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Abstract 
 
The problem of data overload in supervisory control of 
critical complex industrial systems is addressed. As a 
solution data mining has been shown as an effective tool to 
help human supervisory control of a coal-fired power 
generation plant in reducing pollutant emissions. 

 

1 Introduction 
 
Rapid progress in technology, together with the scale 
enlargement, social, financial and political stimuli have 
changed the scope of society. Systems are becoming more 
complex and consequently dependent on automation 
increasingly. Increased complexity naturally gives rise to the 
fear that even the smallest error may cause a disaster [9]. The 
mechanism underlying such fears may be compared with the 
butterfly effect described in a book on chaos [7]: small 
numerical errors in the initial conditions of a deterministic 
weather model can produce massive changes in the simulated 
predictions.  
 
Industrial processes including many critical systems such as 
power generation plants are also becoming more complex 
with an increasing number of interactions between different 
domains and plants. For example, very tight links can exist 
between plants owned and operated by different companies. 
Consequently, control centres can control several plants. This 
centralised control is seen as advantageous, since many 
apparently simple functions can be combined and executed 
by a small number of operators. In addition, concentrating 
tasks can produce many similar tasks, of which some may be 
independent of the normal operating modes.  Examples of 
such tasks are plant optimisation, maintenance and 

administration, which may all be executed by specialists 
outside of the control room. Since the control room operators 
are only in control of the plant during start-up, shutdown and 
malfunction, the danger is that the situation awareness of 
those operators who remain in the control room is reduced 
due to the following reasons: 
 

1) The frequency of system malfunctions is extremely low 
for highly automated critical systems. On the other hand, the 
workloads between normal and abnormal operations are also 
extremely distinct. 

2) Operators are increasingly required to cope with 
situations that are outside their immediate base of expertise 
on a short deadline due to the organizational trend of 
reducing operational staffing and expertise during nominal 
situations. 

3) As the system complexity increases, data overload 
poses a generic and difficult problem for system operators 
and operators may find it difficult to cope with a situation that 
generates an avalanche of electronic data and information.    
 
Although the advances in artificial intelligence, computer 
graphics, or electronic connectivity etc. promise to help 
people better understand and manage wider range of activities 
more efficiently and effectively, from financial analysis to 
monitoring and control of critical systems such as various 
power generation plants and space missions, our ability to 
interpret this avalanche of data has expanded much more 
slowly [14]. As a matter of fact, examinations across different 
engineering fields show that engineering practitioners are 
always bombarded with computer-processed data, particularly 
when anomalies occur. Operators may from time to time find 
themselves lost in massive networks of computer based 
displays, options, modes, and their associated engineering 
contexts. 

 
The data overload problem in human supervisory control of 
complex engineering systems can be characterised in 



different ways 1) as a clutter problem where there is too much 
data on the screen. This problem can be solved by reducing 
the number of data units on each screen and by grouping data 
units of the same nature; 2) as a workload bottleneck where 
there is too much to do in the time available. This problem 
can be solved by using automation or other techniques to 
disperse the activities of the operators in the case of burst of 
workload; 3) as a problem in extracting significant patterns or 
identifying the significance of data from data avalanche 
generated during the operation when it is unknown in 
advance what data is important. Data mining techniques can 
solve this problem.  

 
Data mining is defined as the process of extracting patterns as 
well as predicting (previously unknown) trends from large 
quantities of data by posing (automatically) repeated queries 
[2]. It is an information extraction activity whose goal is to 
discover hidden facts contained in databases. Using a 
combination of various techniques, data mining finds patterns 
and subtle relationships in data and infers rules that allow the 
prediction of future results. While various forms of data 
mining have existed for quite a while, it is only during the 
past decade that data mining has emerged as a technology 
area for a wide range of applications. The combination of 
statistic analysis, machine learning and database management 
has resulted in the emerging technology area - data mining 
[1,2,5,6].   
 
