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Abstract 
 
This paper introduces a challenge to the general acceptance 
of neural networks being ‘ideally suited’ for use in nonlinear 
control schemes. The paper briefly outlines 10 significant 
reasons as to why neural networks should not be used in any 
control system that directly affects process plant. The State 
Space Bounded Derivative Network will then be presented as 
a universal approximating architecture that encompasses the 
power of approximation of neural networks but without the 
failings. This algorithm has now been widely applied to the 
industrial control of polymer plants worldwide and has been 
the key enabling technology for Aspen ApolloTM – the 
Worlds’ first commercial truly universal model based 
controller. The unique features of the SSBDN include 
globally guaranteed invertibility; global constraints on the 
model gains; robust, elegant and intelligent extrapolation 
capability and the capability of modelling both positional and 
directionally dependent dynamic nonlinearities. A 
commercial application of this technology to an industrial 
polyethylene unit will be given. 
 
1   Introduction 

The suggestion that neural networks are unsuitable 
architectures for control models is a controversial message. 
There appears to be a plethora of academic citations 
applauding the successful application of neural networks in 
control (Martin et al, [3]; Neuroth et al, [4]). This paper 
examines the properties of neural networks and prescribes 10 
reasons why neural networks should not be implemented on 
any control system that directly affects process plant. 
Although provocative, this is an essential debate that is 
necessary in order to maintain the integrity of process control 
systems. As a solution to the issues cited in this paper, an 
alternative algorithm (The Bounded Derivative Network) will 
be presented as a universal approximating architecture that 
truly is well suited for nonlinear control applications. This 
paper raises the question as to why neural networks are used 
at all in control systems when it appears at best they are inert 
(i.e. they are short-circuited or heavily suppressed in order to 
protect the plant) or at worst they degrade controller 

performance with costly and potentially catastrophic 
consequences. 
 
2   Ten Reasons Why Neural Networks       
Should Never Be Used In Manufacturing 
Control Schemes 
 
Turner et al [5],[9] have recently published a damning 
indictment of neural networks in control. They catalogue 10 
significant reasons why neural networks should never be used 
in any manufacturing control scheme that directly affects 
process plant behavior. The 10 reasons can be summarised as 
follows: 
 
1) Neural networks intrinsically contain regions of zero 

gain within their model architecture. Zero model gains 
result in infinite controller gains. Since this feature is 
intrinsic in the architecture, no training algorithm will 
ever address or remove this problem. 

 
2) Neural network models are highly susceptible to model 

gain inversion. Algorithms such as that described by 
Hartman et al [2] attempt to address this problem, but 
the approach only checks for gain inversions for an 
extremely small sample of the input space and in no 
way globally guarantees against this effect. Model gain 
inversion will result in valves closing when they should 
be opening (and vice versa) with the associated impact 
of this on the plant. 

 
3) Neural networks cannot extrapolate. The ability to 

extrapolate is a fundamental requirement of a model 
based control model since extrapolative assumptions are 
always made about disturbance behaviour over a 
prediction horizon. Real industrial data is never 
uniformly distributed and will contain many regions of 
data sparsity where the neural models are invalid.  
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Figure 1 : Why an MPC model HAS to be able to extrapolate 
into sparse data regions 

 
4) Neural networks are designed as input/output predictors 

or in other words – pattern recognizers. They are not 
designed to give a hi-fidelity inference of underlying 
process behaviour such as process gains. Simply taking 
the derivative of a neural network model will not give 
an accurate representation of the derivative of the 
process. The derivative of a neural network is typically 
a distribution function which represents the distribution 
of the training data rather than some fundamental 
representation of process behavior. Figure 2 displays the 
typical derivative of a cross validated neural model 
trained on real industrial data until the error on a testing 
set reached a minimum. No sensible engineer would 
suggest that this relationship is an accurate 
representation of process gain. 

 

Zero gain 
prediction Extrapolation effect

Extrapolation effect

This shows data distribution,
not the process gain !

