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Abstract 

Inherent in chemical process models are parameters that have uncertainty associated 
with them. In an earlier paper the authors addressed multicriteria optimization in the 
presence of model and process uncertainty at the design stage. Specifically the 
authors discussed extensions of the average criterion method, the worst-case strategy 
and the ε -constraint method under the following conditions: (a) at the design stage 
the only information available about the uncertain parameters is that they are enclosed 
in a known uncertainty region T, and (b) at the operation stage, process data is rich 
enough to allow the determination of exact values of all the uncertain parameters. The 
suggested formulation assumed that at the operation stage, certain process variables 
(called control variables) could be tuned or manipulated in order to offset the effects 
of uncertainty. This formulation made the conventional assumption that there was 
only one type of uncertain parameters. In this follow up paper, the authors consider 
the more realistic case where the uncertain parameters fall under at least two classes 
at the operation stage, namely (a) those that can be determined with enough accuracy 
and (b) those that cannot be determined with such accuracy given the available 
process data. Three illustrative examples (two benchmark and one direct methanol 
fuel cell) have been employed.  
 
Keywords: flexibility analysis, uncertain parameter, two-stage optimization, multi-
criteria optimization, direct methanol fuel cell 
 

1. Introduction 

Often the performance of chemical processes cannot be estimated only by one 
objective criterion and it is necessary to take into account several conflicting criteria, 
for example (a) process economics and environmental requirements, and (b) 
integration of process design and control. The importance of multiobjective design 
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has been shown by a small number of researchers (Sophos et al., 1980, Luyben and 
Floudas, 1994, Palazoglu and Arkun, 1987, Keeney and Raiffa, 1976 and Caballero et 
al., 1997).  

Process simulations are further complicated by the presence of uncertainty in 
the process models and some process variables. Therefore, we cannot reliably carry 
out MCO without simultaneously considering process and model uncertainty. 
Furthermore, under an industrially-relevant scenario we cannot rely on commonly 
used assumption that any uncertain parameter can be determined accurately enough 
given the available process data at any time instant during the operation stage. For 
convenience let us refer to the last assumption as Assumption 1.  

In the chemical engineering open literature, to our knowledge, the MCO 
problem under uncertainty has been considered only by Palazoglu and Arkun (1987) 
and Chakraborty and Linninger (2003). Palazoglu and Arkun considered the MCO 
problem within the context of the design of robust chemical plant under uncertainty. 
Here an economic objective function and dynamic operable measure are employed as 
criteria. The authors formulated the two-stage optimization problem in which as the 
inner optimization problem they solved a one-criterion optimization problem, using 
the ε -constraint method. Chakraborty and Linninger (2003) investigated the trade-off 
between expected cost and flexibility of plant-wide waste management. These 
investigations were based on Assumption 1, meaning that only one type of 
uncertainty was present; this is very restrictive and often not satisfied in practice. 

In an earlier paper by us (Ostrovksy et al., 2006) we employed Assumption 1. 
In this paper we remove this assumption and identify two types of uncertainty at the 
operation stage. The first type represents the parameters which can be determined 
accurately enough, meaning that accurate and fast responsive sensors are present. The 
second type represents the parameters which cannot be determined accurately enough. 
This is the case when sensors have significant measurement error, delay in response 
or there are no sensors present to make measurements from which specific parameters 
can be inferred.   In this paper we have to consider mathematical formulations with 
both types of uncertain parameters simultaneously. 
 

2. Problem Formulation 

The MCO problem under parametric uncertainty at the design stage can be formulated 
as  

1,
min( ( , , ),..., ( , , ))

( , , ) 0,      1,...,

pd z

j

f d z f d z

g d z j m

θ θ

θ ≤ =
   (1) 

where d is a nd -vector of design variables, z is a nz -vector of control variables and θ 
is a vector of uncertain parameters over the domain T . The minimization is over a set 
of p (possibly conflicting) performance criteria ( , , )if d z θ . Constraints ( , , )jg d z θ in 
the problem are design specifications. The design variables (associated with the 
design stage of the chemical process) are fixed during the operation stage. Examples 
of design variables are reactor volume, heat exchanger area, length and diameter of 
the flow pipes. The control variables primarily represent tunable parameters that can 
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be adjusted during the operation of the chemical process; examples are temperatures, 
flow rates and pressures.  
 When the set of uncertain parameters is divided into two sets reflecting their 
level of accuracy at the operation stage (as discussed earlier), the MCO under 
uncertainty becomes 

1 2 1 2
1,

1 2

min( ( , , , ),..., ( , , , ))

( , , , ) 0, 1,...,

pd z

j

f d z f d z

g d z j m

θ θ θ θ

θ θ ≤ =
   (2) 

Here 1θ  is a set of vectors of the first type of uncertain parameters over the domain 
1T  and 2θ  is a set of vectors of the second type of uncertain parameters over the 

domain 2T .  
When Assumption 1 holds, the vector of uncertain parameters θ  in (1) is 

considered known at the operation stage and becomes the conventional MCO 
problem, referred to in this paper as the nominal MCO problem. For simplicity we 
omit θ  from the formulation in (1) and introduce the notation ),( zdx = . The main 
concept in the MCO problem is the Pareto Set (PS) (non-inferior set of points) 
defined as follows: any point x  (such that ( ) 0g x ≤ ) belongs to PS if in the small 
vicinity of x  we cannot find a point x  (such that ( ) 0g x ≤ ) at which there is at least 
one criterion j such that   

( ) ( )

( ) ( ) , 
j j

i i

f x f x

f x f x i j

<

≤ ≠
 

This means that at any point in a PS, it is not possible to improve a criterion )(xfi  
without making another criterion )(xf j  )( ij ≠  worse.  
 

 

3. Review of Solution Approaches for the Nominal MCO 

There are several methods for solving the nominal MCO problem (i.e. absence of 
parametric uncertainty) and building the PS curve under the following condition: 
there is complete information about uncertain parameters at the design stage. We 
consider the following methods: the average criterion (AC) (Sophos et al., 1980), the 
worst case strategy (WCS) (Clark and Westerberg, 1983) and ε -constraint method 
(Haimes, 1975). All these methods reduce the MCO problem to a one-criterion 
optimization problem. There are two general approaches for this reduction. In the first 
approach (employed by AC and WCS) a convolution of the original criteria 

1( ),..., ( ) ( 1,..., )pf x f x i p=  serves as the objective function. In the second approach 
(employed by theε -constraint method) one of the original criteria serves as the 
objective function and the other criteria are used as constraints. A review of these 
methods can be found in our paper Ostrovksy et al. (2006).   For convenience we are 
including the review below. In order to link the corresponding equations we have 
used a new designation. Thus Eqn. (a3) is equivalent to Eqn. (3) in the previous 
paper. 
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Average Criterion (AC) method 

In the AC method each criterion )(xfi  is assigned a weight coefficient ia , reflecting 
its importance relative to the other criteria. The resulting problem formulation is 
given by 

0)(

),(min 1*1

≤

=

xg

axff
x     

 (a3)  

where 

                                           

1

1

1

( , ) ( )

0;  1.

p

i i
i

p

i i
i

f x a a f x

a a

=

=

=

≥ =

∑

∑
    

 (a4) 

Here ))(),...,(()( 1 xgxgxg m=  is an m-vector of constraints and ),...,( 1 paaa = . A 

solution [ pffx ...,, 1 ] of (3) belongs to the PS (Sophos et al., 1980). Changing the 
values of the weight coefficient  ia  and solving problem (3) will generate different 
points of the PS. Thus a solution [ ** , xa ] of problem (3) generates a point in the PS. 
This method generates all the points in the PS  only if the region bounded by the PS is 
convex (Sophos et al., 1980).  
 

