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Abstract

This paper deals with the identification of the stator and ro-
tor resistances. The originality of this work is that it consi-
ders both rotor and stator resistances as time-varying parame-
ters. Two schemes for the rotor resistance identification and
one scheme for both stator and rotor resistances identification
are outlined. The first and the third schemes use the measured
stator current, voltage command and rotor speed while the se-
cond scheme uses only stator current and voltage commands.
All schemes are based on the sliding mode observer and the
convergence of the estimates to their true values does not re-
quired the persistence of excitation conditions to be satisfied
by the input signal.

1 Introduction

This paper deals with the identification of stator and rotor re-
sistances. The originality of this work is that both rotor and
stator resistances are considered as time-varying parameters. It
is well known in the literature that the rotor resistance is a pa-
rameter which largely varies during operation and it is crucial
in the design of high performance induction motor control al-
gorithms when flux measurements are not available. Rotor re-
sistance may vary up to 100% and stator resistance up to 50%
due to rotor and stator heating and can be hardly recovered
using thermal models temperature sensors. Several works in
this area exist in the literature, one can cite the work of [1] using
a ninth order estimation algorithm which provides on-line ex-
ponentially convergent estimates of both rotor and stator resis-
tances, when persistence of excitation conditions are satisfied
and the stator currents integrals are bounded, on the basis of
rotor speed, stator voltages, and stator currents measurements.
Rotor flux is also asymptotically recovered. But the proposed
algorithm always make an assumption that both stator and rotor
resistances are constant during the estimation process. More-
over the identification schemes use the nominal values of stator
and rotor resistances. Another result was proposed in [2] where

the rotor resistance estimation scheme is outlined using least
mean square and the adaptive algorithms in the transient state
under the speed sensorless control of induction motor. More-
over, [3] used least squares identification techniques for the es-
timation of both electrical and mechanical parameters of an in-
duction motor under slowly varying rotor speed. Recently, [4]
proposed algorithms for the rotor and stator resistances esti-
mation based on the model reference adaptive system (MRAS)
approach. In this work, the fact that these parameters are time-
varying is not investigated. The contribution of this paper is
the extension of this work to the case of time-varying parame-
ters by using the work of [7] and [8] which use sliding mode
observer in the parametric identification schemes. In fact, it
has been shown in [8] and [9] that, parametric identification
scheme based on the variable structure provides better result
than least square estimation technique. The remainder of the
paper is organized as follow.
In the second Section, we describe the model of the induction
motor. In the third one, we present a new scheme of the rotor
resistance identification. We study two cases. In the first case,
the rotor speed is supposed to be available while in the second
case, it is neither measured nor estimated. In both cases, the
stator current and voltage are measurable and the rotor resis-
tance is time-varying. Another scheme for the stator and rotor
resistances identification is presented in Section 4. This scheme
used the measured stator current, voltage commands and rotor
speed. Both stator and rotor resistances are time-varying. All
designs are based on the sliding mode observer and the con-
vergence of the estimates to their true values does not required
the persistence of excitation conditions to be satisfied by the in-
put signal. Section 5 is dedicated to the simulation results and
section 6 concludes the paper.

2 Model description

The dynamic model of an induction motor in stator reference
frame is given by [5]
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where Ω, λr , Rr andLr are respectively, rotor angular velocity,
flux, resistance and inductance, vs, is, Rs and Ls are respec-
tively, stator command voltage, current, resistance and induc-
tance, np is the number of poles pair, σ = 1 − M2

LsLr
is the

leakage parameter, M is the mutual inductance between stator
and rotor winding, m is the moment of inertia of the rotor, α is
the damping gain and τL is the external load torque.
In order to eliminate the unobservable flux, equations (2) and
(3) are transformed by using an assumption which considers
that the rotor speed changes significantly slower relative to the
rotor flux and is considered as a constant parameter. By diffe-
rentiating (3) and using (2), we obtain
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Equation (4) ([4]) can be transformed to
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= a+ Ωb+ ε(t) (5)

where the functions a, b and ε(t) are defined as follows

a = (c+ α1)is1 + α2is0 + α3vs0 + α4vs1

b = J(β1is1 + β2is0 + β3vs0)
ε(t) = ε(t0) exp(−ct)
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where s is the operator d
dt and c is a strictly positive constant.

In the following analysis, it is assume that the stator current is,
voltage command vs, rotor speed Ω, and their time-derivatives
are continuous and bounded.

