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Abstract
A stochastic linear hybrid system is said to be observable if

the hybrid state of the system can be uniquely determined from
its output. In this paper, we derive conditions for the observ-
ability of stochastic linear hybrid systems by exploiting the in-
formation obtained from system noise characteristics. Having
established the necessary criteria for observability, we study
the effect of these conditions on estimator design, and also find
bounds on the switching times of the system to achieve guaran-
teed estimator performance. We then apply these results to the
estimation of a two-mode aircraft trajectory.

1 Introduction
The tracking of aircraft trajectories is a problem that has

been approached with some success using hybrid system mod-
els [1]. Related problems of interest to us are the ability to esti-
mate the hybrid states of such systems from their outputs, and
also the design of estimators for such systems. The problem of
observability, namely, the ability to estimate or reconstruct the
actual state of a system given its output, has been studied ex-
tensively, both for continuous [2] and discrete [3, 4] systems.
More recently, several researchers have approached the prob-
lem of observability of hybrid systems. A practical problem
that has received increased attention is the extension of these
concepts to stochastic hybrid systems. In this paper, we ad-
dress the issue of observability of a class of stochastic hybrid
systems – systems where the continuous dynamics are affected
by white Gaussian noise. Alessandri and Coletta [5] proposed
a Luenberger observer design methodology, while Balluchi et
al. [6] developed a method of combining location observers for
discrete state estimation with Luenberger observers for contin-
uous state estimation for deterministic linear systems. Bempo-
rad et al. [7] defined the concept of incremental observability
of continuous-time linear hybrid systems. Recently, Vidal et
al. [8] derived observability conditions for linear hybrid sys-
tems with continuous-time continuous-state dynamics, given
in the form of rank conditions similar to those for continuous-
time linear system observability. For stochastic systems, the
definition of observability in its classical form, as proposed by
Kalman for systems with no noise, fails; we therefore need to
find a meaningful interpretation of observability for systems
with random noise. Baram and Kailath [9] proposed the con-

cept ofestimabilityas a better criterion to gauge stochastic lin-
ear systems. While this is one way of approaching the prob-
lem, we try to extend the definition of observability to include
stochastic hybrid systems.

An important class of problems associated with applica-
tions in multi-target tracking [1] and speech recognition [10]
pertains to the estimation of discrete-time Markov jump linear
systems. Cost and do Val [11] analyzed such systems with fi-
nite Markov states and deterministic continuous dynamics. Vi-
dal et al. [12] derived observability conditions for jump linear
systems based on rank tests similar to those of deterministic
linear hybrid systems. The first part of this study is motivated
by the results of Vidal et al. [12]. They proposed the notion
of indistinguishability, and derived elegant rank tests for the
observability of stochastic jump linear systems, in the mean
(or deterministic) sense. Since in the design of estimators for
aircraft tracking we have knowledge of not just the system dy-
namics, but also the noise covariances, we try to exploit this
additional knowledge to improve our ability to differentiate be-
tween state trajectories. Since the output sequences of stochas-
tic systems might be different from the same initial condition,
we extend the notion of indistinguishability [12] for such sys-
tems, and based on our definition, we derive conditions for the
observability of discrete-time stochastic linear hybrid systems.
The latter part of this paper applies the approach of Balluchi
et al. [6], so far used in the design of hybrid observers for
deterministic hybrid systems with continuous-time state evolu-
tion, to discrete-time stochastic hybrid systems and estimator
design.

This paper is organized as follows: Section 2 presents the
observability conditions of discrete-time stochastic jump lin-
ear systems. In Section 3, we obtain conditions on the system
parameters that would guarantee the exponential convergence
of hybrid estimators. Examples and conclusions are presented
in Sections 4 and 5 respectively. Proofs of theorems are not
included due to limited space; they are available upon request.