 
For data mining to be effective, several technologies have to 
work together. First of all, statistical analysis and machine-
learning techniques have to be applied successfully to 
databases to extract patterns and to predict trends. 
Visualization techniques are important to provide visual 
understanding of data, patterns and trends and subsequently 
guide the user in carrying out further data mining. Data 
warehousing is a critical technology for organizing and 
cleaning the data to prepare for mining. Parallel processing 
techniques provide important enabling technology to speed 
up the mining process for large-scale data sets. Network-
computing infrastructures are an important consideration 
especially for distributed data mining. That is, various 
technologies have to be integrated to carry out successful data 
mining, leading to a need for standards [6]. As a result of the 
developments in data mining during the past decade, 
numerous commercial products and research prototypes have 
been developed. A consortium of data mining vendors and 
early adopters of data mining technology, through a European 
Commission funded effort, have developed the Cross-
Industry Standard Process for Data Mining. This is a 
hierarchical process model that breaks the data mining 
process into several phases, each with a variety of tasks [1], 
1) Business understanding; 2) Data understanding; 3) Data 
preparation; 4) Modelling; 5) Evaluation; 6) Deployment.  
 
In this paper, data mining will be used to help operator to 
ease the data overload and to control critical systems in 
normal and abnormal circumstances. 

2 Using data mining to help human supervisory 
control of power plants 
 
2.1 The complexity in human supervisory control of coal-
fired power generation plants 
 
Operation and control of pulverised fuel thermal power plants 
(TPPs) is getting increasingly complex due to several reasons.  
 
1) More stringent legislation on pollutant emissions. The 
contribution of solid fuels in TPP has increased since 1995. It 
is shown that 32% of the world’s power generation is based 
on inputs of hard coal and combustion of pulverized coal in 
large power station boilers accounts for over 50% of total 
world coal consumption. During the combustion process, 
various pollutants are produced such as oxides of carbon 
(COx), oxides of sulphur (SOx), oxides of nitrogen (NOx) 
and particulates. SO2 and NOx can cause acid rain and CO2 is 
the most important greenhouse gas responsible for climate 
changes. As more stringent emission limitations have been 
legislated for power generation stations worldwide, the 
limitation of current instrumentation and control technology 
for coal-fired TPPs are being exposed. In order to meet 
tighter legislations, more complex instrumentation and 
control systems have been installed in new and modified 
TPPs worldwide. 
 
2) Changing of coal supply resources. Because of the 
international trade in coals the quality and other properties of 
the coals used in TPPs will vary frequently. This strategy is 
followed for economic reason, but the wide variety in 
characteristics of the different coals can lead to unpredictable 
milling and combustion behaviour. Therefore the whole 
combustion process needs to be monitored more intensively 
to determine and control the effects of blends on emissions 
and combustion efficiency.  
 
3) The changing of electricity demands. Another force for 
introducing more complex control systems is the changing 
electricity demands. In many European countries as well as 
other countries, the increase of alternative power generation 
means that the majority of coal-fired TPPs are no longer 
operated on base load (at a high steady power output), instead 
most coal-fired TPPs operate at the specific load following a 
pattern of two-or-more shift operation, i.e. a plant will 
operate at high output (~80%) for daylight hours and low 
output at night. When the electricity demands for a TPP vary 
there must be corresponding changes in fuel, air and water 
inputs as well as burner operation patterns. To maintain close 
control over boiler conditions, currently separated loop 
operation and control systems are used, such as boiler air 
control, boiler steam temperature control and boiler feed 
water control, etc.  
 
It is clear that the above listed reasons for increase of system 
complexity will affect the plant operations, and eventually 
more data will be generated and has to be coped with in 
human supervisory control. Human operators in conventional 



coal-fired power generation boilers play an essential role in 
plant operations. In addition to plant start-up, shut-down, 
monitoring and intervention; plant operators also adjust 
various parameters related to steam pressure and generation 
control, combustion process control, steam temperature 
control, and water-steam circuit control. Particularly to the 
combustion process control, operators are required to adjust 
control parameters for pulverised coal-distribution system, 
boiler/burner system and combustion emission as coal and 
electricity demand change over time. These operational 
demands comprise many peculiarities which the operators 
should know about and obviously they need assistance tools 
to handle the data overload problem and an advisory system 
to include them into operations.  
 
