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Abstract

In this paper, theH∞ suboptimal model reduction for
singular systems is investigated. An optimal model re-
duction algorithm is designed for obtaining a stable re-
duced model. A necessary and sufficient condition for
the existence of a stable reduced-order system is given
and this criterion can be verified numerically. Also, a
numerical algorithm is presented for obtaining such a
reduced order stable system.

1 Introduction

In recent years, singular systems have been investigated
extensively due to their broad applications in modelling
and control of electrical circuits, power systems and
economics, etc. Some important characteristics of sin-
gular systems include combined dynamic and static so-
lutions, impulsive behaviors and large dimensionality.
Thus model reduction is vital for analysis and controller
design for such systems [4, 6].

The initial investigation of model reduction for sin-
gular systems was the chained aggregation approach
proposed in [7]. The authors there developed a gen-
eralized chain-aggregation algorithm and gave an intu-
itive interpretation of the exact aggregation conditions
for singular systems. The aim of the proposed method
is to remove the unobservable subspace. Initial behav-
ior of singular systems was also taken into consideration
while performing model reduction. However, as pointed
out in [8], its main drawback is its high computational
costs.

Perev and Shafai [8] considered model reduction for
singular system via balanced realizations and gave a
model reduction algorithm. Unfortunately, their ap-
proach ignored the impulsive behavior which is of
paramount importance to singular systems. With this

reduction algorithm, the reduced order model may be a
normal state space system, which has no impulsive be-
havior and does not track the original system response
properly as demonstrated in [5]. Liu and Sreeram [5]
proposed a new reduction algorithm via the Nehari’s ap-
proximation algorithm and overcome this issue. With
the approach in [5], the reduced-order model will be a
really singular system and the approximation has been
obtained as desired. For discrete singular systems,
Zhang et al. [4] discussed the same problem with the
approximation inH2 norm and some results obtained.
Moreover, Zhang et al.[9] discussed theH∞ subopti-
mal model reduction problem for singular systems. In
[9], it requires the transfer matrix of the error system to
be rational in order to guarantee thatH∞ norm exists.
However, the existence of the reduced-order system was
not solved there and has remained open. Also theH∞
model reduction problem for discrete singular systems
was investigated in [3] with the restriction of admissible
property.

In this paper, we will tackle the model reduction
problem for singular systems and will present a new ap-
proach for theH∞ suboptimal model reduction. In or-
der to preserve the impulsive nature of singular systems,
we will use reduced-order fast sub systems to approxi-
mate the fast sub systems as proposed in [5, 9]. How-
ever, a necessary and sufficient condition has been ob-
tained for the existence of a stable reduced-order system
in this paper. Further, an algorithm has been designed
for theH∞ suboptimal model reduction and this algo-
rithm can be easily implemented via Matlab software .

The organization of this paper is as following. In
section 2, a system transformation and suboptimal
model reduction problem will be presented. In section
3, the Silverman-Ho algorithm will be given. In section
4, the main results about theH∞ suboptimal model re-
duction will be given and a detailed algorithm will be
illustrated in section 5. Conclusions will be presented
in section 6.



2 Prelimineries

Consider the following singular systems

Eẋ(t) = Ax(t) + Bu(t) x(0−) = x0

y(t) = Cx(t) (1)

wherex(t) ∈ Rn is the state vector,u(t) ∈ Rq is
the input vector andy(t) ∈ Rm is the output vector.
E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×q, C ∈ Rm×n

are constant matrices withE possibly singular. Assume
that the matrix pair(E,A) is regular (i.e.,|sE−A| 6≡ 0).
In this paper, the realization quadruple(E,A, B, C) is
used to represent the system (1). All matrices in this
paper are assumed to have appropriate dimensions.

From [2], it is known that there exist two square non-
singular matricesQ andP such that system (1) can be
transformed into the Weierstrass form

ẋ1(t) = A1x1(t) + B1u(t) x1(0−) = x1,0

y1(t) = C1x1(t)
Nẋ2(t) = x2(t) + B2u(t) x2(0−) = x2,0

y2(t) = C2x2(t)

(2)

wherex1(t) ∈ Rn1 , x2(t) ∈ Rn2 , n1 + n2 = n, N ∈
Rn2×n2 is nilpotent, and

QEP = diag(I,N), QAP = diag(A1, I)
CP = [C1 C2], P−1x(t) = [xT

1 (t) xT
2 (t)]T

QB = [BT
1 BT

2 ]T , y(t) = y1(t) + y2(t)

System(1) is called system restricted equivalent(s.r.e) to
the system(2). The transfer function matrixG(s) is in-
variant under such s.r.e. transformation, i. e. ,

G(s) = C(sE −A)−1B

= CP (sQEP −QAP )−1QB

= C1(sI −A1)−1B1 + C2(sN − I)−1B2(3)

and

C2(sN − I)−1B2 = −C2B2 − sC2NB2 − · · ·
− sh−1C2N

h−1B2

with C2N
h−1B2 6= 0.

