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brid systems ear systems. While this is one way of approaching the prob-
lem, we try to extend the definition of observability to include
Abstract stochastic hybrid systems.

A stochastic linear hybrid system is said to be observable if An important class of problems associated with applica-
the hybrid state of the system can be uniquely determined fréi@ns in multi-target tracking [1] and speech recognition [10]
its output. In this paper, we derive conditions for the obserpertains to the estimation of discrete-time Markov jump linear
ability of stochastic linear hybrid systems by exploiting the irsystems. Cost and do Val [11] analyzed such systems with fi-
formation obtained from system noise characteristics. Havinge Markov states and deterministic continuous dynamics. Vi-
established the necessary criteria for observability, we studgl et al. [12] derived observability conditions for jump linear
the effect of these conditions on estimator design, and also feystems based on rank tests similar to those of deterministic
bounds on the switching times of the system to achieve guaréinear hybrid systems. The first part of this study is motivated
teed estimator performance. We then apply these results tollyethe results of Vidal et al. [12]. They proposed the notion

estimation of a two-mode aircraft trajectory. of indistinguishability and derived elegant rank tests for the
observability of stochastic jump linear systems, in the mean
1 Introduction (or deterministic) sense. Since in the design of estimators for

The tracking of aircraft trajectories is a problem that harcraft tracking we have knowledge of not just the system dy-
been approached with some success using hybrid system mignics, but also the noise covariances, we try to exploit this
els [1]. Related problems of interest to us are the ability to esdditional knowledge to improve our ability to differentiate be-
mate the hybrid states of such systems from their outputs, JWgen state trajectories. Since the output sequences of stochas-
also the design of estimators for such systems. The problen{igfSystems might be different from the same initial condition,
observability, namely, the ability to estimate or reconstruct th¢e €xtend the notion of indistinguishability [12] for such sys-
actual state of a system given its output, has been studied XS, and based on our definition, we derive conditions for the
tensively, both for continuous [2] and discrete [3, 4] systen@bservability of discrete-time stochastic linear hybrid systems.
More recently, several researchers have approached the prdh latter part of this paper applies the approach of Balluchi
lem of observability of hybrid systems. A practical probler§t @l. [6], so far used in the design of hybrid observers for
that has received increased attention is the extension of thdgterministic hybrid systems with continuous-time state evolu-
concepts to stochastic hybrid systems. In this paper, we ggn_, to discrete-time stochastic hybrid systems and estimator
dress the issue of observability of a class of stochastic hybf@sign.
systems — systems where the continuous dynamics are affected This paper is organized as follows: Section 2 presents the
by white Gaussian noise. Alessandri and Coletta [5] propos@@servability conditions of discrete-time stochastic jump lin-
a Luenberger observer design methodology, while Balluchi @&r systems. In Section 3, we obtain conditions on the system
al. [6] developed a method of combining location observers fBarameters that would guarantee the exponential convergence
discrete state estimation with Luenberger observers for contif-hybrid estimators. Examples and conclusions are presented
uous state estimation for deterministic linear systems. Bempo-Sections 4 and 5 respectively. Proofs of theorems are not
rad et al. [7] defined the concept of incremental observabilifjcluded due to limited space; they are available upon request.
of continuous-time linear hybrid systems. Recently, Vidal et . . . -
al. [8] derived observability conditions for linear hybrid sys2 Observability of discrete-time stochastic lin-
tems with continuous-time continuous-state dynamics, given €ar hybrid systems
in the form of rank conditions similar to those for continuous-  In this section, inspired by Vidal et al. [12], we extend
time linear system observability. For stochastic systems, ti concepts of indistinguishability, observability of the hybrid
definition of observability in its classical form, as proposed hiyitial state, and discrete transition times as defined in [12] and
Kalman for systems with no noise, fails; we therefore need #ilerive more general observability conditions for discrete-time
find a meaningful interpretation of observability for systemstochastic linear hybrid systems using the knowledge of noise
with random noise. Baram and Kailath [9] proposed the covevariances. We consider a discrete-time stochastic linear hy-



brid system 2.1 Observability of the hybrid initial state
In this section, using a procedure similar to that in [12],