Worst case strategy 

In the worst case strategy (WCS) (Clark and Westerberg, 1983), as in the previous 
case, each criterion )(zfi  is assigned a weight coefficient ia , reflecting its importance 
relative to the other criteria. The key difference here is that the worst weighted 
criterion is minimized. The resulting problem is given by 
 

2* 2( ) min ( , )

( ) 0, 1,...,
x

j

f a f x a

g x j m

=

≤ =
     (a5) 

where 2 ( , ) max( ( ))  (1,..., )j jj J
f x a a f x J p

∈
= =  and 

1
1,   0.

p

j j
j

a a
=

= ≥∑  One can show 

that the problem can be reduced to the following problem (Clark and Westerberg, 
1983) 
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,
min

( )   1,...,
( ) 0.

x y

i i

y

a f x y i p
g x

≤ =

≤

   

 (a6) 

It can be shown that the method permits to obtain all the points of the PS. However, 
for 3>p  the method is computationally intensive (the same as for the AC method). 
 

ε -constraint method 

First we need to solve the following p problem formulations 
( ) min ( )

( ) 0
1,...,

p
k kx

f f x

g x
k p

=

≤
=

     (a7) 

Assume ],[ )()( p
k

k fx ))(( )()( k
k

p
k xff =  is the global solution of the problem. The next 

step is to form a one-criterion problem, in which one criterion (for example the p-th 
criterion) is employed as the objective function and the remaining criteria serve as 
constraints. Note that the criteria are re-ordered such that the p-th criterion is the 
objective function. Thus 

       
0)(

)(min

≤xg

xf px                   

 (a8) 

                           ( ) , 1,..., ( 1)i if x i pε≤ = −     (a9)  

 where 0>iε are parameters satisfying  

( ) 1,..., 1.p
k kf k pε≤ = −  

Note that iε is the allowable deterioration of the optimal value of )(xfi from the 
optimal value )( p

if . It can be shown that a solution of the problem belongs to the PS  
of the set 1{ ( ),..., ( )}pf x f x . Solving problem (8) for different values of parameters iε  
yields all the points of the PS (Haimes, 1975). For k=2 Eqn. (a8) becomes 

mjxg

xf

j

x

,...,1,0)(

)(min 2

=≤
    (a10) 

1`1 )( ε≤xf       (a11) 

such that 1ε  satisfies (2)
1 1f ε≤  
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In this paper we will consider some approaches to address the issues of 
uncertainty within the MCO framework at the design stage of the CP. We will 
develop extensions of mathematical formulations for average criterion method, worst-
case strategy, ε -constraint method based on direct approach, and new extended ε -
constraint method while taking into account the presence of both types of uncertainty. 
It will be shown that the use of the direct multicriteria approach results in a 
conservative design of chemical process under uncertainty. We will show how the 
new MCO formulations can be reduced to sets of one-criterion problems under 
uncertainty, which can be solved by TSOP (two-stage optimization problem) 
algorithm, described in detail in Ostrovsky et al., (2003a). Two cases have been 
considered. In the first case, we know exact values of the uncertain parameters (at the 
design stage) that would be employed at the operation stage. This was considered in 
an earlier paper by us (Ostrovksy et al., 2006).   In the second case we suppose that at 
the operation stage, there are sufficient process data that can be used to obtain 
accurate values of the uncertain parameters, which implies that at the design stage the 
only available information to us is the domain of uncertain parameters. 

 

4. Proposed Solution Approaches for MCO under Uncertainty  
  
We distinguish between two types of variables, namely the design and control 
variables. The design variables correspond to design stage and can vary only at this 
stage. While the control variables can be tuned during both stages of CP. This work is 
focused on the case when at the operation stage we have incomplete information 
about uncertain parameters. This means that at the operation stage we do not have 
enough process data for determination of accurate values for all uncertain parameters. 
In this case we define two groups of uncertain parameters. The first group represents 
parameters which can be determined exactly at any time instant at the operation stage; 
at the design stage the only available information about this group is given by the 
associated domain 1T .  The second group represents uncertain parameters which 
cannot be determined accurately enough at any time instant at the operation stage. 
Thus the only information at both stages is given by the associated domain 2T . The 
presence of the second group of uncertain parameters complicates derivations of 
MCO under uncertainty. To solve the resulting MCO problem under uncertainty, we 
will employ extensions of the average criterion (AC) method, the worst-case strategy 
(WCS) and the ε -constraint method.  
 We will use the following general approach for the extension of the AC and 
the WCS methods. First, we will transform each criterion ),,,( 21 θθzdfi  to a new 
criterion )(dfi , which depends only on the design variables.  With ( ) ( 1,..., )if d i p=  
we will be able to use either the AC method or the WCS method for solving the MCO 
problem under uncertainty. From now on we will use the phrase “convolution 
method” to denote the phrase “AC or WCS method”. 
   Consider the following optimization problem 
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    2

2 2

2 2
1

1 2

min ( ,..., , ) ( )

max ( , , , ) 0 1,...,

pz
T

j
T

F f f d

g d z j m
θ

α μ θ θ

θ θ
∈

≤ =

∫
     (3)              

Here ),,...,( 1 αpffF is a convolution of p criteria pff ,...,1 , which is constructed using 
the convolution method and a  is a vector of parameters (see (a3) and (a5)). We will 
suppose that at the operation stage, Eqn. (3) is solved for each 1θ . Let us construct 
new criteria ),( αdfi , 

∫=
1

1111* )()),,,(,(),(
T

ii ddzdfdf θθμθαθα                              (4) 

These criteria employ the optimal solution ),,( 1* adz θ  obtained from (3).  
 The function ),( αdfi  is a mean value of the original criterion ),,,( 21 θθzdfi  
at the operation stage since for each 1θ  Eqn. (3) is solved. Again we can use the same 
convolution method for solving the MCO problem while employing the functions  

),( αdfi  (here we will use the same parametersα , used in the construction of the 
convolution ),,...,( 1 αpfff ). Designate the solution as ],[ **

ifd )),(( ** αdff ii = . 

Using the convolution method with ( , ) ( 1,..., )if d i pα =  for all values ofα , 

satisfying (4) traces a curve (surface) in the space of the ),...,1( pifi = . This curve 
(termed DM curve) is an analog of the conventional PS in the sense that the decision 
maker (DM) must make a final decision using the curve. From engineering 
consideration he must select a point [ , ]d a  from this curve as the solution of the MCO 
problem.  
 Let us analyze the results. During the operation stage for each l,1θ , aa = ,  
and dd = ,  the control variables z are obtained from (3) using the convolution 
method (i.e. we solve a conventional MCO problem). Thus, the resulting value of z 
corresponds to one of the points on the Pareto set for the functions ),,,( 2,1 θθ l

i zdf . 
Now consider the values ( , ) ( 1,..., )if d i pα = . These are obtained by solving (a3) or 

(a5) where the functions ),( adfi  are used. Again we obtain a solution, which 

corresponds to one of the points of the conventional PS for ),( adfi . Therefore, for 

each ),( adfi  we cannot obtain a better MCO solution than ),( adfi . It is clear that the 
solution can be realized, since at each time instance, Eqn. (3) is solved and the 
resulting ),,( 1* adz θ  is used for construction of all ),( adfi . We will apply this 
general approach for solving the MCO problem using the convolution method. 
 If Eqn. (3) is a convex program, then a local optimization algorithm is 
adequate for obtaining a global solution, otherwise a global optimizer is needed. 
Global optimization algorithms can be classified as either stochastic or deterministic. 
For example Luh et al. (2003) considered stochastic methods (specifically the genetic 
algorithm family of algorithms) in order to converge to globally optimal solutions for 
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an MCO formulation.  Several deterministic global optimizers rely on branch and 
bound and convex/concave estimators (see for example Ostrovsky et al., 2003b). 
  