2 Observability of discrete-time stochastic lin-
ear hybrid systems
In this section, inspired by Vidal et al. [12], we extend

the concepts of indistinguishability, observability of the hybrid
initial state, and discrete transition times as defined in [12] and
derive more general observability conditions for discrete-time
stochastic linear hybrid systems using the knowledge of noise
covariances. We consider a discrete-time stochastic linear hy-



brid system

H :





xk+1 = A(qk)xk + wk(qk)
yk = C(qk)xk + vk(qk)

qk+1 = δ(qk, γk)
, k ∈ {0, 1, · · · }

(1)
wherek is a non-negative integer (k ∈ N); xk ∈ Rn andyk ∈
Rp are the continuous state and output variables respectively;
qk ∈ {1, 2, · · · , N} is the discrete state,γk ∈ {γ1, · · · , γm}
is a discrete control input, andδ(·, ·) is a deterministic dis-
crete transition relation which governs the discrete state evo-
lution. We assume the event time at which a discrete transition
occurs is unknown. The system parametersA(qk) ∈ Rn×n

andC(qk) ∈ Rp×n for qk ∈ {1, 2, · · · , N} are real matrices.
We assume that the initial statexk0 is an unknown, zero-mean
white Gaussian random variable with covarianceE[xk0x

T
k0

] =
Π0 and that the process noisewk(qk) and the measurement
noisevk(qk) are uncorrelated, zero-mean white Gaussian se-
quences with the covariance matricesE[wk(qk)wk(qk)T ] =
ρ(qk)I andE[vk(qk)vk(qk)T ] = σ(qk)I respectively. These
random sequences are assumed to be uncorrelated with the ini-
tial state, i.e.,E[xk0wk(qk)T ] = E[xk0vk(qk)T ] = 0. I de-
notes the identity matrix. Since the state evolution of a hybrid
system has continuous trajectories as well as discrete jumps,
we define a hybrid time trajectory:

Definition 1 (Hybrid time trajectory) A hybrid time trajectory
is a sequence of intervals[k0, k1−1][k1, k2−1] · · · [ki, ki+1−
1] · · · whereki(i ≥ 1) is the time at which thei-th discrete
state transition occurs.

Before deriving the observability conditions, we review the
definition of observability for discrete-time stochastic linear
hybrid systems [12]:

Definition 2 (Observability of discrete-time stochastic linear
hybrid systems) A discrete-time linear hybrid systemH is
observable on[k0, k0 + K] if the hybrid state(qk, xk) for
k ∈ [k0, k0 + K] is uniquely determined (in the case ofxk

as a unique probability distribution), from the output sequence
YK = [yT

k0
· · · yT

k0+K ]T , whereK ∈ N.

Vidal et al. [12] developed rank tests for the observability
of stochastic jump linear systems of the form described by
H (Eq.(1)) using the notion of indistinguishability. Since we
know the noise covariances as well as the system dynamics
for a stochastic system, we use this additional knowledge to
obtain a more general condition. Since the output sequences
of stochastic systems could be different from the same initial
condition, we extend the notion of indistinguishability [12] as
follows:

Definition 3 (Indistinguishability of discrete-time stochastic
linear hybrid systems) A discrete-time linear hybrid system H
is indistinguishable on[k0, k0 + K] if there exist output se-
quencesYK andY ′K on k ∈ [k0, k0 + K] starting from any
two different hybrid states(qk0 , xk0) and(q′k0

, x′k0
), which are

identically distributed.

2.1 Observability of the hybrid initial state
In this section, using a procedure similar to that in [12],

we derive the conditions under which the hybrid initial state
(qk0 , xk0) can be uniquely determined from the output se-
quence{yk} on [k0, k1 − 1] (k1 − 1 ≤ k0 + K), i.e., before
the first discrete transition occurs. We defineκi := ki+1 − ki

(i ≥ 0) as the sojourn time, which denotes how long the system
stays in a discrete state after thei-th discrete transition. Based
onDefinition 2 andDefinition 3, we get the following lemma:

Lemma 1 The hybrid initial state of a discrete-time linear hy-
brid systemH is observable if and only if it is distinguishable.