Tey1 = Alge)vr + wi(qr) we derive the conditions under which the hybrid initial state
H:¢ y = Clawzetowlae) , k€{0,1,---} (g, z4) can be uniquely determined from the output se-
G+1 = O(qr, k) quence{y,} on[ko, k1 — 1] (k1 — 1 < ko + K), i.e., before

_ o (1)  the first discrete transition occurs. We defifje:= kiv1 — k;
wheref is a non-negative integek (€ N); zx € R" andy,. € (; > 0) as the sojourn time, which denotes how long the system
R? are the continuous state and output variables respectivefitys in a discrete state after thth discrete transition. Based

qr € {1,2,--+ N} is the discrete statey. € {y',---,9™} on Definition 2 andDefinition 3, we get the following lemma:
is a discrete control input, and{-, -) is a deterministic dis-

crete transition relation which governs the discrete state elmma 1 The hybrid initial state of a discrete-time linear hy-
lution. We assume the event time at which a discrete transitifid SystemH is observable if and only if it is distinguishable.

occurs is unknown. The system paramete(g,) € R™"" |y order to check if the hybrid initial state is distinguishable,

andC(gy) € RP" for g € {1,2,---, N} are real matrices. e need to compare the distributions of the output sequences.
We assume that the initial statg, is an unknown, zero-mean|, the case of a linear system with Gaussian noise, this task
white Gaussian random variable with covariadgie ., =y ] = s greatly simplified, since the distributions are uniquely de-

Ilo and that the process noise,(¢:) and the measurementiermined by their means and covariances. A difference in the
noisevy(¢x) are uncorrelated, zero-mean white Gaussian Sgzans reduces to observability in the deterministic case, and
quences with the covariance matricBwy.(gx)wr(q:)"] = we can test this in several ways; in particular [12] presents ele-

p(ar)I and Evi(gr)or(qx)"] = o(qx)1 respectively. These gant rank conditions for this purpose, henceforth referred to as
random sequences are assumed to be uncorrelated with thegi-/idal-Chiuso-Soatto (VCS) conditions.

tial state, i.e.,E[a:kowk(qk)T] = E[mkovk(qk)T] = 0. I de- o ) ) )
notes the identity matrix. Since the state evolution of a hybrlemma 2 The hybrid initial state of a discrete-time linear

system has continuous trajectories as well as discrete jumpgchastic hybrid system is observable if the equivalent deter-
we define a hybrid time trajectory: ministic system is observable, i.e, the VCS conditions are satis-

fied.
Definition 1 (Hybrid time trajectory) A hybrid time trajectory
is a sequence of intervalBy, k1 — 1][k1, ko — 1] - - - [ks, kip1 —
1]--- wherek;(i > 1) is the time at which the-th discrete
state transition occurs.

If the VCS conditions are not satisfied, we have to compute
the covariances (higher moments) of the output sequ@hge

on [ko, k1 — 1]. The output sequence starting from the hybrid
initial state(qy,, zx,) on[ko, k1 — 1] is

Before deriving the observability conditions, we review they, (g, = O, (qr, )Tk +Tro (Gg ) Wo (G0 )+ Vieo (@1y) (2)
definition of observability for discrete-time stochastic linear o e o o o

