1,ω2,ω3),…) (Weiner and Spina, 1980). 

In general, the output from a weakly nonlinear system can be represented in the 
Volterra series form (Volterra, 1959): 
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where y1 corresponds to the response of the linearised model and y2, y3, etc. are 
correction functions of different orders. If the input is defined as a single harmonic 
periodic function with amplitude A and frequency ω:  
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the correction function of the m-the order ym(t) can be represented in the following way: 
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and im C is a binomial coefficient defined as:  
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Hence, the Volterra series of the system output for a single harmonic input can be written as: 
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By collecting the constant terms and terms with equal frequencies in equation (7), the DC 
component and different harmonics of the output (equation (1)) are obtained: 
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etc. 

Equations (8-10) correlate the FRFs of different orders with the DC component and 
different harmonics of the output, which can be measured experimentally. These 
equations also show that the first, dominant term of the DC component is defined by 
the asymmetrical second order FRF G2(ω,-ω), the dominant term of the first harmonic by the 
first order FRF G1(ω) and the dominant term of the second harmonic by the symmetrical second 
order FRF G2(ω,ω). 

In this study, we are using the concept of higher order FRFs for investigation of the average 
performance of periodic processes. For that reason, only the DC component (which is equal to 
∆ defined in the Introduction), and the asymmetrical second order FRF G2(ω,-ω), 
corresponding to its dominant term, are of interest. The sign of the function G2(ω,-ω) will 
define the sign of the DC component. In that way, in order to decide on the favourability of a 
particular periodic operation in comparison with the corresponding steady state operation, it is 
enough to derive and analyse the function G2(ω,-ω).  

The objective of this work is to introduce a simple method for evaluation of the periodic reactor 
operation, based on the analysis of the asymmetrical second order FRF G2(ω,-ω). As a first step, 
in this manuscript the functions G2(ω,-ω) are derived and analyzed for a simple reaction 
mechanism and three basic reactor types.  

 

3. Model equations 

In this work we consider periodic reactor operation for a simple reaction mechanism: 
isothermal n-th order reaction of the type A→products, in the gas phase. We analyse 
the average periodic performance of three reactor types: a continuos stirred tank 
reactor (CSTR), a plug flow tubular reactor (PFTR) and a dispersed flow tubular 
reactor (DSTR) (Levenspiel, 1972).  

The mathematical models (non-stationary material balance equations) for all three 
reactor types are listed below.  
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3.1 CSTR model 

For a perfectly mixed reactor in which n-th order isothermal reaction is taking place, 
the non-stationary material balance is obtained in the form of a nonlinear first order 
ODE: 

n
AAAi

A kVcccF
dt

dcV −−= )(                                                                                               (11) 

where t is time, cA is the reactant concentration in the reactor and in the outlet stream, 
cAi is the reactant concentration in the feed stream, V is the reactor volume, F the 
flow-rate of the reaction stream and k the rate constant.  

Periodic operation of the reactor around a previously established steady-state is 
considered. The initial steady-state is defined by the following equation: 

0,,, =−− n
sAsAsAi kVcFcFc                   (12) 

For analysis in the frequency domain it is more convenient to transform the model 
equations into dimensionless form, by defining the concentration variables as relative 
deviations from their steady-state values. In that case, equation (11) is transformed 
into: 
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t  is the dimensionless time. 

After expanding the nonlinear term (1+C)n in the Taylor series form:  
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equation (13) is transformed into:  
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3.2.  PFTR model  

For an ideal plug flow reactor with n-th order reaction mechanism, the model 
equation is obtained in the form of a nonlinear first order PDE: 
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with the following  boundary and  initial conditions:  
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In equations (16) and (17) z  is the axial reactor coordinate, cA is the concentration at 
position z in the reactor and u is the reaction stream velocity.  

For steady state, the reactor material balance reduces to:  

n
As

As kc
dz

dc
u −=          (18) 

The model equations (16) and (17) are again transformed into dimensionless form: 
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The definitions of dimensionless concentrations and time are analogous as for the 

CSTR. In addition, 
L
zx =  is the dimensionless axial coordinate of the PFTR reactor, 

and the residence time is defined as 
u
L

=τ  (L is the reactor length). 