In order to check if the hybrid initial state is distinguishable,
we need to compare the distributions of the output sequences.
In the case of a linear system with Gaussian noise, this task
is greatly simplified, since the distributions are uniquely de-
termined by their means and covariances. A difference in the
means reduces to observability in the deterministic case, and
we can test this in several ways; in particular [12] presents ele-
gant rank conditions for this purpose, henceforth referred to as
the Vidal-Chiuso-Soatto (VCS) conditions.

Lemma 2 The hybrid initial state of a discrete-time linear
stochastic hybrid system is observable if the equivalent deter-
ministic system is observable, i.e, the VCS conditions are satis-
fied.

If the VCS conditions are not satisfied, we have to compute
the covariances (higher moments) of the output sequenceYκ0

on [k0, k1 − 1]. The output sequence starting from the hybrid
initial state(qk0 , xk0) on [k0, k1 − 1] is

Yκ0(qk0) = Oκ0(qk0)xk0+Tκ0(qk0)Wκ0(qk0)+Vκ0(qk0) (2)

whereOκ0(qk0) = [C(qk0)
T (C(qk0)A(qk0))

T · · ·
· · · ((C(qk0)A(qk0))

k1−1)T ]T

Tκ0(qk0) =




0 · · · 0
C(qk0) · · · 0

C(qk0)A(qk0) · · · 0
...

C(qk0)A(qk0)
k1−k0−2 · · · 0




Wκ0(qk0) = [wk0(qk0)
T wk0+1(qk0)

T · · ·wk1−1(qk0)
T ]T

Vκ0(qk0) = [vk0(qk0)
T vk0+1(qk0)

T · · · vk1−1(qk0)
T ]T

Oκi(qki) ∈ Rpκi×n is the extended observability matrix for
the linear system in Eq.(1) [12] andTκ0(qk0) is a Toeplitz
matrix.

If rank[Oκ0(qk0)] = n, i.e., the linear system
(A(qk0), C(qk0)) is observable andκ0 ≥ n, then a least-
squares solution (which we denote byx̂k0(qk0)) to Eq.(2) can
be determined uniquely.

x̂k0(qk0) = O†κ0
(qk0)Yκ0(qk0)

= xk0 +O†κ0
(qk0)Tκ0(qk0)Wκ0(qk0)

+O†κ0
(qk0)Vκ0(qk0) (3)

whereO†κ0
(qk0) = (OT

κ0
(qk0)Oκ0(qk0))

−1OT
κ0

(qk0). The last
two terms on the right hand side of Eq.(3) represent the estima-
tion error due to the process noise and the measurement noise.



Similarly, the output sequence from another hybrid initial state
(q′k0

, x′k0
) over[k0, k1 − 1] is

Yκ0(q
′
k0

) = Oκ0(q
′
k0

)x′k0
+Tκ0(q

′
k0

)Wκ0(q
′
k0

)+Vκ0(q
′
k0

) (4)

From Lemma 1, in order that the hybrid initial state of a
discrete-time stochastic linear hybrid system be observable, it
should be distinguishable, i.e., ifLemma 2 is not satisfied, the
covariances ofYκ0(qk0) andYκ0(q

′
k0

) satisfy:

E[Yκ0(qk0)Yκ0(qk0)
T ] 6= E[Yκ0(q

′
k0

)Yκ0(q
′
k0

)T ] (5)

where E[Yκ0(qk0)Yκ0(qk0)
T ] = Oκ0(qk0)Π0Oκ0(qk0)

T

+ ρ(qk0)Tκ0(qk0)T T
κ0

(qk0) + σ(qk0)I;
E[Yκ0(q

′
k0

)Yκ0(q
′
k0

)T ] = Oκ0(q
′
k0

)Π0Oκ0(q
′
k0

)T

+ ρ(q′k0
)Tκ0(q

′
k0

)T T
κ0

(q′k0
) + σ(q′k0

)I
Then, the discrete initial state can be uniquely determined
from the covariance of the output sequence and the continuous
initial state can also be uniquely determined using Eq.(3). In
order to reduce the requiredκ0 for observability (the sojourn
time in the discrete stateqk0 required for observability of
the hybrid initial state), we defineτ as the minimum integer
which satisfiesrank[Oτ (qk)] = n(∀qk ∈ {1, 2, · · · , N}),
and τ̄ = max τ (similar to the joint observability index
used in [12]). Then, we have the following condition for the
observability of the hybrid initial state:

Lemma 3 (Observability of the hybrid initial state) If
(A(qk), C(qk)) are observable for eachqk ∈ {1, · · · , N} and
κ0 ≥ τ̄ , the hybrid initial state(qk0 , xk0) is observable if and
only if either the hybrid initial state of the deterministic system
is observable, or

Oτ̄ (qk0)Π0Oτ̄ (qk0)
T + ρ(qk0)Tτ̄ (qk0)T T

τ̄ (qk0) + σ(qk0)I
6= Oτ̄ (q′k0

)Π0Oτ̄ (q′k0
)T + ρ(q′k0

)Tτ̄ (q′k0
)T T

τ̄ (q′k0
) + σ(q′k0

)I
for all qk0 6= q′k0

∈ {1, · · · , N}.
We show through the following simple example how a

noise free unobservable discrete-time linear hybrid system may
be rendered observable, if each discrete state is endowed with
different measurement noise covariances.
Example: Consider a discrete-time linear hybrid system with
two discrete states

q1 :
{

xk+1 = xk

yk = c1xk + v1
, q2 :

{
xk+1 = xk

yk = c2xk + v2

where c1 6= 0, c2 6= 0, and c1 6= c2. The covariance of
the initial state isE[x0x

T
0 ] = π0 ∈ R+. v1 and v2 are

uncorrelated, zero-mean white Gaussian sequences with co-
variancesE[v1v

T
1 ] = σ1 6= 0 and E[v2v

T
2 ] = σ2 6= 0

respectively. Ifv1 = v2 = 0, the hybrid system is un-
observable because two different hybrid initial states(q1, x0)
and(q2,

c1
c2

x0) generate the same output sequences [8]. How-
ever, if v1 andv2 are not identically zero and have different
covariances, then we can uniquely determine the hybrid ini-
tial state. If we consider the case in which the actual hy-
brid initial state is(q1, x0), the output and its covariance are
y = c1x0 + v1, E[yyT ] = π0c1c

T
1 + σ1 .

Next, if the actual hybrid initial state is
(q2,

c1
c2

x0), the output and its covariance are

y = c2( c1
c2

x0) + v2, E[yyT ] = π0c1c
T
1 + σ2 .

Sinceσ1 6= σ2, we can determine the discrete initial state
uniquely. For instance, if the output comes fromq1, then the
estimate of the initial state iŝx0 = x0 + v1

c1
.

2.2 Observability of the discrete transition times
Lemma 3 gives the condition for the hybrid initial state

to be observable, over a time interval up to, but not including
the first transition. In this section, we focus without loss of
generality on deriving the conditions under which the first dis-
crete transition timek1 can be uniquely determined from the
output sequenceYK on [k0, k0 + K]; similarly, the times of
the ensuing transitionski(i ∈ {2, . . . }) can be computed [12].
We define observability of the first discrete transition time as
follows:

Definition 4 (Observability of the first discrete transition time)
The first discrete transition time of a discrete-time linear hybrid
systemH is observable on[k0, k0 + K] if it can be determined
uniquely from the output sequenceYK = [yT

k0
· · · yT

k0+K ]T .

