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Abstract. The principle of linearized stability is proved to be
valid for a class of hyperbolic nonlinear systems. One example
in fluid mechanics is worked out to show how the principle
is applied for determining the local stability of its stationary
solution. The example is concerned with the irrigation canal
system governed by the Saint Venant equation. The principle
of linearized stability should be useful in the construction of
stabilizing feedback laws for networks of irrigation canals.

1 Introduction and main results

Consider the following linear system of partial differential
equations with two independent variables(x, t) :

Σautonom :





ψ̇(x, t) = A(x)ψ′(x, t),
ψ1(0, t) = D0ψ

2(0, t),
ψ2(`, t) = D`ψ

1(`, t),
ψ(x, 0) = ψ0(x),

(1.1)

where(x, t) ∈ (0, `) × R+, ` is a positive constant,ψ(x, t) =
[ψ1(x, t)τ , ψ2(x, t)τ ]τ , ψi(x, t), i = 1, 2, is a vector function
for (x, t) ∈ (0, `)×R+ such thatψ1(x, t) ∈ Rp, ψ2(x, t) ∈ Rq,
andp + q = n, whereτ denotes the transpose of a matrix or
a vector, the dot and the prime denote derivatives respect to
time variablet and space variablex, respectively. Moreover the
matrixA(x) is diagonal:A(x) = diag(A1(x), A2(x)), where

A1(x) = diag(λ1(x), · · · , λp(x)),

A2(x) = diag(λp+1(x), · · · , λp+q(x)),

andD0, D` are real constant matrices of appropriate dimen-
sion. We assume that the following hypothesis is satisfied for
(1.1):

(H1) A(·) ∈ C1([0, `];Rn×n) such thatA1(x) < 0 and
A2(x) > 0 on [0, `].

We consider the nonlinear (autonomous) system governed by
semilinear or quasilinear hyperbolic systems of PDE as fol-
lows:

Σn :





ϕ̇(x, t) = A(x, ϕ(x, t))ϕ′(x, t) + F (ϕ(x, t)),
ϕ1(0, t) = D0ϕ

2(0, t) + F0(ϕ2(0, t)),
ϕ2(`, t) = D` ϕ1(`, t) + F`(ϕ1(`, t)),
ϕ(x, 0) = ϕ0(x),

(1.2)
whereA(x, y) = diag(λ1(x, y), · · · , λn(x, y)), is ann × n
matrix for x ∈ [0, `], y ∈ Rn, the equation and the related
matrices have the same structure as that we have described for
the corresponding linear system (1.1). Moreover, the following
condition is satisfied for the nonlinearity.

(H2) Each of the nonlinear functionsF : Rn → Rn, F0 :
Rq → Rp andF` : Rp → Rq is of classC3 in some neighbor-
hood of the origin. They satisfy the condition thatF (0) = 0,
F ′(0) = 0, F0(0) = 0, F ′0(0) = 0, F`(0) = 0 andF ′`(0) = 0,
where the prime denotes the Jacobian matrix with respect to
suitable variables.

The nonlinear system is called semilinear ifA(x, ϕ(x, t)) =
A(x, 0), i.e., A(x, ϕ(x, t)) does not depend on the unknown
function ϕ(x, t). It is called quasilinear ifA(x, ϕ(x, t)) 6=
A(x, 0), i.e.,A(x, ϕ(x, t)) depends on the unknown function.
In any case we suppose thatA(x) = A(x, 0) satisfy the hy-
pothesis (H1). Our main result is the following.

Theorem 1.1. If the null solution is an equilibrium point ex-
ponentially stable for the linearized system (1.1), then it is lo-
cally exponentially stable for the semilinear system (1.2): there
exist some constantsε, M , ω > 0 such that for any initial data
ϕ0 satisfying theC1 compatibility condition and|ϕ0|1 < ε,

|ϕ(·, t)|1 ≤ Me−ωt|ϕ0|1.



Theorem 1.2. If the linearized system (1.1) withA(x) =
A(0) satisfies the condition:

{
A1 + Dτ

` A2D` > 0
−A2 −Dτ

0AID0 > 0,
(1.3)

then the null solution is an unstable equilibrium point for (1.1)
as well as for the quasilinear system (1.2).