In this paper our focus is to use data mining techniques to 
help human supervisory control of pollutant emissions. In 
particular, software is designed to help operators to modelling 
the relations of pollutant emissions with manipulated 
variables, which then may be used to extract useful operation 
patterns for human operators. 
 
2.2 Pollutant emission reduction and requirements for 
data mining software in human supervisory control  
 
The principal pollutants emitted from a TPP are nitrogen 
oxides (NOx), sulphur oxides (SOx, carbon dioxide (CO2), and 
particulates (soot, flyash, and aerosols) [10]. Among these, 
emission of dust can be eliminated or reduced by for instance 
electrostatic precipitators or filters. The best way to reduce 
CO2 emissions is to improve the efficiency of coal 
combustion process. Sulphur oxides can be removed by a flue 
gas desulphurisation (FGD) system which is extensively used 
throughout the world.  Nitrogen oxides can form the 
photochemical smog and damage the ozone layer. It can also 
cause acid rain. NOx can be reduced by operational 
modifications or by installing “low NOx burners”. Although 
low NOx burners are usually sufficient to achieve the required 
target, it is often at the expense of other important operational 
parameters such as incomplete combustion, steam 
temperature and boiler performance. The current legislations 
require that power plants make significant reductions in 
pollutant emissions especially in NOx emissions (Holmes and 
Mayes, 1994), and these restrictions are going to be more 
stringent. Therefore reducing the environmental impact of 
TPPs by NOx is one of the important targets that will have to 
be achieved by introducing more sophisticated operation and 
control systems [8,11].  
 
The methods to reduce NOx emission in coal-fired TPPs can 
be classified into two categories, namely primary or 
combustion modification based technologies, and secondary 
or flue gas treatment based technologies [4]. Those based on 
combustion modification achieve reduction of NOx by 
limiting the flame temperature or the availability of oxygen in 
the flame. For coal-fired power plants that are not installed 
with low NOx burners, it is believed that the balancing of fuel 
and air flow to individual burners is usually a first step in 

controlling NOx emission, and for some plants can achieve up 
to a 20% reduction in NOx formation. The further NOx 
reduction for such plants can be achieved by adopting a sort 
of “burner out of service” method, in which fuel and air to 
different burners is increased, reduced or turned off 
completely to create local fuel rich and fuel lean zones. 
Similarly burners can also be operated with different 
stoichiometries at different furnace levels to create a form of 
global furnace staging that can achieve up to 30% NOx 
reduction. These operations require careful control in order to 
maintain the thermal efficiency. Further reduction of NOx 
emissions should focus on the overall performance of 
combustion boiler through implementation of advisory 
system for human operators (which requires good models of 
the underlying processes), or even advanced control systems.  
 
In general, the parameters that will affect the combustion 
process in pulverised fuel boilers include: 
• Primary air to coal ratio 
• Secondary air distribution 
• Burner tilting position for tangentially boilers 
• Mill firing pattern 
 
The methods of changing the above parameters through 
operation are: 
• Primary air/ fuel ratio can be changed through controlling 

the coal feed rate and primary air fan speed 
• Secondary air distribution can be changed through damper 

positions 
• Burner tilting positions are normally changed by altering 

each individual burner 
• Mill firing patterns are changed through altering mill feed 

rate to bunks of burners 
 
The change of boiler parameters cannot be made freely due 
the to safety consideration. For example, loss of individual 
flames can lead to unburned fuel into the boiler, causing 
accumulation of potential fuel/air mixture that can be very 
explosive. Irregular mill firing patterns can cause instability 
in the flame ignition plane, therefore affect the whole 
efficiency of the combustion process. In coal-fired power 
generation plants the NOx emission reduction can be achieved 
by human operators through the help of data mining software, 
which may consist of two stages. The first stage is based on a 
priori knowledge and/or a posterior knowledge to catch the 
relationship between the plants operational inputs and the 
NOx output. In the second stage some form of constrained 
optimisation is used to compute the optimal operation 
patterns in order to minimise the NOx output while 
maintaining or increasing the combustion efficiency. These 
values are then presented to the operator (open-loop mode) as 
the operational references. 
 