After expanding the nonlinear term (1+C)n in the Taylor series form, equation (19) is 
transformed into the following form:  
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3.3. DFTR model 

This reactor model, which takes into account axial dispersion, corresponds to a more 
realistic case of non-ideal flow. The material balance equation for this case is  
obtained in the form of a nonlinear second order PDE: 
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with the following boundary: 
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and initial conditions: 

)()0,(:,)0(:0 , zczczcct AsAsAiAi =∀=≤                 (24) 

This model has an additional parameter in comparison with the previous one: the 
axial dispersion coefficient effD . The steady state concentration is obtained as a 
solution of the corresponding steady-state equation: 
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Using the dimensionless variables defined previously, equations (22-24) are 
transformed into: 
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In equations (26) and (27) N is the number of theoretical plates, which is related to the 

axial dispersion coefficient Deff: 
effD

uLN
2

= .  

The nonlinear term (1+C)n in equation (26) is again expanded in the Taylor series, 
resulting with the following equation:  
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4. Frequency response functions for the analysed reactors 

The next step in our procedure is deriving the necessary FRFs for each case under 
consideration. For estimating the average reaction performance, it is necessary and 
enough to estimate the DC component. As explained in Section 2, the sign of the DC 
component is determined by the asymmetrical second order FRF G2(ω,−ω). 
Consequently, we will limit our derivations and analysis to the first (G1(ω)) and 
asymmetrical second order FRFs (G2(ω,−ω)).  

The procedure for deriving the higher order FRFs is rather standard and can be found 
in our previous papers (Petkovska and Do 1998, 2000; Petkovska 2001; Petkovska 
and Marković, 2006). 

The basic steps of this procedure are as follows: 

1)   Defining the input concentration )(θiC in the form of a co-sinusoidal function 
(Eq.(3)); 

2) Expressing the output concentration )(θC in the Volterra series form (Eq. (7)); 

3) Substituting the expressions for )(θiC and )(θC  into the corresponding model 
equations; 

4) Applying the method of harmonic probing to the equations obtained in step 3 
(collecting the terms with the same amplitude and frequency and equating them to 
zero); 
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5) Solving the equations obtained in Step 4. 

Some details of the derivation procedure can be found in the Appendix. In the main 
body of this manuscript, only the final expressions for the first and asymmetrical 
second order FRFs for the three models under consideration will be presented.  

 

4.1 First order and second order FRFs  for the CSTR model 

- First order FRF: 
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- Second order FRF corresponding to the DC component: 
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4.2. First and second order FRFs for the PFTR model  

a) First order FRF: 
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b) Second order FRF corresponding to the DC component:                            
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4.3. First and second order FRFs for the DFTR model  

a) First order FRF: 
Nn
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11 ))1(1()()()( 21 −−+++= τωωω ωαωα                                      (34) 

where )(1 ωα  and )(2 ωα are the characteristic values of the underlying differential 
equation, while )(1 ωC and )(2 ωC are the corresponding integration constants, which 
can be found in Appendix, Eqs. (A-17 – A-19). 

b) Second order FRF corresponding to the DC component:        
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where 1D , 2D , and 1d  to 4d  are integration constants. Their expression can be found in 
the Appendix, Eqs (A-21,A-23, A-24). Functions f1(1) to f4(1) are obtained by 
substituting x=1 in the functions f1(x) to f4(x) defined in the Appendix (Eq. (A-22)) in 
order to simplify very cumbersome expressions.  

       

5. Discussion with simulations 

Analysis of the expressions for the asymmetrical second order FRF G2(ω,−ω) for the 
ideal reactors (CSTR - equations (31) and PFTR equation (33)) shows the following: 

(1) G2(ω,−ω)<0, for n<0 and n>1. This corresponds to improved reactor 
performance owing to periodic operation, i.e. to favourable periodic operation. 

(2) G2(ω,−ω)=0, for n=0 and n=1. This corresponds to no influence of the 
periodic operation on reactor performance. 

(3) G2(ω,−ω)>0, for 0<n<1. This corresponds to worsened reactor performance 
owing to periodic operation, i.e. to unfavourable periodic operation. 

It is important to notice that identical results were obtained for both reactor types. 
Analysis of equation (35), defining the function G2(ω,−ω) for the DFTR is not so 
obvious, nevertheless, it can be shown by numerical analysis that the same 
conclusions are valid for this reactor type, as well. 