 
Figure 2 : The Derivative Of A Neural Network Model 
 

5) Neural Networks are not invertible. They are not 
invertible for many reasons. Their lack of monotonicity, 
zero gain regions and their propensity to give correlated 
gain predictions are a few restrictions to invertibility. 
Correlated gain predictions occur when the model 
(possibly due to extrapolation) predicts that the gains 
between a set of MVs and an equal number of CVs are 
correlated. When this matrix is inverted (say in a gain 
scheduling scenario) the resultant move sizes calculated 
are huge (if not infinite). Hard coded gain limit 

checking will not protect the controller or the plant from 
this phenomenon as this is a result of gain correlation 
and not a result of the gain exceeding hard limits. 

 
6) All neural networks commissioned on industrial 

processes have to be suppressed or short circuited. 
Martin et al [3] describe one such method where the 
neural model is weighted in combination with an 
alternative model (where the alternative model takes 
over in regions of extrapolation). In addition, hard limits 
are placed on the neural controller gain prediction. This 
level of suppression should raise questions. You 
wouldn’t feel safe getting into a car if the driver was 
subject to such protection mechanisms (due to his/her 
volatility during unusual driving conditions). Why 
should we accept this with technology ? 

 
7) Industry appears to have a different level of tolerance 

for hardware and software. If say a control valve had the 
same characteristics as a neural network (i.e. the valve 
was intrinsically designed to randomly stick (zero gain) 
and unpredictably suffer valve failure mode inversion 
when you least expect it) and in addition had to be 
implemented in series and parallel (to suppress and 
short circuit) with additional standard control valves in 
order that the plant could be protected - the idea would 
be so ridiculous it would be instantly derided. Why 
should we have different standards for a software 
equivalent ? 

 
8) Because there are no global constraints on a neural 

network, copious amounts of data (and possibly 
expensive plant tests) are required to train them in order 
to attempt to extend the envelope of validity of the 
model. This is expensive and time consuming – and still 
creates no global guarantees. This process is required 
because of a fundamental inadequacy of the modelling 
paradigm. It is not an essential requirement for building 
a nonlinear model. This is equivalent to buying a large 
net containing millions of holes to use as a water 
receptacle and then paying large amounts of money to 
fill in a small number of the holes in the net. Why not 
buy a receptacle without any holes ? 

 
9) Because neural networks cannot extrapolate they have 

to be continually re-trained in response to the inevitable 
process changes that occur over time. This either 
involves waiting for months until enough new data is 
available or performing more expensive plant tests. 
Unlike linear models (or the Bounded Derivative 
Network) neural models are normally completely 
invalid in regions of extrapolation and so loss of even 
rudimentary control occurs as a result of process 
change. This makes neural networks excessively 
expensive and time consuming to maintain. 

10) The final point in this indictment of neural network 
based controllers is the fundamental reason. Why use a 
technology in a controller that is fundamentally not 
appropriate for the application? It may be possible to get 
these models ‘on-line’ by wrapping them with 
sophisticated bypass and suppression mechanisms but 
the question has to be asked as to why bother ? What is 

 



the motivation ? If the reason is that there is no current 
alternative then the following description of the 
Bounded Derivative network should make interesting 
reading.  

 
3 The State Space Bounded Derivative Network 
 
The Bounded Derivative Network represents a 
groundbreaking step forward in nonlinear modelling 
technology. This universal approximating architecture is 
ideally suited to nonlinear control for the following reasons: 
 

1) Universal approximating architecture 
2) Architecturally designed to capture both input/output 

patterns and underlying relationships (process gains) 
3) Guaranteed global invertibility 
4) Globally guaranteed constraints on the model gains 
5) Robust, elegant and intelligent extrapolation 

capability 
6) Capability of modelling both positional and 

directional dependent dynamic nonlinearities 
7) Significantly reduced training data requirements due 

to global envelope of extrapolation capability. 
 

The Bounded Derivative Network (BDN) is essentially the 
analytical integral of a neural network. The example cited in 
this paper is the analytical integral of a hyperbolic tangent 
based neural model. Figure 3 shows the general model 
architecture.
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Figure 3 : Bounded Derivative Network Architecture 

 
The activation function in the ‘nonlinear activation’ layer is 
given in equation (1). 
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Layer 2 in figure 1 is purely for architectural reasons and is 
not strictly necessary. Layers 3 and 5 contain summation 
processing elements only. The general equation for the BDN 
described in figure (3) is as follows: 
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Weights between nodes in each layer are notated as 

) which represents the connection weight from the jth 
node in the qth layer to the ith node in the pth layer (q<p).  

