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Abstract 

In this paper, the steam cracking process with naphtha feedstock is modeled by a 
multilayer, feed forward, fully connected neural network. Feed and steam residence 
times and coil outlet temperature were the input variables to the network. These input 
variables will help to generalize the model. The output variables of the network were 
hydrogen, methane, acetylene, ethylene and ethane yields. The cracked gas 
compositions were the output variables of the network. The optimum topology of 
network was a three layers network with fifteen neurons in hidden layer. The network 
outputs were in agreement with the experimental values. 
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1. Introduction 

Thermal cracking or steam pyrolysis of hydrocarbons could convert them into 
valuable raw materials, which can be used in the petrochemical industry for polymer 
production. The reaction mechanisms of naphtha cracking are generally accepted as 
free-radical chain reactions. Unfortunately, the absence of a simple predictive applied 
model of pyrolysis is an obstacle to the development of practical methods of 
conversion. 
Neural networks have been used as a promising opportunity, when complex reaction 
systems can not be well identified, or in the case of lack of basic knowledge of 
reaction mechanisms. It has been claimed that Artificial Neural Networks (ANN) are 
120-5000 times faster than phenomenological models [1], and can therefore lead to 
significant reductions in computation times. Various aspects of kinetic modelling of 
chemical reactors with multilayer feed forward networks have been studied [2-6]. 
Most published works on ethylene synthesis and kinetics are based on mechanistic 
models. No attempts have been made to incorporate the use of neural networks in 
modelling such process. 
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In this paper, the steam cracking process with naphtha feedstock is modelled by a 
multi-layer feed-forward (MLP) neural network. The reactor effluent qualities, mainly 
the yields of light olefins are the outputs of the neural network. Coil outlet 
temperature, steam to hydrocarbon ratio and feed flow rate. A rigorous mathematical 
model is used to generate the training data. All ANN calculations were carried out 
using MATLAB7 mathematical software with ANN toolbox for windows. 
 

2. Artificial Neural Networks 

The feed forward neural networks, based on application of artificial neurons with a 
sigmoid activation function, are usually employed for modeling and prediction [7-10]. 
A schematic diagram of a multi-layer feed forward neural network, composed of 
neurons arranged in layers, is shown in Figure 1. A model equation for a single 
neuron can be written as follows: 
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where each input signal, jx , is multi-plied by an appropriate weight, jW , and the 
weighted sum is compared to the threshold value b . If this threshold value is treated 
as the weight, 0b W= , which is appropriate for the input signal 0 1x ≡ , then the 
notation of the model equation can be simplified as it is shown in Equation (1). The 
so-called activity function is usually defined as the uni-polar sigmoid function: 
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Fig. 1. Schematic of a multi-layer feed forward neural network model 
 
Taking into account the model equation of a single neuron (Eq. (2)) as well as the 
schematic diagram of the feed forward neural network (Fig. 1), which explains 
transmission of signals thorough this net, the model equation for a whole network can 
be written as follows: 
 

( ) ( )

0 0

K N
o h

k jki ij
i j

W W xν σ σ
= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑

 
(3) 

 
Eq. (3) has been formulated for the simplest feed forward net consisting of one hidden 
layer. The feed forward neural nets are universal approximators – cf. [11]. A solution 
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to the approximation problem is a set of optimal network weights. This set is 
determined during a learning procedure performed as follows: for each set of the input 
signals, X = (x1, x2, ..., xN), the output signals predicted with the ANN, Y = (y1, y2, 
..., yM), are compared to the experimental learning data set, D = (d1, d2, ..., dM). The 
unknown network parameters are adjusted in order to minimize the sum of squared 
residuals defined as follows: 
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where k=1, 2, ..., M is the current number of the output neuron, j=1, 2, ..., P is the 
current number of the learning data set. Plenty of learning algorithms are commonly 
employed to determine the optimal set of weights. In calculations performed for the 
purposes of this paper the Levenberg-Marquardt learning method has been used. 
 

3. Results and Discussion 

The topology of an artificial neural network (ANN) is determined by the number of 
layers in the ANN, the number of neurons in each layer and the transfer functions. 
Optimization of ANN topology is probably the most important step in the model 
development. According to Cybenko [12], a network that has only one hidden layer is 
able to approximate almost any type of nonlinear mapping. However, determination 
of the appropriate number of nodes for the hidden layer is difficult, and is often done 
by trial and error. Too few neurons in the hidden layer impair the network and prevent 
the network to get trained correctly. On the other hand, too many nodes allow the 
network to memorize the pattern (i.e., develop a correlation) presented without 
capturing the underlying relationship between input and output variables. 
The most suitable neural network topology turned out to be a multi-layer perceptron 
with three nodes in the input layer (reaction conditions), fifteen nodes in the hidden 
layer (with sigmoid activation functions) and five nodes in the output layer (reaction 
results). The input variables are chosen in a way to help generalize the neural network 
model, so that it can be used for a similar reactor of different geometry.   
Since the used transfer function in the hidden layer was sigmoid, all output data were 
scaled into the proper range. Figure 2 shows the optimized ANN structure. Training 
of the ANN was performed with data produced by numerical simulation of a detailed 
first principles model of the reactor [13]. Figures 3-7 show the comparison of the 
experimental and calculated values for different neural network outputs, trained with 
an incremental number of samples and backpropagation algorithm.  
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Fig.2. Optimum structure of ANN model for the reactor 
 
The root mean squared error (RMS) is utilized as a measure to estimate the accuracy 
of the calculations: 
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Where YPE and YEX are the predicted value by ANN and experimental value 
respectively, for the object i, and m is the number of objects [14]. By calculation of 
RMS and as it is shown in the figures below, the difference between the experimental 
and calculated data is in the acceptable range. 
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Fig.3: comparison of experimental and predicted values for H2 yield 
 
 
 

 
Fig.4: comparison of experimental and predicted values for CH4 yield 
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Fig.5: comparison of experimental and predicted values for C2H2 yield 
 
 
 
 

 
Fig.6: comparison of experimental and predicted values for C2H4 yield 
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Fig.7: comparison of experimental and predicted values for C2H6 yield 
 
 

4. Conclusions 

An artificial neural network trained by Levenberg-Marquardt training algorithm has 
been implemented to model the steam cracking reaction of naphtha feedstock. The 
optimum structure of ANN was determined by trial and error. It was found that the 
structure of ANN with fifteen neurons in the hidden layer had the best performance. 
The best epoch of the ANN was 346 and the RMS of test was around 10-3 .The 
predicted output of the ANN approximately agreed with the experimental values. 
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