

THE STATE SPACE BOUNDED DERIVATIVE NETWORK

SUPERCEDING THE APPLICATION OF NEURAL
NETWORKS IN CONTROL

P. Turner, J Guiver

Aspentech UK Ltd, Cambridge UK

paul.turner@aspentech.com

Keywords: Nonlinear Control; Neural Networks; Polymers

Abstract

This paper introduces a challenge to the general acceptance
of neural networks being ‘ideally suited’ for use in nonlinear
control schemes. The paper briefly outlines 10 significant
reasons as to why neural networks should not be used in any
control system that directly affects process plant. The State
Space Bounded Derivative Network will then be presented as
a universal approximating architecture that encompasses the
power of approximation of neural networks but without the
failings. This algorithm has now been widely applied to the
industrial control of polymer plants worldwide and has been
the key enabling technology for Aspen ApolloTM – the
Worlds’ first commercial truly universal model based
controller. The unique features of the SSBDN include
globally guaranteed invertibility; global constraints on the
model gains; robust, elegant and intelligent extrapolation
capability and the capability of modelling both positional and
directionally dependent dynamic nonlinearities. A
commercial application of this technology to an industrial
polyethylene unit will be given.

1 Introduction

The suggestion that neural networks are unsuitable
architectures for control models is a controversial message.
There appears to be a plethora of academic citations
applauding the successful application of neural networks in
control (Martin et al, [3]; Neuroth et al, [4]). This paper
examines the properties of neural networks and prescribes 10
reasons why neural networks should not be implemented on
any control system that directly affects process plant.
Although provocative, this is an essential debate that is
necessary in order to maintain the integrity of process control
systems. As a solution to the issues cited in this paper, an
alternative algorithm (The Bounded Derivative Network) will
be presented as a universal approximating architecture that
truly is well suited for nonlinear control applications. This
paper raises the question as to why neural networks are used
at all in control systems when it appears at best they are inert
(i.e. they are short-circuited or heavily suppressed in order to
protect the plant) or at worst they degrade controller

performance with costly and potentially catastrophic
consequences.

2 Ten Reasons Why Neural Networks
Should Never Be Used In Manufacturing
Control Schemes

Turner et al [5],[9] have recently published a damning
indictment of neural networks in control. They catalogue 10
significant reasons why neural networks should never be used
in any manufacturing control scheme that directly affects
process plant behavior. The 10 reasons can be summarised as
follows:

1) Neural networks intrinsically contain regions of zero

gain within their model architecture. Zero model gains
result in infinite controller gains. Since this feature is
intrinsic in the architecture, no training algorithm will
ever address or remove this problem.

2) Neural network models are highly susceptible to model

gain inversion. Algorithms such as that described by
Hartman et al [2] attempt to address this problem, but
the approach only checks for gain inversions for an
extremely small sample of the input space and in no
way globally guarantees against this effect. Model gain
inversion will result in valves closing when they should
be opening (and vice versa) with the associated impact
of this on the plant.

3) Neural networks cannot extrapolate. The ability to

extrapolate is a fundamental requirement of a model
based control model since extrapolative assumptions are
always made about disturbance behaviour over a
prediction horizon. Real industrial data is never
uniformly distributed and will contain many regions of
data sparsity where the neural models are invalid.

mailto:paul.turner@aspentech.com

1.4 1.6 1.8 2 2.2 2.4 2.6
4

6

8

10

12

14

16

18

20

22

Manipulated Variable

D
is

tu
rb

an
ce

 V
ar

ia
bl

e

Historical Process Data

1.4 1.6 1.8 2 2.2 2.4 2.6
4

6

8

10

12

14

16

18

20

22

Manipulated Variable

D
is

tu
rb

an
ce

 V
ar

ia
bl

e

Historical Process Data

MPC Assumption of how a
setpoint change in an MV will
be implemented.

Figure 1 : Why an MPC model HAS to be able to extrapolate
into sparse data regions

4) Neural networks are designed as input/output predictors

or in other words – pattern recognizers. They are not
designed to give a hi-fidelity inference of underlying
process behaviour such as process gains. Simply taking
the derivative of a neural network model will not give
an accurate representation of the derivative of the
process. The derivative of a neural network is typically
a distribution function which represents the distribution
of the training data rather than some fundamental
representation of process behavior. Figure 2 displays the
typical derivative of a cross validated neural model
trained on real industrial data until the error on a testing
set reached a minimum. No sensible engineer would
suggest that this relationship is an accurate
representation of process gain.

Zero gain
prediction Extrapolation effect

Extrapolation effect

This shows data distribution,
not the process gain !