If there is a discrete transition at timek1 ∈ [k0, k0 + K], the
output at timek1 and its covariance are

yk1 = C(qk1)A(qk0)
k1−k0xk0

+C(qk1)Fκ0(qk0)Wκ0(qk0) + vk1(qk1)
E[yk1y

T
k1

] = C(qk1)A(qk0)
k1−k0Π0(A(qk0)

k1−k0)T C(qk1)
T

+ρ(qk0)C(qk1)Fκ0(qk0)Fκ0(qk0)
T C(qk1)

T

+σ(qk1)I (6)

whereFκ0(qk0) := [A(qk0)
k1−k0−1 A(qk0)

k1−k0−2 · · · I]. If
there is no state transition at timek1, the output at timek1 and
its covariance are

yk1 = C(qk0)A(qk0)
k1−k0xk0

+C(qk0)Fκ0(qk0)Wκ0(qk0) + vk1(qk0)
E[yk1y

T
k1

] = C(qk0)A(qk0)
k1−k0Π0(A(qk0)

k1−k0)T C(qk0)
T

+ρ(qk0)C(qk0)Fκ0(qk0)Fκ0(qk0)
T C(qk0)

T

+σ(qk0)I (7)

In order that the transition at timek1 be observable, either
means (deterministic observability) or the covariances ofyk1 ’s
in Eq.(6) and Eq.(7) should be different. Thus, the observabil-
ity condition of the first discrete transition time is:

Lemma 4 (Observability of the first discrete transition time)
The first discrete transition time is observable if and only if
either the first discrete transition time of the equivalent deter-
ministic hybrid system is observable, or

C(qk1)A(qk0)
k1−k0Π0(A(qk0)

k1−k0)T C(qk1)
T

+ρ(qk0)C(qk1)Fκ0(qk0)Fκ0(qk0)
T C(qk1)

T + σ(qk1)I
6= C(qk0)A(qk0)

k1−k0Π0(A(qk0)
k1−k0)T C(qk0)

T

+ρ(qk0)C(qk0)Fκ0(qk0)Fκ0(qk0)
T C(qk0)

T + σ(qk0)I
for all qk 6= q′k ∈ {1, · · · , N}.
Therefore, fromLemma 2 , Lemma 3 andLemma 4, the hy-
brid initial state and the first discrete transition time can be
uniquely determined. The remaining state trajectories can be



determined by repeating the procedure. Forki (i ≥ 1), thex̂ki

will be given from the initial state estimate [12]. Thus, we have
the following observability condition:

Theorem 1 A discrete-time linear stochastic hybrid systemH
with Gaussian noise is observable if and only if it satisfies ei-
therLemma2 or Lemma3 andLemma4.

This test needs the operations of multiplication and addi-
tion of matrices (which are system parameters and noise covari-
ances): the computation is straightforward with computational
complexity depending on data size.

3 Design of estimators for stochastic hybrid sys-
tems
Having established conditions for the observability of

stochastic linear hybrid systems, we would like to design es-
timators for those observable systems, and also quantify val-
ues of system parameters that would guarantee performance
(exponential convergence, in our case). We extend the design
methods proposed by Balluchi et al. [6] for hybrid systems
with continuous-time, continuous state dynamics to encompass
discrete-time stochastic hybrid systems.

A hybrid estimator finds estimateŝq andx̂ for the current
discrete stateq and the continuous statex respectively. In this
section, we first describe the structure of the hybrid estimator,
and then analyze the continuous component of the estimator
in detail to obtain bounds on the time between discrete transi-
tions of state which would guarantee exponential convergence
of our hybrid estimator. Throughout this paper, all norms, un-
less specified otherwise, are 2-norms.

Definition 5 (Exponential convergence of a hybrid estimator)
Given a hybrid systemH with N discrete modes, we say that a
hybrid estimator is exponentially convergent if its discrete state
estimateq̂ exhibits correct identification of the discrete-state
transition sequence of the original system after a finite number
of steps; and at any given time, the continuous state estimate
is unique, with an estimation error mean̄ζ = E[x̂− x] that
converges exponentially to the set‖ζ̄‖ ≤ M0 with a rate of
convergenceµ, whereM0 is the steady-state error bound, and
|µ| < 1.