Remark 1.3. The result of Theorem 1.1 is the best that we can
expect for the stable case of the semilinear system (1.2). Our
proof is constructed by using the semigroup system theory (see
[6], [7]) combined with the PDE theory [5]. To determine the
local stability of the semilinear system (1.2) it is sufficient to
study that of its linearized one.

Remark 1.4. The local existence and the uniqueness ofC1

classical solutions is guaranteed by the Li-Yu theorem (see [5]).
Theorem 1.2 is proved as in the proof of Theorem 2 usingV (R)
as a Lyapunov function:V (R) =

∫ `

0
Rτ (x)e−θxA(0)R(x)dx,

θ > 0.

Remark 1.5. When we takep = q andD0 andD` as diagonal
matrices (called diagonal case), the condition (1.3) is equiva-
lent to thatD2

0D
2
` > I (modulo a diagonal transformation).

The condition is only sufficient but not necessary. Indeed, if
D2

0D
2
` has an element greater than one, then the null solution

is an unstable equilibrium point for the quasilinear system. On
the other hand we can prove that ifD2

0D
2
` < I, then the null so-

lution is locally exponentially stable for the quasilinear system.
As shown in the proof of Lemma 1 of [11] we obtain the best
result that we can expect for the diagonal case. However, the
situation is more complicated for general quasilinear systems.

For the quasilinear case we consider the non autonomous linear
system as follows:

Σevo :





φ̇(x, t) = A(x, ξ(x, t))φ′(x, t),
φ1(0, t) = D0φ

2(0, t),
φ2(`, t) = D` φ1(`, t),
φ(x, 0) = φ0(x),

(1.4)

whereξ ∈ C1([0, `] × R+) is a known function. We say that
the non autonomous system is exponentially stable if its evolu-
tion operatorU(t, s) satisfies the condition :|U(t, s)|L(X) ≤
Me−α(t−s) for someM > 0 andα > 0.

We have the following sufficient condition for the null solution
to be exponentially stable for the quasilinear system (1.2).

Theorem 1.6. If there exists some constantε > 0 such that
the evolution system (1.4) is exponentially stable whenever
ξ ∈ C1([0, `] × [0,∞)) satisfying|ξ(·, t)|1 ≤ ε, then the null
solution is a locally exponentially stable equilibrium point for
the quasilinear system (1.2).

2 Application example

To show how the principle of linearized stability is useful in ap-
plications, we consider the irrigation canal system governed by
the Saint Venant equation as formulated by Coron, d’Andréa-
Novel and Bastin [2]:

∂Y

∂t
+V

∂Y

∂x
+Y

∂V

∂x
= 0,

∂V

∂t
+g

∂Y

∂x
+ V

∂V

∂x
= 0, (2.1)

with the boundary conditions:

V (0, t)Y (0, t) =
√

ua[ya − Y (0, t)],
V (`, t)Y (`, t) =

√
ub[Y (`, t)− yb],

(2.2)

where` is the reach’s length of a canal,x is the space variable
in [0, `] and t is time, V (x, t) is the water velocity at(x, t),
Y (x, t) is the water level andg is the gravitation constant. We
assume the following conditions satisfied for the constants:

(H)

{
ua, ub, ya, yb > 0, ya > yb,
g(uaya + ubyb)3 > uaub(ua + ub)2(ya − yb).

Physically,ua andub represent the upstream gate opening and
the down stream opening, respectively. They would be taken as
control variables in the feedback control design (see[2]). The
constantsya andyb represent the upstream water level and the
down stream water level, respectively, outside the reach. Under
the condition of (H) the system (2.1) and (2.2) admits a unique
stationary solution(ye, ve) which is given by

ye = (uaya + ubyb)(ua + ub)−1,

ve = (uaya + ubyb)−1
√

uaub(ua + ub)(ya − yb).

The third condition in (H) is equivalent togye > v2
e . It is meant

by the latter that the nonlinear system (2.2) is hyperbolic and
has two characteristic curves of opposite directions (positive
and negative). Since the boundary conditions (2.2) are pre-
scribed on the two boundary points, respectively, from Li and
Yu [5] the assumption (H) guarantees the local existence of a
unique classical solution with any initial data in some neigh-
borood of(ye, ve).