Figure 2 : The Derivative Of A Neural Network Model

5) Neural Networks are not invertible. They are not
invertible for many reasons. Their lack of monotonicity,
zero gain regions and their propensity to give correlated
gain predictions are a few restrictions to invertibility.
Correlated gain predictions occur when the model
(possibly due to extrapolation) predicts that the gains
between a set of MVs and an equal number of CVs are
correlated. When this matrix is inverted (say in a gain
scheduling scenario) the resultant move sizes calculated
are huge (if not infinite). Hard coded gain limit

checking will not protect the controller or the plant from
this phenomenon as this is a result of gain correlation
and not a result of the gain exceeding hard limits.

6) All neural networks commissioned on industrial

processes have to be suppressed or short circuited.
Martin et al [3] describe one such method where the
neural model is weighted in combination with an
alternative model (where the alternative model takes
over in regions of extrapolation). In addition, hard limits
are placed on the neural controller gain prediction. This
level of suppression should raise questions. You
wouldn’t feel safe getting into a car if the driver was
subject to such protection mechanisms (due to his/her
volatility during unusual driving conditions). Why
should we accept this with technology ?

7) Industry appears to have a different level of tolerance

for hardware and software. If say a control valve had the
same characteristics as a neural network (i.e. the valve
was intrinsically designed to randomly stick (zero gain)
and unpredictably suffer valve failure mode inversion
when you least expect it) and in addition had to be
implemented in series and parallel (to suppress and
short circuit) with additional standard control valves in
order that the plant could be protected - the idea would
be so ridiculous it would be instantly derided. Why
should we have different standards for a software
equivalent ?

8) Because there are no global constraints on a neural

network, copious amounts of data (and possibly
expensive plant tests) are required to train them in order
to attempt to extend the envelope of validity of the
model. This is expensive and time consuming – and still
creates no global guarantees. This process is required
because of a fundamental inadequacy of the modelling
paradigm. It is not an essential requirement for building
a nonlinear model. This is equivalent to buying a large
net containing millions of holes to use as a water
receptacle and then paying large amounts of money to
fill in a small number of the holes in the net. Why not
buy a receptacle without any holes ?

9) Because neural networks cannot extrapolate they have

to be continually re-trained in response to the inevitable
process changes that occur over time. This either
involves waiting for months until enough new data is
available or performing more expensive plant tests.
Unlike linear models (or the Bounded Derivative
Network) neural models are normally completely
invalid in regions of extrapolation and so loss of even
rudimentary control occurs as a result of process
change. This makes neural networks excessively
expensive and time consuming to maintain.

10) The final point in this indictment of neural network
based controllers is the fundamental reason. Why use a
technology in a controller that is fundamentally not
appropriate for the application? It may be possible to get
these models ‘on-line’ by wrapping them with
sophisticated bypass and suppression mechanisms but
the question has to be asked as to why bother ? What is

the motivation ? If the reason is that there is no current
alternative then the following description of the
Bounded Derivative network should make interesting
reading.

3 The State Space Bounded Derivative Network

The Bounded Derivative Network represents a
groundbreaking step forward in nonlinear modelling
technology. This universal approximating architecture is
ideally suited to nonlinear control for the following reasons:

1) Universal approximating architecture
2) Architecturally designed to capture both input/output

patterns and underlying relationships (process gains)
3) Guaranteed global invertibility
4) Globally guaranteed constraints on the model gains
5) Robust, elegant and intelligent extrapolation

capability
6) Capability of modelling both positional and

directional dependent dynamic nonlinearities
7) Significantly reduced training data requirements due

to global envelope of extrapolation capability.

The Bounded Derivative Network (BDN) is essentially the
analytical integral of a neural network. The example cited in
this paper is the analytical integral of a hyperbolic tangent
based neural model. Figure 3 shows the general model
architecture.

1
3

3

4

4

5

5 Layer 1 (Constant Bias)

Layer 3 (Linear Hidden)

Layer 4 (Non-linear Activation)

Layer 5 (Linear Activation)

6
Layer 6 (Output)

0

0

0

`Layer 0 (Input)

2

2

2

Layer 2 (Transform)

Figure 3 : Bounded Derivative Network Architecture

The activation function in the ‘nonlinear activation’ layer is
given in equation (1).