3.1 Structure of the hybrid estimator
We design the hybrid estimator as a combination of a dis-

crete observer to detect the discrete state switches, and an es-
timator to estimate the continuous dynamics, as proposed in
[6]. In the rest of this paper, we assume that we have a dis-
crete observer that correctly identifies the discrete state, either
immediately after a switch takes place, or with a known time
delay∆ after a discrete transition. A discrete observer could
be constructed using a bank ofN estimators as a residual gen-
erator [1, 6] – even in this case, we could further increase the
probability of correct discrete-state identification by enforcing
a decision time delay∆ on the discrete observer. This would
be possible only if the system were observable in the sense of
a stochastic hybrid system, as explained earlier.
In this section, we design a least-squares estimator in the form

of N Kalman filters for the continuous state estimate. Although
the underlying system in [6] is continuous-time and determinis-
tic, the design methodology of [6] adapts well to discrete-time
stochastic hybrid systems, as we show here.

3.2 Discrete-time Kalman filter
We consider a hybrid system of the form described in

Eq.(1). For the sake of simplicity of notation, we replaceA(qk)
andC(qk) with Al andCl, wherel ∈ {1 . . . N}. We can then
write the equations for the least-square estimator of a linear
stochastic system as

x̂k+1 = (Al −KlCl)x̂k + KP,k,lyk, k ≥ 0 (8)

wherel is the estimated discrete state, andKP,k,l is the op-
timal Kalman filter gain for model, given by KP,k,l =
AlPkCT

l (Rl+ClPkCT
l )−1 andPk satisfies the discrete Riccati

recursion,

Pk+1 = AlPkAT
l + Ql −KP,k,l(Rl + ClPkCT

l )KT
P,k,l

P (0) , Π0

The Discrete Algebraic Riccati Equation (DARE) has a sta-
bilizing solution that is unique if and only if{Al, Cl} is de-
tectable and{Al, Q

1/2
l }is controllable on the unit circle. Any

such solution is positive definite [13]. If these conditions are
satisfied for every discrete statei ∈ {1 . . . N}, we can design
a bank ofN steady-state, exponentially convergent Kalman fil-
ters to estimate the continuous state of the system.
We can then show that, for a given discrete statei, correctly
identified,

x̂k+1 = (Al −KlCl)x̂k + Klyk

ζ̂k+1 = (Al −KlCl)ζ̂k
(9)

Clearly,ζ̂ is exponentially convergent if

(Al −KlCl) is stable (10)

3.3 Error dynamics
In this section, we follow the methodology of [6] to deter-

mine the evolution of the estimation error across the discrete
transition sequence. Let us consider two consequent discrete
transitions ofH, occurring at timeski andki+1. Suppose the
transition at timeki+1 was from discrete statem to l, and was
detected at timek′i+1 such thatk′i+1 − ki+1 ≤ ∆. Similarly,
k′i − ki ≤ ∆. This is illustrated in Figure 1. We are interested

k k’ ’

switch detect switch detect

q = m q = l

q = m q = m~ ~ ~

q = l q = l

q = l

i ki i+1i+1 k

Figure 1: Illustration of the transition sequence

in the regionk ∈ {k′i, k′i + 1, . . . , k′i+1}. Since we assume that
by time-stepk′i the discrete state has been identified correctly,
for the exponential convergence of the estimation error onk′i to
k′i+1, we require that:



1. The error converges exponentially betweenk′i andki+1;
2. The error divergence betweenki+1 andk′i+1 due to wrong

discrete state estimation does not upset the exponential
convergence of the error onk′i to k′i+1.

Following the methodology of [6], dividing the time interval
betweenk′i andk′i+1 into two regions, we get error dynamics
of the form

ζ̄k+1 = (Am −KmCm)ζ̄k, k ∈ {k′i, . . . , ki+1 − 1}
ζ̄k+1 = (Am −KmCm)ζ̄k + [(Am −Al)