 4.1. Extended Average Criteria Method 
 
In the extended average criteria (AC) method, we formulate Eqn. (a3) using the 
weighted sum in Eqn. (a4) (see also Eqn. (a3)) as the objective function, thus 

2

2 2

* 1 1 2 2 2

1 2

( , , ) min ( , , , , ) ( )

max ( , , , ) 0 1,...,

z
T

T

f d f d z d

g d z j m
θ

θ α θ θ α μ θ θ

θ θ
∈

=

≤ =

∫
                          (5) 

where  
1 2 1 2

1

1

( , , , , ) ( , , , )

1 0

p

k k
k

p

k k
k

f d z f d zθ θ α α θ θ

α α

=

=

=

= ≥

∑

∑
                                    (6) 

 
Let ),,( 1* αθdz be the solution to the problem. Then  ),( adfi  is given by Eqn. (4). 

The new criteria ( , ) ( 1,..., )if d a i p=  do not depend on the control variables z and 
uncertain parameters ],[ 21 θθ . Now we can directly use the method of minimization of 
the weighted average criterion 

 ),(min αdf
d

                                                             (7) 

where                                  

                                         ),(),(
1

ααα dfdf k

p

k
k∑

=

=                                                 (8) 

This is a bi-level optimization problem, since for calculation of ),( αdfk  we must 
use ),,( 1* αθdz , which is the solution of Eqn. (5). It has been proven that bi-level 
optimization problem is multi extremal and nondifferentiable. To make matters 
worse, during the calculation of the objective function of Eqn. (7), we must 
recalculate p multidimensional integrals at each value of d. Therefore we need to 
reduce the Eqn. (7) to a simpler problem. By substituting in Eqn. (8) the expression 
for ),( adfk  from Eqn. (4) and rearranging, we obtain 

∫ ∑
=

=
1

11211*

1

)()],),,,(,([),(
T

p

k
kk dadzdfadf θθμθθθα                        (9) 

 
The term inside the square brackets is the optimal value of the objective function of 
the internal optimization Eqn. (5), and since for a given 1θ  the optimal value of 
z does not depend on the values of z for other 1θ , we can rewrite Eqn. (9) as  
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1
1 2

2 2

1 2 2 1 1 2

( ) 1

1 2

( , ) min ( ( , , , )) ( ) ( )

max ( , , , ) 0

p

k k
z kT T

j
T

f d f d z d d

g d z

θ

θ

α α θ θ μ θ μ θ θ θ

θ θ
=

∈

=

≤

∑∫ ∫
                         (10) 

    
Here )( 1θz  is a multivariable function with respect to the uncertain parameters 1θ  
and mj ,...,1= . By substituting the expression for ),( αdf from (10) in Eqn. (7) we 
obtain 

∫ ∫∑
=1 2

1

211221

1)(,
)()(),,,(min

T T

p

k
kk

zd
ddzdf θθθμθμθθα

θ
.                       (11) 

11211 ,0),),(,(max
22

Tzdg j
T

∈∀≤
∈

θθθθ
θ

                                        (12) 

In order to guarantee existence of the solution of the problem we must supplement 
this problem with the following constraint Ostrovsky et al (2003) 
 

0),,,(maxmaxminmax)( 21
2 2211

≤≡
∈∈∈

θθχ
θθ

zdgd jJjTzT
                          (13) 

 

The system of equations in Eqns. (11) and (13) constitute a two-stage optimization 
problem (TSOP2). Therefore, we can use the split and bound method (SB) described 
in Ostrovsky et al (2003a) to solve this problem.   
 Suppose the decision maker selects the point [ ad , ] from the DM curve. This 
means that if we solve (5) at each time instance during the operation stage, the mean 
of ),,,( 21 θθzdfi will be equal to ),( αdf i . We note that if we apply the direct 
approach for formulation of an MCO optimization problem on the basis of the AC 
method we will obtain TSOP as Eqn. (9). Thus in this case the direct approach gives 
the same result as the extended AC method approach. 
 

4.2. Extended Worst Case Strategy 
 
In the extended worst case strategy (WCS) method internal optimization Eqn. (3) 
formulated as follows  

2

2 2

* 1 1 2 2 2( , , ) min ( , , , , ) ( )

max ( , , ) 0

z
T

j
T

f d f d z a d

g d z
θ

θ α θ θ μ θ θ

θ
∈

=

≤

∫
                        (14) 

where 
1 2 1 2

1

( , , , ) max( ( , , , )

1 0

k kk
p

k k
k

f d z f d zθ θ α α θ θ

α α
=

=

= ≥∑
                                (15) 
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 Let ),,( 1* adz θ  be the solution of the problem. As in the previous case 
),( αdfi  is represented by Eqn. (4), and the new criteria ),( αdfi ),...,1( pi = do not 

depend on the control variables z , so we can directly use the method of the worst-case 
strategy for construction of the Pareto Set. In this case we must solve the problem 
 

),(min)(* αα dff
d

=                (16) 

where  

  ),(max),( αα dfadf kkk
=                                            (17) 

This is a very computationally intensive bi-level optimization problem, which 
requires calculation of p multidimensional integrals for calculation of the objective 
function. Also it is nondifferentiable and multi extremal. We cannot simplify the 
problem the same way as we did in the case of the average criterion strategy in a 
previous section. We have to consider a different approach in order to reduce the 
complexity of this problem.  Consider the following problem 
 

),(min)(* adfaf
d

=                                                    (18) 

where 
11221*

1 2

)(])()),,,(,(max[),( ∫ ∫=
T T

kkk
dddzdfdf θθμθθμθαθαα               (19) 

From theory there exists the following known inequality  

),(max),(max ixfixf k
i i kkk ∑ ∑≤                                        (20) 

 

From Eqns. (4) and (17) we have  

 
11221*

1 2

)()()),,,(,(max),( ∫ ∫=
T T

kkk
dddzdfdf θθμθθμθαθαα              (21) 

Since an integral can be approximated with Gaussian quadrature, the inequality (20) 
leads to   

( , ) ( , ), ,f d f d dα α α≤ ∀ ∀                                        (22) 

Thus f is an upper bound of f  for any design variables d and weight coefficientsα . 