hybrid systems [12]: whereO,, (qk,) = [C(qry)" (Cqro) Algo))" - --
- ((Clamg ) Al ) =) T1"
Definition 2 (Observability of discrete-time stochastic linear 0 - 0
hybrid systems) A discrete-time linear hybrid systé&mis C(qro) 0
observable on[ko,_ko + K] if the hyt_)rid st.ate(quk) for Treo (o) _ C(qry ) Algr,) 0
k € [ko,ko + K] is uniquely determined (in the case of :
as a unique probability distribution), from the output sequence N
Vi =i, - Ui s k)" whereK € N. Clano) Algrg)™ 0= o0 0
’ o W"ﬁo (Qko) = [wko (Qko gwk0+1(qu%T T wk1—1(Qk072’1;JT
Vidal et al. [12] developed rank tests for the observability Vo (dko) = (ko (@ko)” Vko+1(qho)™ +~ Vky —1(ao)" |

of stochastic jump linear systems of the form described &9 (ax;) € RP**" is the extended observability matrix for
H (Eq.(1)) using the notion of indistinguishability. Since wdhe linear system in Eq.(1) [12] and, (¢x,) is a Toeplitz
know the noise covariances as well as the system dynaniRatrix. . .

for a stochastic system, we use this additional knowledge to If 7ank[Ok,(ai,)] = n, ie., the linear system
obtain a more general condition. Since the output sequen&ééqko)vc(%q)) 1S opservable andi, > n, then a least-
of stochastic systems could be different from the same initgfluares solution (which we denote by, (qx,)) to Eq.(2) can
condition, we extend the notion of indistinguishability [12] aB€ determined uniquely.

follows: jko (qko) = OLO (qu )yﬁo (Qko)
:.Deﬁnit;]or;)C-)fd(lnditsting)uii,hda_lbiIityt o; dislcf‘rete-thE _(sjtoch?sticH Tp, + Olo(qko)'];o (Qro ) W Qo)
inear hybrid systems iscrete-time linear hybrid system i

is indistinguishable orjko, ko + K] if there exist output se- +O0% (k0 ) Vo (9ho) (3)
guencesVk and Yj onk € [ko, ko + K] starting from any Where(’)fm (@hs) = (OT (i) Oro (a0)) " OT (g1,). The last

0 0

two different hybrid state§yy, zx,) and (g, 71, ), which are  two terms on the right hand side of Eq.(3) represent the estima-
identically distributed. tion error due to the process noise and the measurement noise.



Similarly, the output sequence from another hybrid initial statgy = cz(%xo) + vg, Elyy"] = mocrcl + 0y .
(Qy» Tk, ) OVEr ko, k1 — 1] is Sinceo; # o3, we can determine the discrete initial state

, L, , , , uniquely. For instance, if the output comes frgm then the
Vo) = Oro (g )Ty + T (2o )Wiko (G )+ Vieo (dky) (4)  estimate of the initial state B =z + o

From Lemma 1, in order that the hybrid initial state of a 2
discrete-time stochastic linear hybrid system be observable, it
should be distinguishable, i.e.,litmma 2is not satisfied, the
covariances oY, (qx,) andyy, (q;, ) satisfy:

Observability of the discrete transition times

Lemma 3 gives the condition for the hybrid initial state
to be observable, over a time interval up to, but not including
the first transition. In this section, we focus without loss of
EVro () Vo (@10) 7] # BV (de) Vo ()71 (B) generality on deriving the conditions under which the first dis-
crete transition timés; can be uniquely determined from the
where EVio (o) Viso (@r0)T] = Oy (aho )Mo Ory (a1, )T OUtPUL SEqUENC ) ON [Ko, ko + K]; similarly, the times of
+ (o) Tro (ar0) TE (qiy) + 0 (o )13 the ensuing transitiors; (i € {2,...}) can be computed [12].