As illustration, using the expressions given by equations (31), (33) and (35), the 
G2(ω,−ω) functions were simulated for all three reactors and for three different 
reaction orders (n=-1, 0.5 and 2), corresponding to the three ranges of interest (n<0, 
0<n<1 and n>1). The simulation results are shown in Figures 2 (for the CSTR), 3 (for 
the PFTR) and 4 (for the DFTR). The parameter values, used for simulation are given 
in Table 1. For all three reactor types the simulations were performed with the same 
values of the contact time, rate constant and inlet steady-state concentration. 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Model parameters used for simulations 

Rate constant, k  0.001 s-1mol1-n 

Reaction order, n [-1, 0.5, 2] 

Steady-state inlet concentration of  

the reactant A, sAic ,  
1 mol/m3 

Contact time, τ 100 s 

Number of theoretical plates, N 100 
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                      Figure 2. The second order functions G2(ω,−ω) for CSTR for 3 different reaction orders  

 

 
Figure 3. The second order functions G2(ω,−ω) for PFTR for 3 different reaction orders 

 

The simulation results presented in Figures 2, 3 and 4 confirm the previous 
conclusions. Negative values of G2(ω,−ω) are obtained for n=-1 (n<0) and n=2 (n>1), 
while for n=0.5 (0<n<1) G2(ω,−ω) is positive. It can also be observed that the 
asymmetrical second order FRF for the PFTR is independent of frequency, while for 
the CSTR and DFTR the absolute value of G2(ω,−ω) decreases with increase of 
frequency and tends to zero when ω→4.  
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   Figure 4. The second order functions G2(ω,−ω) for DFTR for 3 different reaction orders 

 

As illustration, in Figure 5 we show a quasi-steady state segment of a simulated 
output concentration from a CSTR (obtained by numerical solution of the model 
equation (13)), for sinusoidal input concentration change and the following simulation 
parameters: n=-1, τ=100 s, k=0.001 mol2s-1, cAi,s=1 mol/m3, ω=0.01 rad/s and A=75%.  
The corresponding steady-state concentration (cA,s=0.8873 mol/m3) and the mean 
value of the outlet concentration ( m

Ac =0.8176 mol/m3) are also shown in Figure 5.   

 
Figure 5. Numerical simulation of the CSTR outlet concentration for a sinusoidal input concentration 

change, showing the difference between the mean value and the steady-state value 

 

Based on that, we can calculate the reactor performance improvement owing to 
periodic operation, corresponding to this case: 

3
, mol/m0697.0−=−=∆ sA

m
A cc  

On the other hand, the approximate value of the DC component, calculated based on 
the second order FRF G2(ω,−ω) only (only the first term in Eq. (8)), is: 
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which is close to the value of ∆ obtained from the numerical solution. For more 
precise estimation of the DC component, the contribution of the asymmetrical forth 
order FRF G4(ω,ω,−ω,−ω), and possibly higher order FRFs, would have to be taken 
into account. 

 

6. Conclusions 

A new, rather simple method for fast evaluation whether a periodic operation of a 
reactor has potential for improved performance compared to conventional steady-state 
operation has been presented. The method is based on frequency response, Volterra 
series theory and the concept of higher order frequency response functions. A simple 
example was used for testing the method: isothermal homogeneous n-th order 
reaction of the type A→products and three standard reactor types: CSTR, PFTR and 
DFTR.  

The main conclusions are the following: 

1. The average reactor performance in the periodic regime is determined by the 
DC component of the output, which, on the other hand, is dominantly 
influenced by the asymmetrical second order FRF G2(ω,−ω).  Consequently, 
in order to decide whether a periodic operation would be favourable in 
comparison with a steady-state one, it is enough to derive G2(ω,−ω) and 
analyse its sign.   

2. For all three reactor types the same results were obtained: that the periodic 
operating regime will increase the productivity for reaction order n<0 or n>1. 
The main consequence of this result is that it would be enough to derive and 
analyse the G2(ω,−ω) function for the CSTR in order to decide whether 
performing the reaction in the periodic regime is worthwhile, or not. 
Derivation of the G2(ω,−ω) function for the CSTR is rather simple and fast, 
compared to other reactor types. 

3. The improvement owing to periodic operation can be approximately estimated 
quantitivly based on the asymmetrical second order FRF G2(ω,−ω), only.   

Taking all this in account, we believe that the proposed method is very convenient for 
evaluation of the potential of periodic reactor operations. The method is fast and 
simple, especially when applied to CSTR. In our future work it will be applied to 
investigation of more complex reaction mechanisms, including heterogeneous and 
non-isothermal systems.  
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Appendix: Derivation of the Frequency Response Functions (FRFs) G1(ω) and 
G2(ω,−ω) 
The final expressions for the first and asymmetric second order FRFs for the three 
analysed reactor types are given in the main body of this manuscript. Here we give 
the main points of the derivation procedure, performed in 5 steps. 

