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Abstract

This paper addresses the derivation of a non-stiff PDE model
for convection-reaction processes where the presence of large
reaction rates induces stiffness. The slow dynamics are shown
to be modeled by a singular partial differential algebraic system
(PDAE) for which an equivalent PDE system is derived. The
method is illustrated in a simple example.

1 Introduction

Transport reaction processes often exhibit stiff dynamics due to
physical and chemical phenomena occurring on different char-
acteristic time and length scales. Here we focus on tubular
reactors where the co-existence of fast and slow reactions in-
duces stiffness. Hence, numerical simulations of such systems
are computationally expensive. Moreover, a direct application
of distributed control methods may lead to ill-conditioned con-
trollers because the effect of small measurement or modeling
errors might be amplified. Thus, there is a need for techniques
to derive non-stiff models that capture the essential dynamical
features of the slow dynamics.

Whereas the model reduction of chemical reaction systems has
attracted a lot of attention for spatially homogeneous systems
(see the review in [9]), very few efforts have been devoted to the
study of similar spatially inhomogeneous problems. Research
has focused both on analytical and computational approaches.
Asymptotic methods have proved to be analytically challeng-
ing; therefore, they are adequate only for small and simple
problems. The computational singular perturbation approach
developed for stiff ordinary differential equations has been ex-
tended to reaction diffusion equations to provide a method to
identify slow and fast subspaces [3]. However, this approach is
computationally intensive, as the vectors spanning those sub-
spaces rely on the eigenvalues of the Jacobian of the source
term and, therefore, depend on time and position.

Here we consider non-isothermal plug flow reactors with
fast and slow reactions. These reaction-convection processes
give rise to first order hyperbolic partial differential equations
(PDEs). Because all the variables present temporal and spatial
boundary layers, there is no clear distinction between fast and
slow variables. Asymptotic methods are therefore not appro-
priate since the absence of separation between fast and slow

variables renders difficult the identification of the unknowns
likely to reach quasi steady behavior.

By combining the method of characteristics and singular per-
turbation arguments, we present a systematic framework to ob-
tain a partial differential algebraic equation (PDAE) formula-
tion of the slow dynamics after a fast boundary layer in space
and time. We identify the constraints that are to be satisfied in
the slow dynamics, and obtain an explicit non-stiff PDE model
of the slow (dominant) dynamics. As an illustration, the analy-
sis framework is applied to a simple chemical reaction system
exhibiting stiffness due to fast and slow reactions. We derive
a non-stiff PDE model using the proposed methodology, and,
show how the reduced order model compares well to the full
model.

2 Modeling

2.1 The stiff PDE model

Consider a PFR where the followingR reactions involvingS
species take place

∑S
j=1 νijAj = 0 i = 1, ..., R (1)

whereAj denotes the speciesj andνij denotes the stoichio-
metric coefficient of the speciesj in the reactioni. The mate-
rial and energy balances describing the evolution of the species
compositions and temperature take the form

∂Cj

∂t
= −V̄

∂Cj

∂z
+

R∑

i=1

νijri j = 1, . . . , S

∂T

∂t
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∂T

∂z
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ρCp
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UA

ρCpV
(Th − T )

(2)
with Cj(t = 0, z) = fj(z) as initial conditions andCj(t, z =
0) = gj(t) as feed data forj = 1, . . . , S, wheret denotes time,
z denotes the position with respect to the entrance of the reac-
tor,Cj denotes the molar concentration of speciesj, T denotes
the temperature,̄V is the axial velocity of the reacting mixture,
ρ the density of the reacting mixture,Cp the mass heat capac-
ity of the mixture,U the heat transfer coefficient,A the area of
heat transfer,V the volume of the reactor,Th the temperature
of the heat-transfer medium,∆Hi is the heat of reaction (with
the usual convention of∆Hi < 0 for an exothermic reaction),
andri is the reaction rate of the reactioni (in moles per unit
of time per unit volume). This model can be written in matrix



form as
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+




ν11 . . . νi1 . . . νR1

...
...

...
ν1j . . . νij . . . νRj

...
...

...
ν1S . . . νiS . . . νRS

−∆H1

ρCp
. . .

−∆Hi

ρCp
. . .

−∆HR

ρCp







r1

...
ri

...
rR




or in the following general form

∂x

∂t
= −V̄

∂x

∂z
+ g(x) + V(x)r(x) (4)

wherex = [C1, . . . , CS , T ]T ∈ X ⊂ IRn is the vector of state
variables of dimensionn = S + 1, V(x) is a (n × R) ’gen-
eralized’ stoichiometric matrix,r(x) denotes aR-dimensional
reaction rate vector, andg(x) denotes then-dimensional vector
associated with heat transfer. Typically, the reaction rateri is
expressed asri(x) = ki(T )r̄i(C), whereC = [C1, . . . , CS ]T

is the vector of concentrations andki(T ) is the reaction rate
constant.