 (1) ∑∑

==

+++=⋅
ii n

i
ii

n

i
ii xxf

1
02

1
01))())log(cosh()(ββλββλ

Layer 2 in figure 1 is purely for architectural reasons and is
not strictly necessary. Layers 3 and 5 contain summation
processing elements only. The general equation for the BDN
described in figure (3) is as follows:

 ()

()
∑

∑

∑

∑
















































 ++
















 +

++=

j

i
iiijijjj

i
iiijij

jjj

i
iiii

xwwww

xwww
ww

xwwwy

)0,2()2,3()1,3(
1

)3,5(

)0,2()2,3()1,3(
1

)4,5()5,6(
1

)0,2()2,6(
1

)1,6(
11

coshlog

 (2)
Weights between nodes in each layer are notated as

) which represents the connection weight from the jth
node in the qth layer to the ith node in the pth layer (q<p).

(qp
ijw ,

The derivative of the BDN model described in (2) with
respect to one of the input variables can be calculated as:



























































 +

+

+

×=
∂
∂

∑
∑j

i
iiiji

j

jj

jj

jkj

k

kk
k

xww

w
w

w

ww

w

w
x
y

)0,2()2,3(

)1,3(
1

)4,5(

)3,5(

)2,3()5,6(
1

)2,6(
1

)0,2(

tanh

 (3)
One can note that equation (3) is the general equation of a
standard neural network. Since equation (3) is bounded, it is
possible to calculate these bounds and constrain them during
model identification. This provides a global constraint on the
model derivatives and also enables robust, elegant and
intelligent extrapolation. The extrapolation is robust because
it is guaranteed to be linear and bounded; it is elegant because
the extrapolation is analytical rather than hard coded and it is
intelligent because the gradient of extrapolation is based on
the derivative of the process at the point of extrapolation.
Equation (4) displays a method of calculating theoretical
bounds on the model derivatives. These bounds are
guaranteed to encompass the actual bounds but may not be
exactly equal to them. This is sufficient information to
constrain the model to the correct solution.























+

−

=
∂
∂

∑

∑

)2,6(
1

)4,5()2,3()5,6(
1

)3,5()2,3()5,6(
1

)0,2(

)1(

k

j
jjjkj

j
jjjkj

kk

boundk

w

www

www

w

x
y

(4)























+

+

=
∂
∂

∑

∑

)2,6(
1

)4,5()2,3()5,6(
1

)3,5()2,3()5,6(
1

)0,2(

)2(

k

j
jjjkj

j
jjjkj

kk

boundk

w

www

www

w

x
y

 (5)

If is positive (as in this case), then)0,2(
kkw

)1(boundkx
y

∂
∂

is a

minimum theoretical gain and
)2(boundkx

y
∂
∂

is a maximum

theoretical gain. If is negative then the situation is
reversed.

)0,2(
kkw

These are globally guaranteed limits on the input/output gain.
This results in a smooth and elegant transition to a linear
interpolation (constant gain) in regions of extrapolation.
Figure 4 displays the bounded derivative activation function
and demonstrates the ‘elegant’ linear extrapolation.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

0

2

4

6

8

10

Input x

Bounded Derivative Transformation (y=log(cosh(x))+1.1x)

Elegant Linear
Extrapolation

Elegant Linear
Extrapolation

Non-linear Domain

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

0

2

4

6

8

10

Input x

Bounded Derivative Transformation (y=log(cosh(x))+1.1x)

Elegant Linear
Extrapolation

Elegant Linear
Extrapolation

Non-linear Domain

Figure 4 : Bounded Derivative Activation Function (Elegant

Linear Extrapolation)

The Bounded Derivative network can be easily extended to a
state space dynamic model form by presenting state vectors at
the input to the model and including the steady state gains of
each state vector within the gain constraint formulation. This
patent pending technology forms the kernel of the Aspen

pollo controller. A

Applying the steady state Bounded Derivative Network
model to real industrial polypropylene data clearly
demonstrates the substantial advantages of this approach
compared to neural networks. Figures 5 and 6 show the
model fit and the corresponding gain curve. The gain curves

can be seen to be smooth and credible – in stark contrast to
the ‘peak and trough’ nature of a neural net derivative.

0 100 200 300 400 500 600 7000

5

10

15

20

25

30

35

Red = Model , Blue = Actual

Melt Flow Index Melt Flow Index

Bounded Derivative Prediction
of MFI wrt H2 Mass Flow

R Square error = 93%

Globally guaranteed to be monotonic !
Also, displays gain decay as required

0 100 200 300 400 500 600 7000

5

10

15

20

25

30

35

Red = Model , Blue = Actual

Melt Flow Index Melt Flow Index

Bounded Derivative Prediction
of MFI wrt H2 Mass Flow

R Square error = 93%

Globally guaranteed to be monotonic !
Also, displays gain decay as required

Figure 5 : Bounded Derivative Network on Polypropylene

Data

Process Gain Prediction at Catalyst Flow = 2.4 Process Gain Prediction at Catalyst Flow = 4