 

Step 1. Defining the input concentration:   

ωθ−ωθ +=θ jj
i eAeAC

22
)(                                                                                          (A-1) 

 

Step 2. Representing the output concentration in gas phase in the form of Volterra 
series: 
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For CSTR Cout(θ) is C(θ), while for PFTR and DFTR it is C(x=1,θ). For the PFTR 
and DFTR it is convenient to define an auxiliary set of FRFs, e.g. H-functions, which 
correspond to the concentration at position x in the reactor and depend on x, as well as 
on ω:  
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Step 3. Substitute the expressions for input concentration and output concentrations 
defined by Eqs. (A1-A3) into the appropriate model equations 

The resulting equations are too cumbersome and will not be presented. 

 

Step 4: Collecting the terms with ωθjAe , corresponding to the first order functions 
and with 022 eA , corresponding to the asymmetrical second order function, and 
equating them to zero. 

The resulting equations for each reactor type are presented below: 



                                                                                                               Marković et al.                              

 14

 

4.1 CSTR model  

a) First order FRF: 
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b) Second order FRF corresponding to the DC component:  
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4.2 PFTR model  

a) First order FRF:  
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with the following boundary condition: 

1),0(:0 1 =ω= Hx                  (A-7) 

b) Second order FRF corresponding to the DC component:  
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with the boundary condition: 

0),,0(:0 2 =ω−ω= Hx                 (A-9)                                 

4.3 DFTR model  

a) First order FRF:   
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with the following boundary conditions: 
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b) Second order FRF corresponding to the DC component:          
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      (A-12) 

with following boundary conditions:  
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Step 5.  Solving equations obtained in Step 4. 

5.1 CSTR model:  

Being algebraic, equations (A-4) and (A-5) are easily solved. Their solutions are 
given Chapter 4.1 in the main body of the manuscript ( Eqs.(30) and (31)). 

5.2 PFTR model:  

The solutions of the first-order linear differential equations (A-6) and (A-7) are: 

a) First order FRF: 

xj
n

sAi

e
xcnk

xH ω

τ
ω −

−−+
= 1

,
1 )1(1

1),(                                                                          (A-14)  

For x=1, this function becomes equal to the G1(ω) function, corresponding to the 
concentration at the reactor outlet, given by equation (32).  

b) Second order FRF corresponding to the DC component:  
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For x=1, this function becomes equal to the G2(ω,−ω) function, corresponding to the 
concentration at the reactor outlet, given by equation (33).  

4.3 DFTR model:  

In this case, the resulting equations are linear second order homogeneous ODEs with 
variable coefficients (equations (A-10) and (A-12)). Their solution gives the 
following results: 

a) First order FRF: 
Nxn

sAi
xx excnkeCeCxH 21

,
)(

2
)(

11 ))1(1()()(),( 21 −−+++= τωωω ωαωα                      (A-16)   

For x=1, this function becomes equal to the G2(ω,−ω) function, corresponding to the 
concentration at the reactor outlet, given by equation (34).                      

In Eq (A-16) )(1 ωα  and )(2 ωα are the characteristic values:  

ωωα NjNN 4)( 2
2,1 +±=                                                                                   (A-17)          

The integration constants )(1 ωC and )(2 ωC are obtained from the boundary conditions 
(A-11): 
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b) Second order FRF corresponding to the DC component:  
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For x=1, this function becomes equal to the G2(ω,−ω) function, corresponding to the 
concentration at the reactor outlet, given by equation (35). 

Integration constants 41 dd −  in Eq. (A-20) are defined by the following expressions: 
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The functions )(to)( 41 xfxf  were introduced in order to simplify Eq. (A-20). They 
are defined in the following way: 
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 1D and 2D  are obtained from the boundary conditions (A-13): 
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Notations: 
A - input amplitude 

B – output amplitude, general 

cA  – concentration of component A (molm-3) 
m
Ac  - time-average value of the output concentration 

C – nondimensional concentration of component A 

Dax – axial dispersion coefficient (cm2s-1) 

F – volumetric flow-rate, m3s-1 

Gm – m-th order FRF  

Hm - m-th order auxiliary FRF 

k – rate constant (s-1mol1-n) 

L – column length (m) 

n - order of the reaction rate 

N – number of theoretical plates 

t – time (s) 

u – interstitial fluid velocity (ms-1) 

V – reactor volume, m3 

x – input (general), nondimensional axial coordinate 

y – output (general) 

z – axial coordinate (m) 

 

Greek symbols: 

∆ - difference between the time-average and the steady-state concentration 

θ – dimensionless time 

τ – residence time (s) 

ϖ - frequency (rads-1) 

ω – dimensionless frequency 

 

Subscripts: 
i – inlet 

s – stationary state 
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Abbreviations: 
CSTR- continuous stirred tank reactor 

DC- non-periodic term 

DFTR – dispersed flow tubular reactor 

FR – frequency response 

FRF – frequency response function 

PFTR – plug flow tubular reactor 
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