The aim of this paper is to investigate theH∞ subopti-
mal model reduction for singular systems. Suppose the
reduced-order singular system is

Erẋr(t) = Arxr(t) + Bru(t)
y(t) = Crxr(t)

(4)

which is assumed to be regular. Then there also exist
two matricesQr andPr such that

ẋ1r(t) = A1rx1r(t) + B1ru(t)
y1r(t) = C1rx1r(t)
Nrẋ2r(t) = x2r(t) + B2ru(t)
y2r(t) = C2rx2r(t)

(5)

wherex1r(t) ∈ Rn1r , x2r(t) ∈ Rn2r , n1r + n2r = nr,
Nr ∈ Rn2r×n2r is nilpotent, and

QrErPr = diag(I,Nr), QrArPr = diag(A1r, I)
CrPr = [C1r C2r] P−1

r xr(t) = [xT
1r(t) xT

2r(t)]
T

QrBr = [BT
1r BT

2r]
T , y(t) = y1r(t) + y2r(t)

Then the error system between the original system and
the reduced order system will be

Eeẋe(t) = Aexe(t) + Beu(t)
ye(t) = Cexe(t)

(6)

wherexT
e (t) = [xT (t) xT

r (t)]T , ye ∈ Rm, and

Ee = diag(E, Er), Ae = diag(A, Ar)
BT

e = [BT BT
r ]T , Ce = [C − Cr]

Let

Qe = diag(Q, Qr), Pe = diag(P, Pr)

Then theH∞ norm of the transfer matrixGe(s) for the
error system will be

‖Ge(s)‖∞ = ‖CePeP
−1
e (sEe −Ae)−1Q−1

e QeBe‖∞
= ‖C1(sI −A1)−1B1 − C1r(sI −A1r)−1B1r

+ C2(sN − I)−1B2 − C2r(sNr − I)−1B2r‖∞

Then, the problem of theH∞ suboptimal model reduc-
tion for singular system (1) is to find a reduced-order
singular system(Er, Ar, Br, Cr) with dim(Er) <
dim(E) such that for a given positive numberγ, the
following holds

‖Ge(s)‖∞ < γ

First, It is known from [9] that||Ge(s)||∞ is finite if and
only if

C2(sN−I)−1B2−C2r(sNr−I)−1B2r = C2B2−C2rB2r

i. e.,

C2N
iB2 = C2rN

i
rB2r, i = 1, 2, · · · , h− 1.(7)

C2rN
i
rB2r = 0, i ≥ h (8)

In this case, one has

‖Ge(s)‖∞ =
‖C1(sI −A1)−1B1 − C1r(sI −A1r)−1B1r + C2B2 − C2rB2r‖∞



Therefore, theH∞ suboptimal model reduction prob-
lem can be solved via using the conventional approaches
if (7) and (8) are met. As indicated by results in [9], the
main difficulty for the model reduction problem is to
find suitable(C2r, Nr, B2r) such that equaions (7) and
(8) are satisfied.

Also it is known from [2] that the transfer matrix for a
system is determined only by the controllable and ob-
servable subsystem, Therefore, one problem in this pa-
per is to discuss the model reduction of the fast sub-
systems(N, I, B2, C2). i.e., to find the fast subsystem
(Nr, Ir, B2r, C2r) with n2r < n2 and satisfy the condi-
tions (7) and (8).

The approach adopted in [9] is to findNr first, then one
tries to solve (7) and (8) to obtainB2r andC2r. The pro-
posed approach there has two significant disadvantages.
On one hand, for a givenNr, the equations (7) and (8)
may not have solutions forB2r, C2r. On the other hand,
even the solutions for these equations exist, it is still not
easy to solve them due to their nonlinear nature.

In this paper, the following questions related to the
model reduction problem will be addressed. The ex-
istence of(Nr, Ir, B2r, C2r) satisfying (7) and (8) will
be tackled and their solutions will be investigated. Also
the lowest order ofNr will be identified and a model
reduction algorithm will be presented.