As one of the key steps in data mining is modelling. The 
requirement for pollutants particularly NOx emission models 
is that it should be simple enough to implement in real-time 
but also convey rich operational information to derive 
operation patterns [10]. In order to achieve the above 



purpose, the data mining software will have the following 
characteristics, 

1) Flexibility.  The data mining software should let the 
operator to identify significant data visually and choose the 
data segment of his interest flexibly for data mining. 

2) Right modelling tool. Given the complexity of NOx 
formation mechanism, it is essential to choose the right 
modelling tool to capture the relations between NOx 
emissions with the operation inputs. 

3) Information hiding. To avoid data overload, 
unnecessary processing information need to hide from the 
operator and only meaningful information is represented. 

 
3 The data mining software for human 
supervisory control of power plant emissions 
 
3.1 The NOx emission modelling 
 
As a special example of grey-box modelling method [3], 
fundamental grey-box modelling is used to model a complex 
engineering system where the underlying mechanisms are 
either too complex to build a simple model or such 
knowledge is only partially known a priori [10]. The model 
structure used by fundamental grey-box method is a non-
linear regression model given that the terms are well defined 
a priori: 
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In the fundamental grey-box modelling approach, 
fundamental elements are appropriate non-linear functions 
that are uniquely identifiable from ‘a priori’ engineering 
knowledge and they could happen to be such functions as 
exponential, power, trigonometric, rational, etc. It is 
interesting to notice that for some function types listed above, 
the differentiation or integration would result in a function 
belonging to the same class, and superposition, subtraction or 
multiplication of these functions will also result in the same 
function type, though the parameters would be different. This 
property allows us to separate these functions from ODEs and 
PDEs, and through appropriate composition and 
recombination of these functions, a simplified model could 
then be produced to represent the original system more 
realistically in terms of predicting unseen data/phenomena. 
As these fundamental elements together with associated 
parameters reflect physical reality in one way or another 
therefore are also useful in helping system operators and 
control engineers to interpret and gain some physical insight 

into the system under control. For example, in modelling 
NOx emissions in coal-fired power generation plants, 

and are two type of 
fundamental elements [10], where x is manipulated variables 
such as mass flows of fuel and air, b

1c
11 )bx( +=ϕ ))2bx/(2(c

2 e +=ϕ

1, b2, c1, c2 are 
parameters. These two types of fundamental elements are 
extracted from a priori knowledge about the NOx formation 
equations. Depending on the type of variable x, 1ϕ is related 
to either the temperature in the furnace, or the available 
oxygen or nitrogen concentrations.  is related to the 
Arrhenius equation, where changes of x in 

2ϕ

2ϕ  reflect the 
change of temperature distribution in the furnace. Once these 
fundamental elements are extracted, then the system f  can 
be approximated using the model as described in Eqn. (1).  
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In fundamental grey-box modelling, two technical problems 
stand out in grey-box modelling: 
1. How to identify the unknown parameters in the 

Fundamental Elements ϕ  in (1)?  i
2. How to select the model structure? The number of terms 

that might be included into the system model can be 
very large and there is a combination problem.  

 
One of the solutions to the above problem is to use genetic 
optimisation algorithms [12]. 
 
3.2 The data mining software 
 
The data mining software illustrated in Fig. 1 comprises 5 
major modules: 
• Data mining modelling module  
• Genetic algorithms module 
• MATLAB source code generation module  
• Module for Communication with MATLAB.  
• Interface module 
 
The screenshots of the data mining software are illustrated in 
Fig. 2 and Fig. 3. 
 
The main characteristics of this data mining software are: 
1) Flexibility. The user may select any data segment for 

modelling and mining using sliding window (see Fig. 4). 
The user can define system variables such as the name 
and the order of variables. The user can assign the ranges 
for all parameters to be optimised, and assign the values 
for key genetic operation parameters for data mining. 
Multiple types of data sources and different formats can 
be accepted for data mining, e.g. MATLAB files (*.m), 
ASCII coded text data files (*.txt) and binary data files 
(*.dat). The software is also interfaced with MATLAB, 
and can accept and interpret Matlab files and execute 
Matlab commands. The application also has the ability to 
generate MATLAB source code with any chromosome as 
the resultant model. The resulted code is in the form of a 
MATLAB function and can be saved to a file for further 
use. 