EVro (@) Vo (@,)] = Oy (44,1004, (q;,, )" We define observability of the first discrete transition time as
+ () Teo (91,) Tt (i) + 0 (a1 )1 follows:

. . e 0 . .
]'crhen,hthe dlsgrete "}'t'ﬁl state can be umqugl);] determ'nﬁ%ﬁnition4 (Observability of the first discrete transition time)
rom the covariance of the output sequence and the continuQys, -t giscrete transition time of a discrete-time linear hybrid

initial state can also be uniquely determined using Eq.(3). é'g}stemH is observable ofito, ko + K] if it can be determined
order to reduce the requireq, for observability (the sojourn uniquely from the output seciuen}z?@ = [yT - yT +K}T‘
0 (0]

time in the discrete stateg,, required for observability of
the hybrid initial state), we define as the minimum integer If there is a discrete transition at timke € [ko, ko + K], the

which satisfiesrank[O-(qr)] = n(Vgr, € {1,2,---,N}), outputattimek; and its covariance are

and T = maxT (similar to the joint o_bservabl_h_ty index U = Oqi)Agry ) F0xk,

used in [12]). Then, we have the following condition for the o F W

observability of the hybrid initial state: . +C (g ) Fr (z’fﬂ)k o (ko ) +:k1£leT) .
. o Elyr,yr,] = Clar,)Algr,)™ "o (Algr,)™ )" Clar,

Lemma 3 (Observability of the hybrid initial state) If e i (@r,) A2, o(Ala) T ) (; )

(A(qr), C(qx)) are observable for eacly, € {1,--- , N} and +0(q1o ) C (qhy ) Froo (Qho) Frio (aho) " Clany)

ko > 7, the hybrid initial state(g, , 7, ) is observable if and +o(qr, )] (6)

only if either the hybrid initial state of the deterministic system P ke ko

is observable, or whereF,, (qr,) = [Alqr,)" 7"~ A(qr,)™ 7% - I]. If

O (ko O5 (aiy )T + p(aro )T (g ) TE (aiy) + 0 (qiy )1 there is no state transition at tinkg, the output at time:; and
# Or(a}, ) MoOr (a}, )" + pla, ) T (ah, ) T (af, ) + o (g}, )1 TS cOVariance are
for all e dl,--- N} _
Ako 7& Ak, { } Uk, = C(Qko)A(Qko)kl koxko

er show l;hrouggI tk:je following slimpleheﬁargple how a FC (g ) Frg (@g) Wieo (@ig) + Vs (i)
noise free unobservable discrete-time linear hybrid system T ke —k k1 —ko\T T
be rendered observable, if each discrete state is endowednv%?{klykl] Cgno) Algr, )™~ o (Algre)™ )" Clano)
different measurement noise covariances. + (ko ) C (o) Fro (ko) Freo (o) C ko)™
Example: Consider a discrete-time linear hybrid system with +0(qro )T (7
two discrete states

In order that the transition at timk, be observable, either

q 4 TR B Lk Cgp i TRTLOT TR means (deterministic observability) or the covarianceg,p6
Yo = 1T+ U1

Ye = Tk TU2 5 Eq.(6) and Eq.(7) should be different. Thus, the observabil-
wheree; # 0, ¢s # 0, ande;, # co. The covariance of ity condition of the first discrete transition time is:

o : e A
the |n|t|i';1I s(tjate iSE[zo; ] . WOG € R. v ando, argh Lemma 4 (Observability of the first discrete transition time)
uncorrelated, zero-mean white Gaussian sequences With 0z fjrot discrete transition time is observable if and only if

H T _ ™ __
variancesBlviv] = o1 # 0 and Elvpvy ] = 02 # 0 gjgher the first discrete transition time of the equivalent deter-
respectively. Ifv; = vy = 0, the hybrid system is un- ministic hybrid system is observable, or

observable because two different hybrid initial stat@s ) C(qry ) Ao ) 7FoTTo (Algio )™ )T C (g, )T

and(q27§—;x0) generate the same output sequences [8]. How- 0(00)C (@i ) Foro (@i ) Fm (@1 )" C )T + (i )T
ever, ifv; andv, are not identically zero and have different £ Clag ;A(Qk ;kl_k%HOO(A(q(; )k‘i_ko)TC}(qk )7 !
covariances, then we can uniquely determine the hybrid ini- +p(qf; )C(C]Ok ) Fro (g ) Fs EQk )T C(q )T°+ (g
tial state. If we consider the case in which the actual hys. oy, 2 s 60{1 oY N?‘- o e ’ ’
brid initial state is(q1, ), the output and its covariance are k T

y = c1x9+ vy, ElyyT] = moerct +o1 . Therefore, fromLemma 2 , Lemma 3 andLemma 4, the hy-