3 Silverman-Ho algorithm

The Silverman-Ho algorithm in [1] is about the prop-
erty of a matrix polynomial. It has many applications
in system analysis and design. First, it can be stated as
below.

Lemma 1 [1] For any polynomial matrix P(s), there al-
ways exist matrices N, B, and C, with N nilpotent, such
thatP (s) = C(sN − I)−1B

For a given polynomial matrix

P (s) = P0 + P1s + · · ·+ Ph−1s
h−1, Pi ∈ Rr×m

The above lemma guarantees the existence ofB,C, and
the nilpotent matrixN , such that

P (s) = C(sN − I)−1B

The following process presents an approach for finding
a minimal realization(C,N,B), in the sense that they
are impulsive controllable and observable [2]. Let

M0 =


−P0 −P1 · · · −Ph−2 −Ph−1

−P1 −P2 · · · −Ph−1 0
· · · · · · · · · · · · · · ·

−Ph−2 −Ph−1 · · · · · · 0
−Ph−1 0 · · · · · · 0


∈ Rhr×hm

M1
4
=


−P1 −P2 · · · −Ph−1 0
−P2 −P3 · · · 0 0
· · · · · · · · · · · · · · ·

−Ph−1 0 · · · · · · 0
0 0 · · · · · · 0


∈ Rhr×hm

and denote
ñ
4
= rankM0

Then one decomposeM0 into the following form

M0 = L1L2

whereL1 ∈ Rhr×ñ, L2 ∈ Rñ×hm are matrices with
full column and row rank, respectively. Further, LetB̃
andC̃, respectively, be the firstm columns ofL2 and
the firstr rows ofL1. Then

Ñ =
(
LT

1 L1

)−1
LT

1 M1L
T
2

(
L2L

T
2

)−1

will be nilpotent and(Ñ , B̃, C̃) forms a minimal real-
ization forP (s) as desired. This algorithm will be used
in the sequel to design a procedure for solving the model
reduction problems proposed in the previous section.

4 Main Results

From the Silver-Ho algorithm, it can be seen that the or-
der of the minimal realization forP (s) is determined by
the rank of the matrixM0. For a given fast subsystem
(N,B2, C2), let Pi = C2N

iB2, i = 0, 1, · · · , h − 1.
Then the suboptimal model reduction problem is to find
a matrixP̃0 such thatn2 = rankM0 > rankM̃0 = n2r,
whereM̃0 corresponds tõP0, P1, · · · , Ph−1. So the ex-
istence of such matrix̃P0 will determine whether the
original fast subsystem can be reduced. The following
theorem will give a necessary and sufficient condition
for the existence of such matrix̃P0.

Without loss of generality, let

M2
4
=

[
−P0 −P1 · · · −Ph−2 −Ph−1

]
4
=

[
αT

1 αT
2 · · · αT

m

]T



M4 =


−P1 −P2 · · · −Ph−1 0
· · · · · · · · · · · · · · ·

−Ph−2 −Ph−1 · · · · · · 0
−Ph−1 0 · · · · · · 0


ThenM0 can be partitioned as

M0 =
[

M2

M4

]
Let the vector set

[
α1, α2, · · · , αd

]
be the maximal linearly independent set of[

α1, α2, · · · , αm

]
such that

rankM0 = rank


α1

α2

...
αd

M4

 = rank[M4] + d, d ≤ m

This is possible since one can choose the independent
vectors from the bottom to top inM0. Also, it can be
seen thatd is determined byM4 andM2. Further, sup-
pose that



M4

α1

α2

...
αd

αd+1

...
αm


=



M1
4 M2

4 M3
4

∗1 ∗2 ∗3
pk+1 βk+1 ηk+1

pk+2 βk+2 ηk+2

...
...

...
pd βd ηd

pd+1 βd+1 ηd+1

pd+2 βd+2 ηd+2

...
...

...
pm βm ηm


where k = rank[Ph−1], ∗1, ∗3 ∈ Rk×q, ∗2 ∈
Rk×(h−2)q. The matrix∗3 are of full row rank,pi,
ηj ∈ R1×q with

rank

[
∗3
ηj

]
= rank[∗3]

βi ∈ R1×(h−2)q, k + 1 ≤ i ≤ m, k + 1 ≤ j ≤ m. This
simplification is possible due to the fact that

rankPh−1 = rank[∗3]