Consequently, )(* αf is an upper bound for )(* αf . The term in the square brackets in 
(19) is the optimal value of the objective function of the internal optimization Eqn. 
(14). Therefore, we can rewrite (19) as  
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2
1 2

1 1 2 1 2 1 2 1 2( , ) min[max ( , ( ), , ) / max ( , , , ) 0] ( ) ( )k kz k
T T

f d f d z g d z d d
θ

α α θ θ θ θ θ μ θ μ θ θ θ= ≤∫ ∫
   

This expression is equivalent to the following expressions  

 

1
1 2

2

1 1 2 1 2 1 2

( )

1 2

( , ) min max ( , ( ), , ) ( ) ( )

max ( , , , ) 0]

k kkz
T T

f d f d z d d

g d z

θ

θ

α α θ θ θ μ θ μ θ θ θ

θ θ

=

≤

∫ ∫
 

                             

By substituting this expression for ),( αdf   in problem (18) we obtain 

 

1
1 2

2 2

1 1 2 1 2 1 2

, ( )

1 1 2 1 1

min max ( , ( ), , ) ( ) ( )

max ( , ( ), , ) 0,

k kkd z
T T

j
T

f d z d d

g d z T

θ

θ

α θ θ θ μ θ μ θ θ θ

θ θ θ θ
∈

≤ ∀ ∈

∫ ∫
                                (23) 

 

In order to guarantee existence of the solution of the problem we must supplement 
this problem with the following constraint Ostrovsky et al (2003) 
 

0),,,(maxminmax)( 21
2 2211

≤≡
∈∈∈

θθχ
θθ

zdxgmad jJjTzT
 

 

The obtained problem is similar to that of the two-stage optimization problem. We 
can use Gaussian quadrature to obtain a discrete form for Eqn. (23) as shown below 

1

2 2

1, 2,

,

1, 2
1

2

min max ( , , , )

max ( , , , ) 0, , , 1,...,

( ) 0

i

i i q
i q k kkd z i I q Q

i i
j

T

w v f d z

g d z i I q Q j m

d
θ

α θ θ

θ θ

χ

∈ ∈

∈
≤ ∈ ∈ =

≤

∑ ∑
                            (24) 

                                

This can be transformed to  
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1

2 2

,

1, 2
1

1, 2,
1

2

min

max ( , , , ) 0, , , 1,...,

( , , , ) , , , 1,...,
( ) 0

i

iq
i q

d z i I q Q

i i
j

T

i i q iq
k k

w v y

g d z i I q Q j m

f d z y i I q Q k p
d

θ
θ θ

α θ θ
χ

∈ ∈

∈
≤ ∈ ∈ =

≤ ∈ ∈ =

≤

∑ ∑

                        (25) 

                                

 Consider the implications of the results. Suppose the parameter kα  reflects the 
relative importance of the corresponding criterion, then Eqn. (18) provides an upper 
bound of the objective function of Eqn. (16). Average values of each criterion will 
have the form in Eqn. (4) in which ),,( 1* αθdz  is the solution of Eqn. (14). It is clear 
that if we apply the direct approach for formulation of an MCO optimization problem 
using the WCS method we will obtain the TSOP as Eqn. (18), with ),( αdf  as Eqn. 
(19). Thus, the direct approach can only give an upper bound of ),(2 adf  (also see 
Eqn. (22)) and, consequently, the use of the direct approach will in general lead to a 
conservative design. 
 
 
4.3. Extended ε -Constraint Method 
 
In the extended ε -constraint method we must formulate two-stage analogs of Eqns. 
(a7) and (a8). The analog of Eqn. (a7) is the conventional one-criterion optimization 
problem  
 

    
0)(

)},({min

2

1*)(

≤

=

d

dfEf kd

p
k

χ

θ
   

 (26) 

where ),( 1* θdfk  is obtained by solving the problem 

2

2 2

* 1 1 2 2 2

1 2

( , ) min ( , , , ) ( )

max ( , , , ) 0

k kz
T

T

f d f d z d

g d z
θ

θ θ θ μ θ θ

θ θ
∈

=

≤

∫
                      (27) 

Let ),( 1* θdzk be the solution of the above problem. Then  

)},),,(,({),( 211*1*
2 θθθθ

θ
dzdfEdf kkk =  

Let )(kd  be the solution of Eqn. (26). Subsequently the optimal value of the objective 
function in Eqn. (26) can be written as )},),,(,({ 211)(*)( θθθθ

k
k

k
k dzdfE . First 
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consider the case when p=2. Next we formulate a two-stage analog of Eqn. (a10). The 
internal optimization problem has the following form  

2

2 2

* 1 1 2 2 2
2 2

1 2

( , ) min ( , , , ) ( )

max ( , , , ) 0

z
T

T

f d f d z d

g d z
θ

θ θ θ μ θ θ

θ θ
∈

=

≤

∫
                                (28) 

Let ),( 1*
2 θdz be the solution. Next, we formulate an analog of the constraint in Eqn. 

(a11). Note that 

)},),,(,({ 211*
211 θθθdzdfEf =                                  (29) 

is the mean value of the first criterion when ),( 1*
2 θdz is obtained by solving Eqn. 

(28). From here it is naturally required that the value in Eqn. (29) would not 
exceed 1ε ; in other words the following inequality must be met 
    1

211*
21 )},),,(,({ εθθθ ≤dzdfE  

 

Finally, the two-stage analog of Eqn. (a10) is 
111*

22 )(),(min
1

θθμθ ddff
T

d ∫=                                        (31) 

Such that 

2
* 1 1 2

1 2 1

( ) 0

{ ( , ( , ), , )} 0

d

E f d z d

χ

θ θ θ ε

≤

− ≤
 

 

Substitute in Eqn. (30) the expressions for mathematical expectations 

 
1

(2) * 1 1 1
2 2

2
* 1 1 2

1 2 1

min ( , ) ( )

( ) 0

{ ( , ( ), , )} 0

d
T

f f d d

d

E f d z

θ μ θ θ

χ

θ θ θ ε

=

≤

− ≤

∫
                               (31) 

   

Since ),(*
2 θdf is the solution of Eqn. (28), Eqn. (31) can be rewritten as  
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2
1 2

1 2

1 2 2 2 1 1 2 1 1
2 2

2

1 1 2 2 1 2 1
1 2 1

min min( ( , , , ) ( ) / max ( , ( ), , ) 0) ( )

( ) 0

( , ( , ), , ) ( ) ( ) 0

d z
T T

T T

f f d z d g d z d

d

f d z d d d

θ
θ θ μ θ θ θ θ θ μ θ θ

χ

θ θ θ μ θ μ θ θ θ ε

= ≤

≤

− ≤

∫ ∫

∫ ∫
     

(32)  

 
It is very difficult to solve Eqn. (32) since it requires solving Eqn. (28) at each 
point 1θ . To alleviate this, let us change the order of execution of the integration and 
minimization operations in the objective function to obtain 

1
1 2

1 2 2 1 2 1
2 2

, ( )
min ( , , , ) ( ) ( )
d z

T T

f f d z d d
θ

θ θ μ θ μ θ θ θ= ∫ ∫                                (33) 

 11211      ),0),),(,(max
22

Tzdg
T

∈∀≤
∈

θθθθ
θ

                       (34)                                 

0)(2 ≤dχ                                                                     (35)   
                           

1 2

1 1 2 2 1 2 1
1 2 1( , ( , ), , ) ( ) ( ) 0

T T

f d z d d dθ θ θ μ θ μ θ θ θ ε− ≤∫ ∫                (36)                                 

Eqns. (32) and (33) are not equivalent since the variables )( 1θz corresponding to 
different points 1θ are not independent (they are connected by Eqn. (36)). Let us 
employ the relation  