Next, if the actual hybrid initial state isbrid initial state and the first discrete transition time can be
(92,%;170), the output and its covariance arainiquely determined. The remaining state trajectories can be



determined by repeating the procedure. Eofi > 1), thez;, of NV Kalman filters for the continuous state estimate. Although
will be given from the initial state estimate [12]. Thus, we haviihe underlying system in [6] is continuous-time and determinis-
the following observability condition: tic, the design methodology of [6] adapts well to discrete-time

. ] . ] ] stochastic hybrid systems, as we show here.
Theorem 1 A discrete-time linear stochastic hybrid systém

with Gaussian noise is observable if and only if it satisfies €3-2 Discrete-time Kalman filter

therLemma2 or Lemma3 andLemma4. We consider a hybrid system of the form described in
This test needs the operations of multiplication and adaFTg('j(é) ; Fo\r/\}irt]r? Zaliaenzfcs,'mvsrl:g'rtglm ncitat|ozr\17, W(\alvreeglaag?ﬁ; N
tion of matrices (which are system parameters and noise COV\g}lv“i_te Egg)e uaticins forlt1he Ieast-es {uéfé egt.imator of a linear
ances): the computation is straightforward with computationa}r - €4 q

) . ; stochastic system as
complexity depending on data size.
. . . . G = (A — K,C)ip + K k>0 8
3 Design of estimators for stochastic hybrid sys- wr1 = (A = KGOSk + Ky, k2 ®)

tems where! is the estimated discrete state, akg  ; is the op-

Having established conditions for the observability dimal Kalman filter gain for modd, given by Kpr, =
stochastic linear hybrid systems, we would like to design e&PxC/" (Ri+CiP:C[')~" andP, satisfies the discrete Riccati
timators for those observable systems, and also quantify V&cursion,
ues of sygtem parameters'that would guarantee performarj%e APLAT + Q) — Kpyot (R + CP.CIKE,
(exponential convergence, in our case). We extend the desi I ™ "
methods proposed by Balluchi et al. [6] for hybrid systems (0) 0

with continuous-time, continuous state dynamics to encompasfe Discrete Algebraic Riccati Equation (DARE) has a sta-

discrete-time stochastic hybrid systems. bilizing solution that is unique if and only ifA;,C;} is de-
A hybrid estimator finds estimat@sandz for the current tectable and 4, 1/2

: h . vel hi ;' }is controllable on the unit circle. Any
discrete statg and the continuous staterespectively. In this g, soytion is positive definite [13]. If these conditions are

section, we first describe the structure of the hybrid eStimatgﬁtisfied for every discrete states {1... N}, we can design
gnd thgn analy;e the continuous component Of_ the estimalqfank ofv steady-state, exponentially convergent Kalman fil-
in detail to obtain bounds on the time between discrete trangii< 15 estimate the continuous state of the system.

tions of state which would guarantee exponential CONVErgenR can then show that, for a given discrete stateorrectly

of our hybrid estimator. Throughout this paper, all norms, Uentified,

less specified otherwise, are 2-norms.