Then among

βk+1, βk+2, · · · , βd

there are two possible cases. (i) If

rank

 M2
4 M3

4

∗2 ∗3

βi ηi

 = rank

[
M2

4 M3
4

∗2 ∗3

]

which indicates thatpi can affect the rank ofM0 due to
the following fact,

rank

 M1
4 M2

4 M3
4

∗1 ∗2 ∗3
pi βi ηi

 > rank

[
M1

4 M2
4 M3

4

∗1 ∗2 ∗3

]

Then one can decrease the rank ofM0 by changingpi

as discussed below. (ii) If

rank

 M2
4 M3

4

∗2 ∗3

βi ηi

 > rank

[
M2

4 M3
4

∗2 ∗3

]

Then it implies thatpi does not affect the rank ofM0. In
case (i), one can reduce the rank ofM0 by changing the
elementspi as described below. Since[βi, ηi] is linearly
dependent on [

M2
4 M3

4

∗2 ∗3

]
There exists vectorsx1 andx2 such that

[βi, ηi] = [xT
1 M2

4 + xT
2 ∗2, x

T
1 M3

4 + xT
2 ∗3]

In this case, one replacepi with

p̃i = xT
1 M1

4 + xT
2 ∗1

one can find that

rank

 M1
4 M2

4 M3
4

∗1 ∗2 ∗3
p̃i βi ηi

 = rank

[
M1

4 M2
4 M3

4

∗1 ∗2 ∗3

]

which indicates that the rank can be reduced. However,
the vector among[pj , βj , ηj ], d < j < m + 1 may
become independent with

M1
4 M2

4 M3
4

∗1 ∗2 ∗3
pk+1 βk+1 ηk+1

pk+2 βk+2 ηk+2

...
...

...
pd βd ηd


(9)

after changingpi. In order to avoid the possible rank
incremental in this case, one need to changepj accord-
ingly as bellow. Remind that[pj , βj , ηj ], d < j < m+1



is linearly dependent with (9), so there exist vectors
y1, y2, y3 satisfying

[pj , βj , ηj ] = [yT
1 M1

4 + yT
2 ∗2 +yT

3 P, ∗, ∗]

In order to keep the rank not increasing afterP is re-
placed byP̃ , one can replacepj with

p̃j = yT
1 M1

4 + yT
2 ∗2 +yT

3 P̃

After changing thepi,0 < i < d + 1 in case (i) and
relatedpj , d < j < m + 1, the rank ofM0 has been
reduced, which indicates that a reduced model can be
obtained. Now, with notation fork < i < d + 1,

S =

ηi | rank

 M2
4 M3

4

∗2 ∗3
βi ηi

 =
[

M2
4 M3

4

∗2 ∗3

]
Clearly, this set will provide a necessary and sufficient
condition for the existence of the lower order fast sub-
systems.

Theorem 2 Given (N,B2, C2), there exists a
reduced-order, controllable and observable system
(Nr, B2r, C2r) with dimensionn2r < n2 such that the
H∞ norm of the error system is finite if and only if the
setS is not empty.

With this theorem, the following results are obvious.

Corollary 3 1. The lowest ordernr of the reduced-
order system isn2 − N(S), whereN(S) is the
number of the elements inS. Further,

n2 −N(S) ≥ rank M1 + k

2. For single-input( or single-output), controllable
and observable system, there does not exist
reduced-order system such that theH∞ norm of
the error system exists.

Prior to give a model reduction algorithm, one should
note a fact that the correspondingpi in case (ii) can
choose any value freely without affecting the rank of
M0. This set can be a free parameter for optimal reduc-
tion algorithm given below.

Let the order of the reduced order system ben2r satisfy-
ing n2−N(S) ≤ n2r < n2. Without loss of generality,
suppose that the originalP0 can be partitioned as

P0 =

 P01

P02

P03



whereP01 is the vector set in case (i) andP02 is the vec-
tor set in case (ii) andP03 is the vector set with index
d < j < m + 1. In this case, one can iteratively reduce
the rank ofM0 by changingP01 andP03. Recall that
P02 will not affect the rank ofM0, thereforeP03 will be
a function ofP02 which is a free parameter used in the
optimization process below. So the suboptimal model
reduction problem can be converted into an optimiza-
tion problem for findingAr1, Br1, Cr1, andP03(P02)
such that

‖C1(sI−A1)−1B1−C1r(sI−A1r)−1B1r++P02(P03)‖∞

is minimized. This can be solved by the standard opti-
mization technique introduced in [10].

5 Algorithm and Illustrative Example

Now a model reduction algorithm can be presented
based on previous discussions.

1. Decompose the given singular system into the
slow and fast subsystems. If there exists con-
trollable and observable part and denote it as
(N, I, B2, C2). Otherwise, go to step 4.