3 Rotor resistance identification

In this section, we identify only the rotor resistance by using
an estimator based on the sliding mode observer ([12]). We

consider that the stator current and voltage are measurable and
the rotor resistance is time-varying

Rr = Rrn + ∆Rr with |Ṙr| = | ˙∆Rr| ≤ µ,

where µ is a known positive constant. We also consider the
both cases where the rotor speed is available or not. We can
easily see that, by separating the terms containing Rr in equa-
tion (5), we obtain
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3.1 Identification with the rotor speed available

Let us consider the following sliding observer

dîs
dt

= f1 + R̂r1f2 + ΩJf3 + uis (8)

where uis = −Kissign(̂is − is) is the input of the identifier, îs
is the adaptative observer and R̂r1 is the estimated value of the
resistance Rr1. By defining eis = îs − is, the observer error
and er1 = R̂r1 − Rr, the parameter estimation error and by
taking into account equations (6) and (8), one can obtain the
following dynamic equation of the observer error

ėis = er1f2 + uis − ε. (9)

If the gain Kis of the input uis is choosing such that

Kis > |er1f2 − ε|max, (10)

with f2, R̂r1 and ε bounded, a sliding regime occurs on the
manifolds ėis = eis = 0 ([11]). From this, one can write

uiseq = −er1f2 + ε, (11)

where uiseq is the equivalent control.
Remark: From a practical point of view, it is not possible to
implement uiseq . We considered the average control as the ap-
proximation of uiseq ([13]). This means that

τ
d

dt
ūis + ūis = uis

or ūis =
1

1 + τs
uis (12)



where τ is a strictly positive constant that tends to zero. In
others words, uiseq ≈ ūis.
By taking into account (11), (12) and if the operation points of
the motor are such that |f2|2 �= 0, ∀t ≥ 0, then one can deduce
the following expression for the parameter estimation error

er1 =
−fT
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|f2|2 + ε̃ (13)
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fT
2 ε

|f2|2 .

Now let us consider the following rotor identifier

˙̂
Rr1 = −Kr1sign(−fT
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which can be rewritten as

˙̂
Rr1 = −Kr1sign(er1 − ε̃). (15)

Therefore, the dynamic equation of the parameter error is

ėr1 = −Kr1sign(er1 − ε̃) − Ṙr1 (16)

Proof of the convergence
In order to proof the convergence of the identifier (14), let us
consider the following Lyapunov candidate function

V =
1
2
|er1 − ε̃|2.

Then its time derivative along the solution of (16) is

V̇ = (er1 − ε̃)(ėr1 − ˙̃ε)

= (er1 − ε̃)( ˙̂
Rr1 − Ṙr − ˙̃ε)

= (−Kr1sign(er1 − ε̃) − Ṙr − ˙̃ε)(er1 − ε̃)
= −Kr1|er1 − ε̃| − (er1 − ε̃)(Ṙr + ˙̃ε)

From the fact that, |Ṙr| ≤ µ, we deduce that

V̇ ≤ −Kr1|er1 − ε̃| + µ|er1 − ε̃| + | ˙̃ε||er1 − ε̃|

or V̇ ≤ −(Kr1 − µ− | ˙̃ε|)|er1 − ε̃|
Furthermore, since the stator and voltage commands are con-
tinuous and bounded, their filtered values and hence f 2 are
bounded. Moreover, if the operating points of the motor are
such that |f2(t)|2 �= 0, ∀t ≥ 0 with assumption (10) satisfied,
then |ε̃| and hence | ˙̃ε| converge exponentially to zero (from the
fact that ε(t) ∈ C∞ and converges exponentially to zero).
Therefore, by choosing Kr1 > µ, we ensure that |er1 − ε̃| and
|er1| converge asymptotically to zero and R̂r1 → Rr.

3.2 Identification with the rotor speed not available

This scheme is particularly interesting both economically and
technically in speed sensorless control because measurement
noise of the sensor can be avoided and the cost of the controller
will be reduced. In this case, we also use equation (6) and we

consider that the rotor speed is not available.
The term containing the rotor speed is eliminated by using the
following property of the matrix operator J

xTJx = 0, for any given column vector x.