2) Visualisation. Different “views” are designed for the data-
mining process.  The main “views” are: 

 

• Project view – allows the user to access all relevant 
information and parameters for data mining.  

• Plant data view – plots and displays plant data used in 
data mining and operators can access and select the data 
segment of his interest.  

• Population view for data mining using genetic algorithm – 
displays, in graphical or text form, population/sub-
populations and their properties during the evolution 
process.  

• Chromosome view for data mining using genetic 
algorithm – displays a selected chromosome. Each 
chromosome corresponds to a potential practical model, 
the chromosome is showed in the decoded forms.  

 
Fig 3. Modelling results – real data, model prediction and 

error, etc. • Validation view – displays the prediction performance of 
a model decoded from any chosen chromosome for any 
data set.  
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Fig 4. Selection of data segments by sliding window 

 
 
3.3 Extracting patterns  
 

 In human supervisory control of coal-fired power generation 
plants, different software block is developed and used to 
perform each specific task, such as plant simulation and 
operation optimisation. Optimised operation solutions under 
various conditions (on both normal and abnormal situations) 
and best practices of operation experts will be also stored in a 
knowledge base. Inference mechanism will interpret 
operator’s demands, extract and aggregate solutions from the 
knowledge base and/or from the simulation and optimisation 
block, and then translate and pass the aggregated solutions to 
the human machine interface where the solution to human 
operators will be appropriately displayed basing on the 
cognitive point view and other man-machine system design 
principles.  

Fig.1 An overview of the application software architecture 

 

 

 
Although operation conditions in TPPs may change from 
time to time because of the change of electricity demands and 
change of coal types, etc. However, plant will operate at 
limited set of typical working points/operation modes. 
Therefore, once plant models have been accurately developed 
using this data mining software, they can be used to obtain 

 
Fig 2. Screenshot of the data mining modelling software  

(The operators can define fundamental elements and 
associated the parameters in modelling) 



the optimal operation conditions for each typical working 
point/operation mode. As fundamental grey-box modelling 
will produce a model carrying rich operation information, 
operation patterns and values will be easily derived. For 
example, in modelling the NOx emission of a coal-fired 
power station in Northern Ireland, the following model is 
derived,  
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where y(t) is the NOx, q-1 is the time lag, mf is mass flow of 
coal,  mpa and msa are mass flow of primary and secondary 
air, is the burner tilting position. This model has been 
proven to give better prediction performance than other 
regression models, and each term in the model is a reflection 
of physical reality, therefore patterns can be easily derived 
from (2).   

θ

 
The optimal operation parameters together with expert 
experience will form an important part of the knowledge 
base. A knowledge base can be constructed by software, 
which consists of a rule-base and a database [13]. The rules in 
the rule base take the Mamdani form: 

 
IF x1 is A1 AND x2 is A2 AND… AND xp is Ap  
THEN  
y1 is B1 AND y2 is B2 AND… AND xq is Bq  

 
where xi are advisory system input variables, yi are output 
variables of the advisory system, Ai and Bi are fuzzy sets 
representing some real-world meanings. As a result, a rule 
can describe a condition-action statement that in principle can 
be clearly interpreted by human operators. A requirement for 
good interpretation is that the rule is transparent for the 
operator, and that the operator should be able to understand 
how the advisory system comes to the recommendation. 
 
Obviously, Mamdani type structure will not only be able to 
deal with real-valued inputs and outputs, it will also provide a 
natural framework to include expert knowledge in the form of 
linguistic rules. Therefore this form of rule structure will be 
used in the proposed advisory system. In the database, the 
definitions of the linguistic labels are stored. These labels are 
defined according to some functions that define the patterns, 
and they are able to determine the membership of a current 
value of a variable to a label. These labels are applied in the 
antecedent and consequent proposition of the rules. 
 
4 Conclusion 
 
In this paper, data overload in supervisory control of critical 
complex industrial system is addressed. Data mining together 
a new modelling methodology have been shown to be an 
effective tool to help human supervisory control of a coal-

fired power generation plant in reducing pollutant emissions. 
The data mining software has been developed and introduced. 
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