− Km(Cm − Cl)]x̄k, k ∈ {ki+1, . . . , k
′
i+1 − 1}

(11)
wherex̄ = E[x]. The second term in Eq.(11) arises because
a Kalman filter designed for the discrete statem is being used
to estimate the dynamics of the discrete statel. Combining
Eq. (11), we express the error dynamics byζ̄k+1 = (Am −
KmCm)ζ̄k + uk, k ∈ {k′i, . . . , k′i+1 − 1} where

uk =





0, for k ∈ {k′i, . . . , ki+1 − 1}
((Am −Al)−Km(Cm − Cl))x̄k,

for k ∈ {ki+1, . . . , k
′
i+1 − 1}

(12)

From this, we get:

∥∥ζ̄k+1

∥∥ ≤
∥∥∥(Am −KmCm)k+1−k′i ζ̄k′i

∥∥∥
+

∥∥∥∑k−k′i
l=0 (Am −KmCm)k−k′i−luk′i+l

∥∥∥
(13)

wherek ∈ {ki+1, . . . , k
′
i+1 − 1}.

Lemma 5 Given a matrixA ∈ Rn×n with all distinct eigen-
values,

‖At‖ ≤ k(A)αt(A), ∀t ≥ 0 (14)

whereα(A) is the maximal absolute value of the eigenvalues of
A, andk(A) = ‖Q‖‖Q−1‖, the condition number of A under
the inverse, whereQ−1AQ = J , the Jordan canonical form.

Further simplification of Eq.(13) usingLemma 5 gives us
∥∥ζ̄k+1

∥∥ ≤ k(Am − Cm)[α(Am −KmCm)]k+1−k′i
∥∥ζ̄k′i

∥∥
+ k(Am − Cm)max ‖uk‖ (k − ki+1) (15)

wherek ∈ {ki+1, . . . , k
′
i+1}. Sincek′i+1 − ki+1 ≤ ∆, if

‖uk‖∞ ≤ U = max ‖(Am −Al)−Km(Cm − Cl)‖1 X
(16)

such thatX ≥ ‖x‖∞, X > 0, we can write
∥∥ζ̄k+1

∥∥ ≤ k(Am − Cm)[α(Am −KmCm)]k+1−k′i
∥∥ζ̄k′i

∥∥
+
√

nU∆k(Am − Cm) (17)

Lemma 6 Consider a hybrid system with a single discrete
state, in which the discrete-time evolution of the continuous
state variable is given byxk+1 = ηxk, |η| < 1. Suppose
the statex is subject to resetsx(ts) = aηx(ts − 1) + b, occur-
ring at switching times{ts}, with a ≥ 1 andb ≥ 0. Then the
evolution ofx can be described by

xk = ηk−ts−1xts−1 , k ∈ {ts−1, . . . , ts − 1} (18)

xts = aηts−ts−1xts−1 + b (19)

Let us also assume there exists a lower boundβ on the time
between resets, i.e.,ts − ts−1 ≥ β ≥ 1, for all s > 1. Then,

if xt0 > 0 andµ = η(
logη a

β +1) such that|µ| < 1, thenx(k)
converges exponentially to the set[0, b

1−ηβ ] with a rate of con-
vergence greater than or equal toµ.

Using Eqs. (10), (16) and (17) withLemma 5 andLemma
6, we arrive at the following theorem:

Theorem 2 Consider a stochastic linear hybrid system of the
form in Eq.(1), a steady-state error boundM0 and rate of
convergenceµ, |µ| < 1, |α(Am − KmCm)| ≤ |µ| for all
m = 1 . . . N , whereα(A) is the maximal absolute value of
the eigenvalues ofA. Let k(A) = ‖Q‖‖Q−1‖, the condition
number of A under the inverse, whereQ−1AQ = J , the Jor-
dan canonical form. Then if the following five conditions are
satisfied:

1. The system is observable under the definition in Section 2

2. {Am, Cm} couples are observable,{Am, Q
1/2
m } couples

are controllable, and(Am − KmCm) is stable with all
distinct eigenvalues, for allm = 1 . . . N .