}0)(/)({min}0)}(/)({min
11

≤≤≤ ∑∑
==

i
i

n

i

i
ix

i
i

n

i

i
i

x
xgxfxgxf

i
 

 
where },...,1  }{ nixx i == and xi is a subvector of x,  then we can write  

22 ff ≤  
Thus Eqn. (33) gives an upper bound of the objective function of Eqn. (30). Later 
when we refer to the extended ε - constraint method, Eqn. (33) is implied. 
 Designate as 1ε  the minimal possible value 1ε  under which Eqn. (30) has the 
solution. This means that   1ε  must satisfy the following condition 

                      11 εε ≥ .                                                              (37) 
It is clear that 1ε  can be determined from  

1
1 1,

2
* 1 1 2

1 2 1

min

( ) 0

{ ( , ( , ), , )} 0

d

d

E f d z d

ε
ε ε

χ

θ θ θ ε

=

≤

− ≤

                              (38) 

 
This is a bi-level programming problem, which requires methods of nondifferentiable, 
global optimization. However, there is a simpler way to calculate a lower estimate 
of 1ε . Indeed, since )1(

1f  is the solution of Eqn. (26) for k=1, then the following 
inequality holds 

)},),,(,({)},),,(,({ 211*
21

211*
11

)1(
1 θθθθθθ dzdfEdzdfEf ≤= . 
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Therefore )1(

1f is a lower bound of 1ε , thus 
 
                                                          1

)1(
1 ε≤f .                                                           

 
Using Gauss quadrature we obtain a discrete variant of Eqn. (33) as 
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1
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2
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1, 2

2 1

1, 2,
1 1
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( , , , ) 0

i

i i q
i q

d z i I q Q
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χ

θ θ ε

∈ ∈
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≤

≤ ∈ ∈ =
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∑ ∑

∑ ∑

                                        (39) 

where i,1θ , q,2θ and )(  , 1Iiwi ∈ , qυ , )( Qq∈  are approximation points and weight 

coefficients, respectively. Solving Eqn. (33) for different values of 1ε  one can 
construct the DM curve for p=2.  
 Similarly we can formulate two-stage analog of Eqn. (8) for p=3. First we 
need to solve Eqn. (26) for k=1,2.   After that we must solve the problem  

    

2
211*

32

1
211*

31

2

1*
3

)},),,(,({

)},),,(,({

0)(

)},({min

εθθθ

εθθθ

χ

θ

≤

≤

≤

dzdfE

dzdfE

d

dfE
d

                                

(40)   
 
where  )],(),,([ 1*

3
1*

3 θθ dfdz  is the solution of the internal optimization problem 

2

2 2

* 1 1 2 2 2
3 3

1 2

( , ) min ( , , , ) ( )

max ( , , , ) 0

z
T

T

f d f d z d

g d z
θ

θ θ θ μ θ θ

θ θ
∈

=

≤

∫
                                (41) 

 
Again, we have to replace this problem with the corresponding upper bound on the 
objective function.  
 At the operation stage, consider the implementation of the optimal operating 
conditions determined from Eqn. (33) (for p=2). Let the decision maker select from 
the DM curve a point with *

11 εε =  and d=d*. It is seen from Eqn. (33) that at 
operation stage for each 1θ  the variables )( 1θz  must be determined by solving the 
problem  
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1
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                              (42)                          

  
 Let us compare the direct ε -constraint method and the extended ε -constraint 
method for p=2.  Using the direct approach we must formulate the internal 
optimization problem as one criterion optimization problem using ε -constraint 
method. It is reasonable to use one of the criteria (for example, ),,,( 21

2 θθzdf ) as the 
objective function and use the other criterion within a constraint, 
namely 0),,,( 1

21
1 ≤− εθθzdf .  In this case the internal optimization problem is 

given by  
 

2

2 2

* 1 1 2
2 2

1 2

1 2
1

( , ) min ( , , , )
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where 1

21
11 ),,,( εθθ −=+ zdfgm . In this case the TSOP is given by 

* 1
2 2

2

{ ( , )}
( ) 0

f E f d
d

θ
χ

=
≤

                                                          (44) 

Note that  

1 1 2 2

1 2
2 ( ) max min max max ( , , , ), {1,..., ( 1)}.jz Z j JT T

d g d z J m
θ θ

χ θ θ
∈ ∈∈ ∈

= = +    

Designate as 1ε  the smallest value of 1ε  for which (44) has a solution. This means 
that    

11 εε ≥ .                                                                (45) 
It is easy to see that (44) has a solution if the following inequality holds 

0),(min 12 ≤εχ d
d

. 

Thus 1ε  can be found by solving the problem  

1
1 1

2 1

min

min ( , ) 0
d

d
ε

ε ε

χ ε

=

≤
                                                     (46) 

Using a theorem from (Ostrovsky et al, 1997) we can reduce the problem to   

1
1 1,

2 1

min

( , ) 0
d

d
ε

ε ε

χ ε

=

≤
                                                           (47) 

Now we will show that for 1ε satisfying (37) and (45), the following inequality holds 
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                           22 ff ≤ .                                                          (48) 
Using the same strategy which we used for reducing Eqn. (5) to (11), Eqn. (44) 
becomes 

1
1 2

2 2

1 1 2 2 1 2 1
2 2, ( )

1 1 2 1 1

min ( , ( ), , ) ( ) ( )

max ( , ( ), , ) 0  

d z
T T
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f f d z d d

g d z T

θ
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θ θ θ μ θ μ θ θ θ

θ θ θ θ
∈

=

≤ ∀ ∈

∫ ∫
       (49) 

                                                 1 1 2 1 1 2 2
1 1( , ( ), , ) , ,f d z T Tθ θ θ ε θ θ≤ ∀ ∈ ∀ ∈       (50)                                 

                                                             0)(2 ≤dχ                                                      (51)                   
We note that Eqns. (33) and (49) have identical objective functions and constraints. It 
is easy to show that   

                                                    )()( 22 dd χχ ≤                                                  (52) 
Now compare the constraints from Eqns. (36) and (50). In order to do that, let us take 

)](,[ 1θzd  such that (50) holds. Then we have  

1 2 1 2

21 1 2 2 1 1 2 1 2 1
1 1 1( , ( ), , ) ( ) ( ) ( ) ( )

T T T T

f d z d d d dθ θ θ μ θ μ θ θ θ ε μ θ μ θ θ θ ε≤ ≤∫ ∫ ∫ ∫ . 

Thus, if the inequality in Eqn. (50) is met then the inequality in Eqn. (36) is met as 
well. The reverse is not true, however. To see this, suppose that the mathematical 
expectation E{z} of a random variable z is less than a given value a; however it does 
not follow that all values of the random value z will be less than a. It follows from 
here that Eqn. (50) is more stringent than Eqn. (36). From this consideration and Eqn. 
(52) it follows that the feasible region in Eqn. (49) contains the one in Eqn (33). 
Therefore, Eqn. (48) holds. Thus, the direct ε -constraint method obtains a more 
conservative design in comparison with the extended ε -constraint method. 
 
5. Comparison of the Methods 
 
The extension of the average criterion method permits to obtain some points on a DM 
curve by solving the system (10).  However, for obtaining all points of the PS, 
convexity of the region bounded by a PS  is required. The extension of the worst-case 
strategy requires solving a very computationally intensive problem. To avoid this we 
calculate )(* af  by solving Eqn. (18) which gives only an upper bound of )(* af (see 
(16)). The extendedε -constraint method does not have the drawbacks of the first two 
methods. 
 