If we multiply the two parts of equation (6) from the left by
fT
3 , we obtain

fT
3
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Now let us consider the following change of variable
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Its time derivative is

dΛ
dt

= g +Rrh+ ε̄ (18)

where g = (β3vs1 + (β2 − cβ1)is1)T is + fT
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In order to identify the rotor resistance, we introduce the fol-
lowing sliding observer

dΛ̂
dt

= g + R̂r2h + uΛ (19)

where uΛ = −KΛsign(Λ̂ − Λ) is the control input of the
identifier. By defining eΛ = Λ̂ − Λ, the observer error and
er2 = R̂r2 −Rr, the parameter estimation error, and by taking
into account (18) and (19), one can derive the dynamic equa-
tion of the observer error as follow

ėΛ = er2h + uΛ − ε̄ (20)

From this, we can say that, if KΛ is choosing such that

KΛ > |er2h− ε̄|max (21)

with h and ε̄ bounded, the sliding regime occurs on the mani-
folds ėΛ = eΛ = 0 in finite time. Then we can write

er2h = −uΛeq + ε̄ (22)

where uΛeq is the equivalent control approximated here as in
subsection (3.1). If the operating points of the motor are such
that h �= 0, ∀t ≥ 0, then the parameter estimation error is

er2 =
1
h

(−uΛeq + ε̄). (23)

Now let us consider the following rotor identifier
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h
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where ε̂ =
1
h
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By considering the Lyapunov candidate function

V =
1
2
|er2 − ε̂|2,

and if the operating points of the motor are such that h �= 0,
∀t ≥ 0, with assumptions (21) satisfied, then the proof of the
asymptotic convergence of R̂r2 → Rr is similar to the above
subsection.

4 Rotor and stator resistances identification

In this section, we assume that the stator current and voltage
command are measurable. We also consider that the rotor speed
is available. We start by separating the terms containingRr and
Rs in equation (5). This leads to
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In order to identify the stator and rotor resistances, we use the
following change of variables

λ1 = iTs0Jis
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This leads to
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where

g1 = iTs0Jf̃1 g2 = iTs f̃1

h11 = iTs0Jf̃2 h12 = iTs0Jf̃3

h21 = iTs f̃2 h22 = iTs f̃3 h23 = − 1
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ε1 = iTs0Jε ε2 = iTs ε.

Now, let us consider the following sliding observer

dλ̂1

dt
= −K1sign(λ̂1 − λ1) = −K1sign(eλ1)

dλ̂2

dt
= −K2sign(λ̂2 − λ2) = −K2sign(eλ2) (27)

From this, the dynamic equation of the observer errors will be
as follows

˙eλ1=−K1sign(eλ1) − g1 −Rsh11 −Rrh12 − ε1

˙eλ2=−K2sign(eλ2) − g2 −Rsh21 −Rrh22 −RsRrh23 − ε2(28)

By choosing the gains K1, and K2 such that

K1>|g1 +Rsh11 +Rrh12 + ε1|max

K2>|g2 +Rsh21 +Rrh22 +RsRrh23 + ε2|max, (29)

a sliding regime occurs on the manifolds ėλi = eλi = 0,
i = 1, 2 in finite time. This leads to

dλ̂1

dt
= −K1sign(eλ1)eq = u1eq

dλ̂2

dt
= −K2sign(eλ2)eq = u2eq (30)

where u1eq and u2eq are the equivalent control inputs also ap-
proximated as in subsection (3.1). From the fact that ε i con-
verge to zero exponentially, we consider that the estimates of
Rs and Rr verify the following equations

u1eq − g1 = R̂sh11 + R̂rh12

u2eq − g2 = R̂sh21 + R̂rh22 + R̂sR̂rh23 (31)

We suppose that system (31) is identifiable in the sense of the
work of ([10]). This means that, there exits a unique solution
R̂s and R̂r satisfying system (31) for a given input-output be-
haviour ∀t ≥ 0. Therefore, the resolution of this system leads
to the following identification laws for R̂s and R̂r

R̂s=
−B ±√

∆
2A

R̂r=
(u1eq − g1) − R̂sh11

h12
for λ̂i = λi, i = 1, 2 (32)

where

A=h11h23, B = h11h22 − h12h21 − (u1eq − g1)h23,

C=(u2eq − g2)h12 − (u1eq − g1)h22, and ∆ = B2 − 4AC

are the coefficients of the second order equation obtained and
∆ its discriminant.
Equations (32) are the parameters identification laws of win-
ding rotor induction motor. From this, we can have two cases:
First case ∆ = 0
The solution will be straightforward.
Second case ∆ > 0
In this case we can obtain two solutions. If one of them is
negative, we consider the positive one. If both solutions are
positive, we make an assumption which considers that the sta-
tor resistance bounds or nominal value should be known. This
assumption is generally true because it is possible to measure
the nominal value of the stator resistance independently by ap-
plying a dc voltage to the stator winding and then deriving the
voltage to current ratio. A choice of the correct solution of R̂s

is therefore straightforward.