>l

= (A = KiC)Zr + Kiyr

Definition 5 (Exponential convergence of a hybrid estimator) i:’““ (A — KiC)e
= 1 — 107)Ck

Given a hybrid systeril with NV discrete modes, we say that a Cht1
hybrid estimator is exponentially convergent if its discrete sta (1 A . .

estimateg exhibits correct identification of the discrete—statg early,¢ is exponentially convergent if

transition sequence of the original system after a finite number (A; — K,Cy) is stable (10)
of steps; and at any given time, the continuous state estimate

is unique, with an estimation error me@n= E[% — 2] that 3.3 Error dynamics

9)

converges exponentially to the sgl| < M, with a rate of In this section, we follow the methodology of [6] to deter-
convergence:, wherel, is the steady-state error bound, andpine the evolution of the estimation error across the discrete
luf < 1. transition sequence. Let us consider two consequent discrete

transitions ofH, occurring at timeg:; andk;,,. Suppose the

3.1 Structure of the hybrid estimator . . .
] ) ] o transition at timek; ., was from discrete state to /, and was
We design the hybrid estimator as a combination of a digatected at tima/

! ' .1 such thatt;, | — k;11 < A. Similarly,
crete observer to detect the discrete state switches, and an.es-;.. — A Thj

1
s is illustrated in Figure 1. We are interested
timator to estimate the continuous dynamics, as proposed in J

[6]. In the rest of this paper, we assume that we have a dis- V" detect switch detect
crete observer that correctly identifies the discrete state, either |- m ” z
immediately after a switch takes place, or with a known time : : i "

m |

delay A after a discrete transition. A discrete observer could q
be constructed using a bank &f estimators as a residual gen-

erator [1, 6] — even in this case, we could further increase the Figure 1: lllustration of the transition sequence
probability of correct discrete-state identification by enforcing

a decision time delayA on the discrete observer. This wouldn the regionk € {kj, k; +1,...,k; ,}. Since we assume that
be possible only if the system were observable in the senségftime-stept; the discrete state has been identified correctly,
a stochastic hybrid system, as explained earlier. for the exponential convergence of the estimation errdtdn

In this section, we design a least-squares estimator in the fokfn,, we require that:

Q1 o

m



1. The error converges exponentially betwdgmndk; 1 1; Let us also assume there exists a lower bognoh the time
2. The error divergence betweép, ; andk/, , due towrong between resets, i.e., — ts 1> =1, forall s> 1. Then,
discrete state estimation does not upset the exponengial, ~ 0 and . = 77( ) such that\u| < 1, thenz(k)
convergence of the error dij to &7, . converges exponentially to the et 5] with a rate of con-
Following the methodology of [6], dividing the time intervalvergence greater than or equal to

betweenk; andk;_ , into two regions, we get error dynamics ) )
Using Egs. (10), (16) and (17) witemma 5 andLemma

of the form S )
_ _ 6, we arrive at the following theorem:
Gr1 = (Am — KnCn)Chy, k €k}, ki — 1} . o .
Gorr = (Ap — KpnCu) + [( — Az) Theorem 2 Consider a stochastic linear hybrid system of the

- Km(cm - Cl)]j kc {kz+1, okl — 1) form in Eq.(1), a steady-state error bound, and rate of
(11) convergenceu, || < 1, |a(Ay — KnCp)| < [p] for all
wherez = E[z]. The second term in Eq.(11) arises becauge = 1...N, wherea(A) is the maximal absolute value of
a Kalman filter designed for the discrete statés being used the eigenvalues af. Letk(A4) = [Q[/[[Q"] the condition
to estimate the dynamics of the discrete stateCombining number of A under the inverse, whepe ' AQ = J, the Jor-
Eq. (11), we express the error dynamicsqpy; = (A,, — dan canonical form. Then if the following five conditions are
K Co)Ci + ugy k€ {Kl, ... ki, — 1} where satisfied:

0, for k€ (K, kivs — 1} 1. The system is observable under the definition in Section 2

up = ((Am — A)) = K (Cr — C))) Ty, (12) 2. {A,.,C,} couples are observablé A,,, Qw.*} couples
fork € {kiy1,..., ki, —1} are controllable, and4,, — K,,C,,) is stable with all
distinct eigenvalues, forath =1... N.
3. There existsX > 0,||zk]lcc < X, k = 1,2,... such that
uklloo < U = max|[(An — A) — Kpn(Cr — G|, X