3. There existsX > 0,‖xk‖∞ ≤ X, k = 1, 2, ... such that
‖uk‖∞ ≤ U = max ‖(Am −Al)−Km(Cm − Cl)‖1 X

4. The discrete decision time,∆ satisfies the relation

∆ ≤ M0√
nUmax[k(Am −KmCm)]

(20)

5. The time between switching events,β satisfies the condi-
tions

β > βmin + ∆, where
βmin > max[ 1

| log µ| log
∣∣∣
(
1−

√
nU∆k(Am−KmCm)

M0

)∣∣∣
, max log[k(Am−KmCm)]

| log[α(Am−KmCm)]| ]

we can design a hybrid estimator that converges to within the
steady-state boundM0 with a rate of convergence greater than
or equal toµ.

Corollary 1 If Conditions (1)-(4) ofTheorem 3 are satisfied,
then, given a steady-state error boundM0 and a rate of con-
vergenceµ, we can design an estimator that converges expo-
nentially toM0 with a rate of at leastµ if the time between
switching events is at leastβ = βmin + ∆, where

βmin = max
[

1
| log µ| log

∣∣∣
(
1−

√
nU∆k(Am−KmCm)

M0

)∣∣∣ ,

max log[k(Am−KmCm)]
| log[α(Am−KmCm)]|

]

4 Example: Aircraft Trajectory
We apply the above design criteria to the design of an esti-

mator for the switched, linearized trajectory of an aircraft. We
consider two discrete states, both coordinated turns, but with
different angular velocities, one with a turn rate of2◦ per sec-
ond, and the other with a turn rate of5◦ per second, which rep-
resent aircraft trajectories composed of slow turns and sharp
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Figure 2: (left) Exponential convergence of error. (right) Convergence of error when modes have same dynamics but different
noise characteristics. The triangles denote discrete transition times (µ = 0.99, M0 = 0, andT = 2sec).

turns. For brevity, we only include this two discrete state ex-
ample in this paper but we have successfully designed hybrid
estimators for aircraft trajectory tracking and conflict detec-
tion and resolution problems with multiple discrete states, such
as constant velocity straight flight modes with different noise
characteristics and coordinated turn modes with various angu-
lar velocities. The dynamics of a coordinated turn is given by

xk =




1 sin ωT
ω 0 − 1−cos ωT

ω
0 cos ωT 0 − sin ωT
0 1−cos ωT

ω 1 sin ωT
ω

1 sinωT 0 cos ωT


 xk−1

+

[
T 2

2 T 0 0
0 0 T 2

2 T

]T

uk−1 + wk

yk =
[

1 0 0 0
0 0 1 0

]
xk + vk

(22)

wherex = [ x1 ẋ1 x2 ẋ2 ] wherex1 andx2 are the po-
sition coordinates,u = [ u1 u2 ]T whereu1 andu2 are the
velocity components,ω is the turn rate,T is the sampling in-
terval, w is the process noise, andv is the sensor noise. We
choose an operating velocity of 150 knots. We find that for an
instantaneous discrete decision time, the time between discrete
transitions should be at least 8 seconds to guarantee exponential
convergence with a rate of 0.99. The comparison of the bounds
is shown in Figure 2-(left). We also note that byLemma 5 the
norm of the mean error does not have to be monotonic, but if
the conditions explained above are satisfied, it will be bounded
by an exponential of rateµ. This is also seen in the example. As
explained in the Section 2,Lemma 2, identical dynamics with
different noise characteristics in each discrete state might still
make the system observable in the stochastic hybrid context.
We demonstrate this by designing an exponentially convergent
hybrid estimator for a switched aircraft trajectory - the two dis-
crete states correspond to2◦ per second turns with different
process noise covariances. This is shown in Figure 2-(right).

5 Conclusions
In this paper, we have extended the definition of observ-

ability to include stochastic linear hybrid systems, and have
used prior knowledge of system noise characteristics to im-

prove the observability conditions for a discrete-time stochastic
linear hybrid system. We have also found bounds on the time
between discrete transitions to guarantee the exponential con-
vergence of hybrid estimators for such systems. An interesting
direction for future work would be the extension of these re-
sults to hybrid systems with continuous state resets.
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