Smooth, gain decay

Bounded to saturate
at a gain of 0.4

Process Gain Prediction at Catalyst Flow = 2.4 Process Gain Prediction at Catalyst Flow = 4

Smooth, gain decay

Bounded to saturate
at a gain of 0.4

Figure 6 : Bounded Derivative Network on Polypropylene

Data – Gain Analysis

4 Aspen ApolloTM

Aspen Apollo is the World’s only truly universal, nonlinear
model based controller. The nonlinear model is fully utilized
at every control execution. Aspen ApolloTM utilizes the State
Space Bounded Derivative Network technology and has now
been commissioned on a world class polyethylene production
facility in Gelsenkirchen, Germany. Figure 7 displays
simulated transitions on this unit for a product quality grade
change where the controller can be clearly seen to exploit the
directionally dependent nonlinearities. With a single set of
tuning parameters, the controller minimizes transition speeds
in both the upwards and downwards transition. The
downwards transition is some 50% faster than the upwards
transition (this is because it is faster to empty the reactor of
reactants than to build them up). This capability is unique to
Aspen ApolloTM. Normally, model based controllers have to
be tuned to the worst case scenario.

Figure 7 : Aspen Apollo Directional Dependent Dynamic
Handling Capability

The response from SABIC Europe who run this particular
plant is as follows:

“Aspen Apollo has now been implemented on our
Polyethylene production facility at Gelsenkirschen and has
successfully been controlling product quality round the clock.
Aspentech's nonlinear production control solution has
delivered substantial measurable benefits to SABIC with
faster transitions, increased throughput and reduced off
specification material”

Jan Versteeg, IT Manager, SABIC Europe

5 Conclusions

This paper has outlined the significant deficiencies of neural
networks in control. It has also proposed an alternative
algorithm (The Bounded Derivative Network) that is well
suited to supercede the application of neural networks in
control. This algorithm has been widely applied in over 30
nonlinear polymer production control applications
worldwide. It has in addition now been incorporated into
Aspen ApolloTM and successfully commissioned at a world
class polyethylene production facility in Gelsenkirchen,
Germany.

References

[1] Fache, A., Dubois, O., Billat, A., “On the invertibility of

the RBF model in a predictive control strategy”,
Proceedings of the European Symposium on Artificial
Neural Networks (ESANN), Belgium, 21-23 April 1999,
pp. 381-386, (1999).

[2] Hartman, E., “ Training Feedforward Neural Networks
with Gain Constraints”, Neural Computation, Vol 12, pp.
811-829, (2000).

[3] Martin et al, “Method and Apparatus for Dynamic and
Steady State Modeling Over a Desired Path Between Two
End Points”, United States Patent Number 5,933,345,
(1999)

[4] Neuroth, M., MacConnell, P., Stronach, F., Vamplew, P.,
“Improved modeling and control of oil and gas transport
facility operations using artificial intelligence.”,

Knowledge Based Systems, Vol 13, no. 2, pp. 81-92,
(April 2000)

[5] Turner, P, Guiver, J, “Neural Networks – A
comprehensively unsuitable technology for control”,
Proceedings of Aspenworld 2002, Washington DC, (Oct
2002)

[6] Turner, P., Guiver, J., “Neural Network APC: Fact or
fantasy?”, Control Solutions Magazine, “Optimizing Your
Process” supplement, pp. 16-20, (June 2001)

[7] Turner, P., Guiver, J., Lines, B., Keenan, M., “On the
commercial application of next generation nonlinear
model based predictive control”, Session Applications of
Model Predictive Control, paper 144f, AIChE Spring
Meeting, New Orleans, LA, Mar 30th – Apr 3rd 2003.

[8] Turner, P., Guiver, J., Lines, B., “Introducing The State
Space Bounded Derivative Network for Commercial
Transition Control”, Session Transition Control, paper
FP18-2, 2003, Americal Automatic Control Conference,
Denver, CO, June 4-6, 2003.

[9] Turner, P., “Automated Product Grade Transitions:
Exposing the inherent and latent dangers of neural
networks in manufacturing Process Control”, EUnite
2003, Safety Critical Task Force Meeting, Session AC3,
Oulu, Finland, 10th-11th July, 2003

	Session Index
	Author Index
	574.pdf
	P. Turner, J Guiver
	Abstract
	1 Introduction

	3 The State Space Bounded Derivative Network
	4 Aspen ApolloTM
	Jan Versteeg, IT Manager, SABIC Europe
	5 Conclusions