2. ComputePi = −C2N
iB2 and obtainM0.

3. Change elements inP01 to P ∗01 such that the rank
of matrix M∗

0 is reduced as desired.

4. Solve the unconstrained optimization problem and
obtainAr1, Br1, Cr1, P ∗03 and thenP ∗0 .

5. Use the Silverman-Ho algorithm to obtain the min-
imal realization(Nr, Ir, Br, Cr) for the reduced
order system.

Now, we give one numerical example to illustrate the
algorithm. Consider the fast system (N,B,C) with

N =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 , B =


1 1
0 2
1 0
2 1
0 1



C =

 1 3 0 3 2
1 0 2 1 0
3 2 3 1 1


It can be verified that this system is a minimal realiza-
tion. Computing



−P0 = CB =

 7 12
5 2
8 9


−P1 = CNB =

 3 5
0 3
2 7


Then one can obtain thatN(S) = 1. Implementing this
algorithm, one can obtain the following parameters.

Nr =


0.3284 0.1584 −0.0582 0.0001
−0.3969 −0.3370 −0.0025 0.0663
0.7732 −0.0241 −0.3357 0.1813
−0.0215 −0.7651 −0.3740 0.3443



Br =


−0.5660 −0.7371
0.5363 −0.6610
0.5055 −0.0223
−0.3694 0.1392


Cr =

 −14.9254 −1.5002 −1.3974 −0.1695
−5.3407 2.9334 0.9190 0.1649
−16.4778 2.5852 0.1916 0.0886


Also theH∞ norm of the error system is

‖Ge(s)‖2∞ = ‖CB − CrBr‖2∞ = 9.8025

With the proposed algorithm in [9], one can obtain a
reduced system with theH∞ norm

‖Ge(s)‖2
∞ = ‖CB − CrBr‖2∞ = 27.5005 > 9.8025

This illustrates that the new proposed algorithm is much
better than one reported in [9].

6 Conclusions

In this paper, we developed a new approach ofH∞ sub-
optimal reduction algorithm for singular systems. A
necessary and sufficient condition is presented in which
one can guarantee the existence of a reduced-order sys-
tem with finiteH∞ norm of the error system. Also an
explicit algorithm is presented for obtaining the reduced
order systems. Compared to the results in the exiting lit-
erature, one can find the following the importance con-
tributions of this paper

• A necessary and sufficient condition is obtained for
the existence of the reduced order systems.

• The possible lowest order of the reduced system is
obtained.

• One free parameter in the reduction process has
been identified.

• The optimization process is a combination of slow
and fast subsystems.

The similar technique can be applied to discrete singular
systems.

The disadvantage of the proposed algorithm is the de-
composition of the system matrices into slow and fast
systems. This overhead may bring numerical difficul-
ties in practice.

References

[1] F.R. Gantmacher, ”The theory of matrices,”
Chelsea, newYork, 1960.

[2] Dai, L., ”Singular control systems”, New York,
Springer-Verlag, 1989.

[3] S. Xu and J. Lam, ”H∞ model reduction for dis-
crete time singular systems”,Systems and Control
Letters, 2002, to appear.

[4] Zhang L. Q., Lam J., and Zhang Q. L.,”Optimal
model reduction of discrete-time descriptor systems
”, Int. J. of Syst. Scis.,vol. 32, pp. 575-583.

[5] Liu W. Q., and Sreeram V., ”Model reduction of sin-
gular systems”,Proc of IEEE Conf Decision and
Control, pp. 2373-2378, 2000.

[6] Jamshidi, M., ”Large scale systems: Modeling and
Control”, New York, North-Holland, 1983.

[7] Lewis, F. L., Christodoulou, M. A., Mertzios, B. G.,
and Ozcaldiran, K., ”Chained aggregation of singu-
lar system”,IEEE Trans. on Automatic and Control,
vol. 34, no. 9, pp. 1007-1012, 1989.

[8] Perev, K., and Shafai, B., ”Balanced realization and
model reduction of singular systems”,Int. J. Sys-
tems Sci., vol. 25, no. 6, pp. 1039-1052, 1994.

[9] Q. L. Zhang, V. Sreeram, G. Wang, and W. Q.
Liu, ”H∞ Suboptimal Model Reduction for Singu-
lar Systems”,Proc of the American Control Confer-
ence,pp. 1168-1173, 2002.

[10] K.M. Zhou, John Doyal and K. Glover, ”Robust
and optimal Control,” Pretince Hall, 1996.


	Session Index
	Author Index