 6. Computational Experiments 
 
6.1. Example 1: Three-stage flowsheet 
 
Consider the MCO problem for a three-stage flow sheet (Ostrovsky et al, 2003a) (Fig. 
1).  
 
Each stage has one CSTR of volume iV and heat exchanger with heat exchange area 
Ai .In each CSTR, the reaction is assumed to be first order of the type 
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The reaction step DB →  is endothermic and the steps BA →  and CB →  are 
exothermic. The process models and associated data are given in (Ostrovsky et al, 
2003a). The cold stream for each heat exchanger is cold water at a temperature of 1wT . 
There are six design variables [ , ]( 1,2,3)i iV A i = , six control variables 

1
2[ , ]( 1,2,3)i

i wT T i =  and nine uncertain parameters 
1 1 2 3

0 1 0 1 2 3[ , , , , , , , ]wT T F k k k U U Uθ = ,where [ , ]i iV A  are the volume and heat exchange 
area of the i-th rector and heat exchanger, 1

2[ , ]i
i wT T  are temperatures inside of the 

reactor and cold water at outlet of heat exchanger, respectively, 1
0 0[ , ]F T are the 

flowrate and temperature of the inlet stream for the first reactor, 1 2 3[ , , ]k k k are rate 
constants, and 1 2 3[ , , ]U U U  are heat transfer coefficients. The uncertainty region is 
given by 

)]  1()   1([)( ii δθγθθθδγθγ +≤≤−= N
ii

N
iT  

where N
iθ  is the nominal value of the i-th uncertain parameter, and iδθ is a 

corresponding deviation fraction. Temperatures 1
0T  and 1wT  deviate by 03.0−+  each. 

The deviation for the remaining uncertain parameters is 1.0−+ . Suppose the 
concentration of B is required to be at least 18.4 kmol/mg, then  

  4.18≥BC       (53) 
Other constraints are  
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                (54)  

    
 We assume that we need to minimize capital and operating costs such that all 
constraints in (53) and (54) are met. Suppose that side products C and D are 
hazardous to the environment. Therefore, it is desirable to decrease the outlet flowrate 
of these products. Thus, here we have to construct two conflicting criteria, which 
characterize performance of the chemical process. One criterion )( 1f will represent 
the cost of the chemical process and the other will represent the combined flowrate of 
hazardous side products. The cost function )( 1f  is combined from cost of the 
equipment and process operating cost. It is represented by the following 
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Second criterion is represented by combined molar flowrate of side products C  
and D  on the exit from third stage of the flowsheet. It is given as 

)(0.24 33
2 DC ccFf +=                                                   (56) 

In this example we considered three levels of uncertainty. The first level is a nominal 
optimization when we do not have any uncertainty present in the system. The second 
level is a two-stage optimization in case of complete information about uncertain 
parameters (TSOP1). Two-stage optimization in case of incomplete information 
(TSOP2) represents the third level of uncertainty. One stage optimization (OSOP) is 
not considered since it does not have a solution for the given variations in uncertain 
parameters. We defined two groups of uncertain parameters as },{ 10

1
WTT=θ  

and }3,...,1,,,{ 0
2 == iUkF iiθ . For TSOP2 we selected 5 approximated points for first 

group of uncertain parameters: },{1,1 NN=θ , },{2,1 UU=θ , 
},{3,1 LL=θ , },{4,1 UL=θ , },{5,1 LU=θ and one for the second group: 

},,,,,,{1,2 NNNNNNN=θ . Here, N is a nominal value; L and U are lower and 
upper bounds of corresponding parameter, respectively. Thus, in the full space of 
parameters θ  in order to solve TSOP1 we used five approximation 
points 1, 2,1( , ) ( 1,...,5)i iθ θ = , which are the result of combining approximation points 
of the first and second types. The following weights were used in objective function 
for TSOP2: for the first group =[0.6, 0.1, 0.1, 0.1, 0.1]w , for the second 
group ]0.1[=v . 
 Using the average criterion strategy, the worst-case strategy and the ε -
constraint method, we construct the PS for the case when uncertain parameters take 
nominal values. In agreement with the theory the points obtained by all methods lie 
on the same curve (i.e. curve 1 in Fig. 2). For the second case when we have complete 
information about uncertain parameters, we construct the DM curve using the 
extensions of the AC method and the extendedε -constraint method. For the WCS 
method we construct only the curve obtained by solving the upper bound problem. In 
order to solve this case we simplified the formulations in Eqns. (11), (23) and (33) by 
assuming that only 1θ  uncertain parameters were present in the system. 
 The results are given by profile number 2 in Fig.2. All methods gave the same 
profile. The third case, which represents incomplete information about uncertain 
parameters, is given by profile number 3. Again results obtained by different methods 
fell on the same curve. In agreement with theory, profile number 3 shows worse 
behavior than profile number 2. Even though the difference between profiles 2 and 3 
is not as significant as between 1 and 2, nevertheless for a fixed set of weight 
coefficients the design obtained under the assumption that we have complete 
information about uncertain parameters (curve 2) is infeasible under the new 
supposition that for some uncertain parameters we have incomplete information 
(curve 3). 
 
6.2. Example 2 
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Consider the reactor –separator system (Fig. 3) that consists of a continuous stirred 
tank reactor (1) and separator (2) (Grossmann and Sargent, 1978).  
 In the reactor a Denbigh type reaction takes place with first order irreversible 
kinetics. 
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The fresh feed consists of pure A with molar concentration CA0 and flowrate FA0. The 
reactor effluent (which consists of five components A, B, R, X, and Y) has a total 
flowrate of F. It is assumed that the separator achieves a perfect split with R as the top 
product. At the bottom, a fraction α of components A and B and a fraction β of 
components X and Y are recycled to the reactor, where it is mixed with fresh feed. 
 The steady state process model is as follows 
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.  (57) 

We will assume that reactor is operated isothermally. We select the volume 
][ 3mV  of the reactor as the design variable; for control variables we can pick α and 

β. The uncertain parameters are inlet molar flow rate of component A and rate 
constant coefficients ],,,,[ 0 YXRBA kkkkF=θ . The chemical reaction rate constants 
have dimensions of [ 1−h ]. For fixed RF , we require the flowrate of R to satisfy the 
constraints 

0≤− RR FxF . 
In addition, there are the following constraints on the design, control and state 
variables  

12 16
0 1 0 1
0 1 { , , , , }
10 1000.

i

V

x i A B R X Y
F

α β
≤ ≤
≤ ≤ ≤ ≤
≤ ≤ =
≤ ≤

. 