( qp
ijw ,

The derivative of the BDN model described in (2) with 
respect to one of the input variables can be calculated as: 
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              (3) 
One can note that equation (3) is the general equation of a 
standard neural network. Since equation (3) is bounded, it is 
possible to calculate these bounds and constrain them during 
model identification. This provides a global constraint on the 
model derivatives and also enables robust, elegant and 
intelligent extrapolation. The extrapolation is robust because 
it is guaranteed to be linear and bounded; it is elegant because 
the extrapolation is analytical rather than hard coded and it is 
intelligent because the gradient of extrapolation is based on 
the derivative of the process at the point of extrapolation. 
Equation (4) displays a method of calculating theoretical 
bounds on the model derivatives. These bounds are 
guaranteed to encompass the actual bounds but may not be 
exactly equal to them. This is sufficient information to 
constrain the model to the correct solution. 
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These are globally guaranteed limits on the input/output gain. 
This results in a smooth and elegant transition to a linear 
interpolation (constant gain) in regions of extrapolation. 
Figure 4 displays the bounded derivative activation function 
and demonstrates the ‘elegant’ linear extrapolation. 
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Figure 4 : Bounded Derivative Activation Function (Elegant 

Linear Extrapolation) 
 

The Bounded Derivative network can be easily extended to a 
state space dynamic model form by presenting state vectors at 
the input to the model and including the steady state gains of 
each state vector within the gain constraint formulation. This 
patent pending technology forms the kernel of the Aspen 

pollo controller. A
 
Applying the steady state Bounded Derivative Network 
model to real industrial polypropylene data clearly 
demonstrates the substantial advantages of this approach 
compared to neural networks. Figures 5 and 6 show the 
model fit and the corresponding gain curve. The gain curves 

can be seen to be smooth and credible – in stark contrast to 
the ‘peak and trough’ nature of a neural net derivative. 
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Figure 5 : Bounded Derivative Network on Polypropylene 

Data 
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Figure 6 : Bounded Derivative Network on Polypropylene 

Data – Gain Analysis 
 

4 Aspen ApolloTM 
 
Aspen Apollo is the World’s only truly universal, nonlinear 
model based controller. The nonlinear model is fully utilized 
at every control execution. Aspen ApolloTM utilizes the State 
Space Bounded Derivative Network technology and has now 
been commissioned on a world class polyethylene production 
facility in Gelsenkirchen, Germany. Figure 7 displays 
simulated transitions on this unit for a product quality grade 
change where the controller can be clearly seen to exploit the 
directionally dependent nonlinearities. With a single set of 
tuning parameters, the controller minimizes transition speeds 
in both the upwards and downwards transition. The 
downwards transition is some 50% faster than the upwards 
transition (this is because it is faster to empty the reactor of 
reactants than to build them up). This capability is unique to 
Aspen ApolloTM. Normally, model based controllers have to 
be tuned to the worst case scenario.  
 

 



 
Figure 7 : Aspen Apollo Directional Dependent Dynamic 
Handling Capability 
 
The response from SABIC Europe who run this particular 
plant is as follows: 
 
“Aspen Apollo has now been implemented on our 
Polyethylene production  facility at Gelsenkirschen and has 
successfully been controlling product quality round the clock. 
Aspentech's nonlinear production control solution has 
delivered substantial measurable benefits to SABIC with 
faster transitions, increased throughput and reduced off 
specification material” 
 
Jan Versteeg, IT Manager, SABIC Europe 
 
5 Conclusions 
 
This paper has outlined the significant deficiencies of neural 
networks in control. It has also proposed an alternative 
algorithm (The Bounded Derivative Network) that is well 
suited to supercede the application of neural networks in 
control. This algorithm has been widely applied in over 30 
nonlinear polymer production control applications 
worldwide. It has in addition now been incorporated into 
Aspen ApolloTM and successfully commissioned at a world 
class polyethylene production facility in Gelsenkirchen, 
Germany. 
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