5 Simulation results

Efficiency of the proposed identifiers has been verified by si-
mulation in MATLAB/SIMULINK environments. Motor para-
meters nominal values ([4]) used in the simulation are given as



follow.
Rsn = 0.11Ω, Rrn = 0.0187Ω, M = 0.000804H, Lr =
0.0011H, Ls = 0.0011H, np = 6, τL = 4, m = 0.5, α = 0.7.
We consider that

Rr,s = R{r,s}0 + at if t ≤ t1

Rr,s = R{r,s}n + f(t) if t ≥ t1

where R{r,s}0 is the initial value of the resistance, a is a po-
sitive constant and f(t) represents square, chirp or sinusoidal
signals.
The magnitudes of the variations of the reference time-varying
rotor and stator resistances are respectively 10% and 20% of
the nominal values while initials values are 20% of the nomi-
nal values. All the schemes work well in both cases of slowly
and constant rotor speed.
Fig. 1 and Fig. 2 show the results of the identification of the
time-varying parameterRr with respectively zero and 0.03 ini-
tial values and function f(t) being square signal.
Fig. 3 and Fig. 4 show the results of the identification of the
time-varying parameters Rr with initial values equal respec-
tively to zero and 0.03 and function f(t) being chirp signal.
Fig. 5 shows the identification of the time-varying parameter
Rr in the case where the rotor speed is not available with func-
tion f(t) being chirp signal.
Fig. 6 and Fig. 7 show the identification of both stator and ro-
tor resistances by considering the function f(t) as sinusoidal
signal.
The parameters of the identifier of the rotor resistance in the
first case are c = 10,Kr1 = 0.3,Kis = 500. In the second
case c = 10,Kr2 = 4,KΛ = 12000. For the identification of
both stator and rotor resistances, the parameters of the simula-
tions are c = 10,K1 = 1000,K2 = 3000.
Moreover, the approximation of the equivalent control has been
performed using first order low-pass filter with τ = 1ms and
the functions sign(X) are replaced by a saturation function

X
|X|+0.01 ([6])
From the simulations results, one can easily see that the pro-
posed identifiers is suitable for time-varying parameters as ro-
tor and stator resistances. In all cases, the estimates values of
the resistances converge to the true values within a very short
time.
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Figure 1: Rr and its estimate R̂r with measured rotor speed,
zero initial condition and f(t) being square signal
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Figure 2: Rr and its estimate R̂r with measured rotor speed,
initial condition 0.03 and f(t) being square signal
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Figure 3: Rr and its estimate R̂r with measured rotor speed,
zero initial condition and f(t) being chirp signal
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Figure 4: Rr and its estimate R̂r with measured rotor speed,
initial condition 0.03 and f(t) being chirp signal
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Figure 5: Rr and its estimate R̂r with rotor speed neither mea-
sured nor estimated and f(t) being chirp signal
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Figure 6: Rs and its estimate R̂s with measured rotor speed
and f(t) being sinusoidal signal
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Figure 7: Rr and its estimate R̂r with measured rotor speed
and f(t) being sinusoidal signal

6 Conclusion

In this paper, two schemes for the rotor resistance identification
and one scheme for both stator and rotor resistances identifi-
cation has been designed. The first and the third schemes use
the measured stator current, voltage commands and rotor speed
while the second scheme uses only stator current and voltage
commands. The designs are based on the sliding mode ob-
server and the convergence of the estimates to their true values
does not required the persistence of excitation conditions to be
satisfied by the input signal. The originality of this work is that
it considers both rotor and stator resistances as time-varying
and that the schemes proposed are easily implementable. This
feature distinguishes the proposed identifier from the known
ones.
The simplified dynamic model of the induction motor used in
this work depends on the parameter c. Further work is under
way to derive the validity condition of this model and hence the
choice of this parameter c. Further more, real-time implemen-
tations deserves to be realized in order to verify the effective-
ness of the proposed schemes with respect to the sensor noise,
discretization effects, and modeling inaccuracies.
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systèmes non-linénaires en temps continu”, Thèse de
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