To apply the principle of linearized stability we first write the
PDE governing the variation of(Y, V ) relative to(ye, ve). Let
us set̃y = Y − ye andṽ = V − ve. Then the nonlinear system
(2.2) takes the following equivalent form:

∂t

[
ỹ
ṽ

]
+

[
ṽ + ve ỹ + ye

g ṽ + ve

]
∂x

[
ỹ
ṽ

]
=

[
0
0

]
, (2.3)

[ṽ + ve] [ỹ + ye](0, t) =
√

ua(ya − ỹ(0, t)− ye), (2.4)

[ṽ + ve] [ỹ + ye](`, t) =
√

ub(ỹ(`, t) + ye − yb). (2.5)

Hence the irrigation system is governed by the quasilinear
PDE. With the notation of Section 1 we have

Ã(x, (ỹ, ṽ)) = −
[

ṽ + ve ỹ + ye

g ṽ + ve

]
. (2.6)



The two eigenvalues of̃A(x, (ỹ, ṽ)) are given by

λ1(x, (ỹ, ṽ)) = −(ṽ + ve)−
√

g(ỹ + ye),
λ1(x, (ỹ, ṽ)) = −(ṽ + ve) +

√
g(ỹ + ye).

(2.7)

We develop each nonlinear term in (2.3)-(2.3) in terms of lim-
ited Taylor series around(0, 0). By removing all the terms of
order equal or superior to 2 after the development we obtain
easily the linearized system around(0, 0) as follows:

∂t

[
y
v

]
= Ã(x, 0)∂x

[
y
v

]
, (2.8)

2vey
2
e v(0, t) + (ua + 2v2

eye) y(0, t) = 0, (2.9)

2vey
2
e v(`, t) + (2v2

eye − ub) y(`, t) = 0. (2.10)

However the matrixÃ(x, 0) is not diagonal as required in our
formulation (1.1). To diagonalize it we take the following
linear regular transformation on the unknown functions(y, v)
such that

y(x, t) = η1(x, t) + η2(x, t),

v(x, t) =
√

g

ye
(η1(x, t)− η2(x, t)) .

The the linear system on(η1, η2) takes the forme (1.1), i.e.,

∂t

[
y
v

]
= A(x, 0)∂x

[
y
v

]
, (2.11)

η1(0, t) =

[
2vey

3/2
e g1/2 − ua − 2v2

eye

ua + 2v2
eye + 2vey

3/2
e g1/2

]
η2(0, t), (2.12)

η2(`, t) =

[
2vey

3/2
e g1/2 + 2v2

eye − ub

ub − 2v2
eye + 2vey

3/2
e g1/2

]
η1(`, t), (2.13)

where

A(x, (ỹ, ṽ)) =
[

λ1(x, (ỹ, ṽ)) 0
0 λ2(x, (ỹ, ṽ))

]
. (2.14)

From Greenberg and Li [3] and Xu and Feng [11] we get that
the system (2.11)-(2.13) is exponentially stable if and only if
the following property holds

∣∣∣∣∣
2vey

3/2
e g1/2 − ua − 2v2

eye

ua + 2v2
eye + 2vey

3/2
e g1/2

∣∣∣∣∣

∣∣∣∣∣
2vey

3/2
e g1/2 + 2v2

eye − ub

ub − 2v2
eye + 2vey

3/2
e g1/2

∣∣∣∣∣

< 1. (2.15)

Moreover, according to Li [4] there exists anε > 0 such that
for (ỹ, ṽ) ∈ C1([0, `] × R+) with |(ỹ(·, t), ṽ(·, t))|1 ≤ ε, the
condition (2.15) implies also exponential stability of the time-
varying system (2.11)- (2.13) obtained by replacingA(x, 0) by
A(x, (ỹ, ṽ)). Applying our Theorem 1.6 we get that the equi-
librium point (ye, ve) is locally exponentially stable for the ir-
rigation system (2.1)-(2.2) if and only if the property (2.15)
holds.

To prove our Theorems 1.1-1.6 we need the existence and
uniqueness theorems in Li and Yu [5], the semigroup and evo-
lution system theory in Pazy [6] and the notion of well-posed

control system in Weiss [8]. The validity of our proof is not
limited to the specific case (1.2) and can be generalized to a
larger class of quasilinear hyperbolic systems as studied in Li
and Yu [5] and d’Andréa-Novel et al. [1]. The paper [9] with
our complete proof is already available and will be submitted
later for publication.
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