Other data for the process are 
 

1 1 1 1

3
0 0

0.4 0.1 0.02 0.01

100 / 100 / 70 / .
B R X Y

A A R

k h k h k h k h

F mole h c mole m F mole h

− − − −= = = =

= = =
 

  
 Suppose that products X  and Y are hazardous to the environment, and 
therefore undesirable. In order to design “cheap” chemical process and at the same 
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reduce molar flowrate of undesired products in outlet stream from separator, we have 
to construct two conflicting criteria. The first criterion )( 1f will characterize the costs 
of reactor and separation system, while the second criterion 2( )f will characterize the 
molar flowrate of products X and Y in outlet stream; these two criteria are given by  
 

1 1 2

2

( ( ) ( )) [ ]$
10.0(1 ) ( ) [ ] /

A B X Y

X Y

f c V c F x x F x x
f F x x mole h

α β
β

= + + + + =
= − + =

                    (58) 

 In this example we solved the MCO as (a) nominal optimization, (b) TSOP1 
and (c) TSOP2. Note, that TSOP1 is a special case of TSOP2 when there are no 
uncertain parameters of the second type present. In TSOP1 we assumed that the inlet 
reactant molar flow rate 0AF  and the reaction rate constants could be determined 
accurately using the available process data; therefore 

1
0{ , , , , }A B R X YF k k k kθ = and 2θ =∅ . In TSOP2 we assumed that the reaction rate 

constants could not be determined using the available process data; 
therefore 1

0{ }AFθ = and },,,{2
YXRB kkkk=θ . As nominal values for uncertain 

parameters we chose 0[ , , , , ] [100.0;0.4;0.1;0.02;0.01]N N
A B R X YF k k k kθ = =  and the 

maximum deviation (as a percentage) from nominal values 
is [5.0;15.0;15.0;15.0;15.0]δθ = . In TSOP2 we selected three approximated points 
for 1θ  as 1,1 1,2 1,3{ , , } {[ ],[ ],[ ]}N U Lθ θ θ = . We also selected three sets of approximation 
points for 2θ  as 2,1 [ , , , ]N N N Nθ = , 2,2 [ , , , ]L L U Uθ =  and 2,3 [ , , , ]U U L Lθ = . Here, N is 
a nominal value, while L and U are lower and upper bounds. We employed the same 
approximation points for TSOP1; therefore there were nine approximation 
points ),( 21 ji θθ , )3,...,1;3,...,1( == ji , as a  result of combining approximation points 
of 1θ  and 2θ . For TSOP1 the weights were calculated as jik vws = , where for each iw  
there were three jv . The following weights were used in the objective function for 

TSOP2: for 1θ , 2 1, ,1.6
3 6

w ⎡ ⎤= ⎢ ⎥⎣ ⎦
 while for 2θ , 2 1 1, ,

3 6 6
v ⎡ ⎤= ⎢ ⎥⎣ ⎦

. For TSOP1 the weights 

for approximation points were ⎥⎦
⎤

⎢⎣
⎡=

36
1,

36
1,

9
1,

36
1,

36
1,

9
1,

9
1,

9
1,

9
4s .  

 Using the three strategies, namely the average criterion strategy (AC), the 
worst-case strategy (WCS) and the ε -constraint method, we constructed the PS for 
the nominal optimization case. All three methods gave the same results (curve 1 in 
Fig.4). For TSOP1 we constructed the DM curve using extensions of the AC method 
and the ε -constraint method. Both methods gave the same results (curve 2 in Fig. 4). 
For the WCS method we constructed curve 3 (in Fig. 4). For TSOP2 both AC and the 
ε -constraint methods gave the same results (curve 4 in Fig. 4), while the WCS 
resulted in curve 5 (in Fig. 4) which as expected is an upper bound on all the curves. 
It is interesting to note that with decreasing 2f , curves 2 and 3 tend to merge with 
curve 1 (nominal MCO), while curves 4 and 5 move away from curve 1.  
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6.3. Example 3 
 
In this case study we will illustrate the effect of uncertainty on multicriteria 
optimization of the Direct Methanol Fuel Cell (DMFC) (Fig. 5). The DMFC is a 
power-generation system, which offers a new and promising environmentally friendly 
source of energy. It has several advantages over other types of fuel cells, such as high 
efficiency, very low emissions, a potentially renewable fuel source and fast refueling. 
The DMFC uses methanol in the form of liquid or vapor, to generate electrical 
energy. The main disadvantage is the voltage drop associated with crossover of 
methanol through the membrane.  The direct methanol fuel cell model is from Scott et 
al. (1997) and is summarized in the appendix of our paper Ostrovksy et al. (2006).   In 
this case study we will concentrate only on the catalyst and membrane layers in order 
to analyze the effect of methanol crossover on the DMFC performance. An analysis 
based on the DMFC can easily be adapted to apply to other fuel cell systems.  
 As design variables we chose the anode thickness [ ]anodel cm , the cathode 
thickness [ ]cathodel cm  (in the catalyst layers) and the membrane thickness [ ]mt cm . For 
control variables we select the anode methanol pressure [ ]anodeP atm , the cathode 
oxygen (air) pressure [ ]cathodeP atm , and overall current density 3[ ]I A cm−⋅ . As 
uncertain parameters we 
select ],,,,,,,[ ,0, MeOJHMeOHMeOHmmcathodeanode CDtllT λχθ ΔΔΔ= . The uncertainty region 
is given by 

)]100/ 1()100/   1([)( ii δθθθθδθγ +≤≤−= N
ii

N
iT  

where N
iθ  is the nominal value of the ith uncertain parameter, and iδθ is a 

corresponding deviation fraction. The vector of nominal values is given 
as 6 6 2 3[353,0,0,0,3 10 ,4.9 10 , 2.48 10 ,1.0 10 ]Nθ − − −= × × × × . The deviations for the 
uncertain parameters are set equal 
to %51 =δθ , i 20%( 2,3)iδθ = = , %104 =δθ , )8,...,5%(20i == iδθ .  
 In the DMFC the most important problem is to decrease the cell voltage drop 
associated with crossover of methanol through the membrane.  A proposed solution is 
to increase the pressure of oxygen (air) on the cathode side. Thus, in the first study 
case we constructed two conflicting criteria, which characterize the performance of 
the DMFC. One criterion 1( [ ])f V  represents the crossover overpotential and the other 

2( [ ])f V   represents the cost of pressurizing; we employed a correlation similar to one 
in Douglas (1988).  

1
0.29

2 1

crossover

cathode

ref

f

Pf
P

η=

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                 (59) 

Another important problem is to design a cost efficient fuel cell with minimal 
loss of power. For the second case one criterion is chosen to be the combined cost of 
the membrane and the catalyst 2

1( [$ / ])f cm . The second criterion is 2( [ ])f Watts , 
which is the power of a single fuel cell. Specifically 
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The process constraints are 

0

0.5cell

water

V
υ υ

≥

≤
                                                                       (61) 

 
Since, the rate of water being produced is directly proportional to the overall current 
density we can implement this constraint through simple bounds on the overall 
current density (see Eqn. (61)).  
 As in previous examples we solved the MCO as (a) nominal optimization, (b) 
TSOP1 and (c) TSOP2. For TSOP2 We defined two groups of uncertain 
parameters },,,{1

mcathodeanode tllT ΔΔΔ=θ  and },,,{ ,0,
2

MeOJHMeOHMeOHm CD λχθ = ; in 

addition we selected 2 approximation points for 1θ , thus },,,{1,1 NNNN=θ , 
},,,{2,1 LULL=θ . We also selected 4 approximation points 

for 2θ as },,,{1,2 NNNN=θ , },,,{2,2 NUNU=θ , },,,{3,2 UNUN=θ  and 
},,,{4,2 UUUU=θ . Since the same approximated points were used for TSOP1, we 

used a total of 8 approximation points 1, 2,( , ) ( 1, 2; 1,..., 4)i j i jθ θ = = , resulting from 
combining approximation points of the first and second types. The following weights 
were used in the objective function for TSOP2: for the first group =[0.6, 0.4]w , for 
the second group ]2.0,2.0,2.0,4.0[=v . For TSOP1 the weights 
were [ ]08.0,08.0,08.0,016,12.0,12.0,12.0,24.0=s . 