From this, we get:

||§k+1” < (Am - chm)k—,—l_k;’gk;

k—k; _ k—ki—l,
|20 (Am = KinCn)™ ™ “’%“H 13) 4. The discrete decision timé, satisfies the relation
1
wherek € {k;1,..., k[, —1}. A< My (20)
Lemma 5 Given a matrixA € R™*™ with all distinct eigen- — VnUmax[k(Apy — Ky Cn)]
values,
| A < k(A)at(A), ¥Vt >0 (14) 5. The time between switching eventssatisfies the condi-
wherea(A) is the maximal absolute value of the eigenvalues of tions
A, andk(A) = ||Q||[|Q"]|, the condition number of A under B > Bmin+ A, where
; —1 — i n J —
the inverse, wher®—* AQ = J, the Jordan canonical form. Bonin > max[“ Ilog ‘( \ﬁUAk(fm chm))‘

o . . log [k(Am—KmCim)]

Further simplification of Eq.(13) usingemma5 gives us , Max; loi.[a(A,,,ﬁK,,,Lcm)]\]

|G|l < K(Am = Cn)a(Ap — KnCo) 7% |G || we can design a hybrid estimator that converges to within the
+ k(A — Cp)max |Jug| (K — kiy1) (15) steady-state boundl/, with a rate of convergence greater than

) ) or equal to.
wherek € {kiy1,..., ki }. Sincek] | — ki1 <A, If
Corollary 1 If Conditions (1)-(4) ofTheorem 3 are satisfied,
luklloe < U =max |[(An — A1) — K (Cr — G|} X then, given a steady-state error bound}, and a rate of con-
(16) vergenceu, we can design an estimator that converges expo-
such thatX’ > ||z, X > 0, we can write nentially to M, with a rate of at leasi if the time between

_ Y switching events is at leagt= (,,.;, + A, where
|G| < k(Am = C)a(Am — KnCo)M 5 || Gy ||

+VnUAK(Ay — Cp) (17)  Bmin = max [@bg’(l _ \/EUAk(z‘]!V}nUmecm)>

IOg[k(Am 7K'm, Cvn)]
[log[a(Am —KmCm)l|

7

max

Lemma 6 Consider a hybrid system with a single discrete
state, in which the discrete-time evolution of the continuous ) i
state variable is given by,.1 = 5z, |yl < 1. Suppose 4 Example: Aircraft Trajectory
the stater is subject to resets(¢s) = anx(ts — 1) + b, occur- We apply the above design criteria to the design of an esti-
ring at switching timegt,}, witha > 1 andb > 0. Then the mator for the switched, linearized trajectory of an aircraft. We
evolution ofz can be described by consider two discrete states, both coordinated turns, but with
ot different angular velocities, one with a turn rate26fper sec-
e o= 0w, ke {tsor,..ts =1} (18)  ond, and the other with a turn rate &5t per second, which rep-
Ty, = an* 'z +b (19) resent aircraft trajectories composed of slow turns and sharp

s
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Figure 2: (left) Exponential convergence of error. (right) Convergence of error when modes have same dynamics but different
noise characteristics. The triangles denote discrete transition time$)(99, My = 0, andT = 2sec).

turns. For brevity, we only include this two discrete state eprove the observability conditions for a discrete-time stochastic
ample in this paper but we have successfully designed hybliitear hybrid system. We have also found bounds on the time
estimators for aircraft trajectory tracking and conflict detetetween discrete transitions to guarantee the exponential con-
tion and resolution problems with multiple discrete states, suetrgence of hybrid estimators for such systems. An interesting
as constant velocity straight flight modes with different noisdirection for future work would be the extension of these re-
characteristics and coordinated turn modes with various anguits to hybrid systems with continuous state resets.

lar velocities. The dynamics of a coordinated turn is given bx?eferences
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