For both cases we used the AC andε -constraint methods to obtain the Pareto 
curves (1). The DM curves 2 and 3 were obtained by using the extended AC and 
extended ε -constraint method for MCO under uncertainty. Both methods gave 
identical results. The graphs are given in Fig. 6 and Fig. 7. In both figures the x-axis 
corresponds to 1f  and its mathematical expectation and the y-axis corresponds to 2f  
and its mathematical expectation.  

In the first case (Fig. 6) the results were as expected; with an increase in the 
cost of pressurizing )( 2f , the performance (curve 1) of the DMFC drops as a result of 
increasing crossover overpotential )( 1f .  Note that for TSOP1 (only one type of 
parametric uncertainty), a significant increase in crossover overpotential occurred, 
resulting in poor DMFC performance (curve 2). In TSOP2 (two types of parametric 
uncertainty), no significant differences were detected (curve 3), except that the 
feasibility region is reduced significantly. This leads to conservative design, since the 
design and control variables are very close to their bounds. 

In case 2 (Fig. 7) the results were also as expected; an increase in the catalyst 
and membrane layer thicknesses leads to an increase in the overall performance of the 
fuel cell (curve 1). An increase in the anode thickness anodel  (Eqn. 73) results in an 
increase in the overpotential associated with the anode; at the same time it provides a 
lower methanol concentration on the boundary of the anode catalyst layer leading to a 
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decrease in the crossover overpotential crossoverη (Eqns. 79 and 80). The later has a 
dominating effect on the anode thickness. The membrane thickness mt  also plays a 
dual role in this model. An increase in mt  leads to an increase in the ohmic 
overpotential ohmicη  (Eqn.71) while resulting in a decrease in the crossover 
overpotential crossoverη  (Eqns. 79 and 80). The latter has a greater effect on the fuel cell 
performance. In TSOP1 (curve 2), we have similar results as in the nominal case. The 
performance of the fuel cell dropped by 50 [mWatts], which is very significant to fuel 
cell design. In TSOP2 the performance of the fuel cell dropped by 80 [mWatts], 
which is almost twice as large as the TSOP1 results. As result, multicriteria 
optimization of DMFC model showed the significant effect of uncertainty based on 
the drop in fuel cell performance when there are two types of uncertainty in the 
system.  

 
 
 

Table 1. Direct Methanol Fuel Cell model constants 
Constant value Constant value 

0
cellE  214.1  V  F  96,488 1−⋅ equivC  
gasdT

dE ,  310043.1 −⋅  1−⋅KV  n (anode) 6 
NΔ  5.0  n (cathode) 4 
ref
mσ  073.0  1−⋅ cmS  R 8.314 1−⋅⋅ KmolJ  
ref
anodei )( 0γ  25.6  3−⋅ cmA  ε  0.3 

anodeE  0.265 V  ref
cathodei )( 0γ  14.7  3−⋅ cmA  

ref
anodeD  5108.2 −⋅  12 sec−cm  cathodeE  355.0   V  

MeOHC ,0  3100.1 −⋅  3−⋅ cmmol  ref
cathodeD  5108.2 −⋅  12 sec−cm  

anodem,υ  17.0  cathodem,υ  05.0  

MeOHλ  +
−⋅ H

MeOH21048.2 , 1−⋅ equivmol χ 6100.3 ⋅ ]sec[ 12 −⋅⋅ molcmV
 
 
7. Conclusion  
 
We developed extensions of the average criterion method (AC), the worst case 
strategy (WCS) and the ε -constraint method for solving the multicriteria 
optimization problem under uncertainty for a chemical process when there are two 
distinct types of uncertainty present. Specifically we have considered the more 
realistic case where the uncertain parameters fall under at least two classes at the 
operation stage, namely (a) those that can be determined with enough accuracy and 
(b) those that cannot be determined with such accuracy given the available process 
data.  
 In all three approaches we exploit the degrees of freedom afforded by the 
presence of the control variables at the operation stage. It is shown that the extended 
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methods have significant advantages over the direct approach for the multicriteria 
optimization problem (MCO). Through three illustrative examples (two benchmark 
and one direct methanol fuel cell) we have seen the implications of being able to 
distinguish among the types of uncertain parameters.  
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9. Notation  
 

ia     Scalar constant 
a , *a     Vector constant 
d     Vector of design variables (with dimension nd) 

(*)if , (*)if    Performance criterion 
2 (*)f , (*)if , 2 (*)f   Performance criterion 
*if , ( )p

kf , 2*(*)f , 2*(*)f  Optimal value of performance criterion 
(*)jg     Scalar constraint  

(*)g     Vector constraint 
{*}E     Expected value 

J , J     Index set  
iw     Weight (scalar) 

x , x , x , *x , ( )kx   A point  
z     Vector of control variables (with dimension nz) 

*(*)z     Optimal vector of control variables (with dimension nz) 
iz     ( )iz θ  

 
Greek 

iε , iε , kα ,β ,  γ   Scalar constant 
θ     Vector of uncertain parameters over the domain T  

lθ     A given value of θ  
N

iθ     Nominal value of θ  

iδθ     Deviation fraction 
(*)ρ     Probability density function 

1(*)χ , 1(*)χ    Feasibility function   
 
Example Problems 



                                                                                                             I.V. Datskov et al.                              

26 
 

Ai     Heat exchanger area 
ic     Concentration or cost 

iF , F     Flow rate 
  I     Overall current density 

ik     Rate constant 

anodel     Anode thicknesses  

,cathodel     Cathode thickness 

anodeP , cathodeP    Pressure of methanol at anode or cathode 
Pref     Reference pressure 

mt     Membrane thickness 

1wT     Cold water temperature 
1

iT      Temperature 
iU     Heat transfer coefficient 

iV , V     Volume 

cellV         Cell voltage 

ix     Mole fraction (used in examples) 
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Figure 1: Three-stage flowsheet 
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Figure 2: Results for Example 1 

Nominal case (all 3 methods) = curve # 1, TSOP 1 (all 3 methods) = curve # 2, 
TSOP 2 (all 3 methods) = curve # 3  
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Figure 3: Reactor-separator system 
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Figure 4: Results for Example 2 

Nominal case (all 3 methods) = curve # 1, TSOP1 (AC & ε -constraint methods) = curve # 2,  
TSOP1 (WCS method) = curve # 3, TSOP2 (AC & ε -constraint methods) = curve # 4, TSOP2 
(WCS method) = curve # 5 
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Figure 5: Direct Methanol Fuel Cell (DMFC) 
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Figure 6:  Pareto curve and DM curves for Example 3-Case 1. 

WCS was not done. Nominal case (both methods) = curve # 1, TSOP 1 
(both methods) = curve # 2, TSOP 2 (both methods) = curve # 3  
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Figure 7:  Pareto curve and DM curves for Example 3-Case 2. 

WCS was not done. In the MCO 2( )f−  instead of 2( )f was employed. 
Nominal case (both methods) = curve # 1, TSOP 1 (both methods) = 
curve # 2, TSOP 2 (both methods) = curve # 3  
 