It is assumed that, in the temperature range of interest,p fast
reactions have been identified; without loss of generality, we
consider that the reactionsi = 1, . . . , R − p are slow and the
reactionsi = R− p + 1, . . . , R are fast. More specifically, the
reaction rate of the(R − p + 1)th reaction evaluated at some
nominal temperatureT 0 and denotedk∗ = kR−p+1(T 0) is as-
sumed to be a large parameter such that the reaction rates of the
first R − p reactions are of much smaller order of magnitude
thank∗, and the reaction rates of the remainingp reactions are
of the same order of magnitude ask∗. Following this classifi-
cation of slow and fast reactions, Eq. 3 takes the form
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or in general form

∂x

∂t
= −V̄

∂x

∂z
+ g(x) + Vs(x)rs(x) + Vf (x)rf (x) (6)

where the subscriptss andf denote the generalized stoichio-
metric matrices and the reaction rate vectors for the slow and
the fast reactions, respectively.

Since each term of the vectorrf (x) corresponds to a fast reac-
tion rate which is expressed as the product of a large term (ki is
of O(k∗)) and a small term (̄ri(C) is of O(1/k∗)), the dynamic
system in Eq. 6 exhibits stiffness. In order to isolate the stiff-
ness to a single parameter, the large parameterk∗ is extracted
from the reaction rate for the fast reactions, so that

rf (x) = k∗diag

[
ki

k∗

]
r̄f (C) i = R− p + 1, . . . , R

By defining the(R − p)× (R − p) diagonal matrixKf (T ) =
diag[ki/k∗], and the small parameterε = 1/k∗, the system dy-
namics is described by the following PDE system with a small
parameter

∂x

∂t
= −V̄

∂x

∂z
+ g(x) + Vs(x)rs(x) +

1
ε
Vf (x)Kf (T )r̄f (C) (7)

Without loss of generality, it is assumed that the matrixVf (x)
has full column rank, i.e. the assumption of stoichiometric lin-
ear independence of the fast reactions holds [12]. If the column
rank ofVf (x) is p′ < p, it is possible to construct an × p′

matrix V ′f (x) with thep′ linearly independent columns, and a
modifiedp′ × 1 reaction rate vector̄r′f (x) is then defined, so
that Eq. 7 is written

∂x

∂t
= −V̄

∂x

∂z
+ g(x) + Vs(x)rs(x) +

1
ε
V ′f (x)r̄′f (x) (8)

where

r̄′f (x) =
[[V ′f (x)

]T [V ′f (x)
]]−1 [V ′f (x)

]T [Vf (x)]Kf (T )r̄f (C) (9)

It is also assumed that the Jacobian of the vectorr̄′f (x) with
respect tox is full row rank [12]. Indeed, if the row rank of
∂r̄′f (x)/∂x is p∗ < p′, then there exists ap′×p′ invertible ma-
trix E(x) such that thep′−p∗ last rows of̄r∗f (x) = E(x)r̄′f (x)
are equal to0, and such that̄r∗f (x) has a full row rank Jacobian.
Then, the system in Eq. 8 can be written

∂x

∂t
= −V̄

∂x

∂z
+ g(x) + Vs(x)rs(x) +

1
ε
V∗f (x)r̄∗f (x) (10)

whereV∗f (x) = V ′f (x)E(x)−1 has full column rank. This as-
sumption can be viewed as ”kinetic” linear independence of the
fast reactions.



Moreover, the vector̄r∗f (x) can be written as

r̄∗f (x) =
[

r̄∗1f (x)
0

]
(11)

wherer̄∗1f (x) is ap∗-dimensional vector. Similarly, the matrix
V∗f (x) can be decomposed as

V∗f (x) =
[ V∗1f (x) V∗2f (x)

]
(12)

whereV∗1f (x) is an × p∗ matrix, andV∗2f (x) is a n × (p′ −
p∗) matrix. By using the decomposition introduced in Eq. 11
and Eq. 12, the system in Eq. 10 is equivalent to the following
system

∂x

∂t
= −V̄

∂x

∂z
+ g(x) + Vs(x)rs(x) +

1
ε
V∗f (x)r̄∗f (x)

= −V̄
∂x

∂z
+ g(x) + Vs(x)rs(x)

+
1
ε

[ V∗1f (x) V∗2f (x)
] [

r̄∗1f (x)
0

]

= −V̄
∂x

∂z
+ g(x) + Vs(x)rs(x) +

1
ε
V∗1f (x)r̄∗1f (x)

(13)
whereV∗1f (x) has full column rank, and̄r∗1f (x) has a full row
rank Jacobian.

In what follows, for simplicity, the prime and asterisk super-
scripts are dropped and the system in Eq. 13 is expressed as

∂x

∂t
= −V̄

∂x

∂z
+ g(x) + Vs(x)rs(x) +

1
ε
Vf (x)r̄f (x) (14)

where stoichiometric and kinetic linear independencies are as-
sumed to hold. The hyperbolic equations of Eq. 14 are stiff
in the sense that all the equations contain the large parameter
(1/ε). There is no clear distinction between the fast and the
slow variables; all the variables exhibit boundary layers both in
time and in position.

2.2 The method of characteristics

The fundamental strategy in the method of characteristics is to
find a substitution which transforms the given PDE into one
in which all but one of the variables can be treated as param-
eters in the sense that they can be held constant temporarily,
which effectively reduces the PDE into an ODE system. This
approach has been used in combination with sliding mode tech-
niques for controller design of single quasi-linear first order
hyperbolic PDEs [11,4].

Hyperbolic PDE systems of the form of Eq. 14 are easily
amenable to the method of characteristics. We review some
results as they are discussed in [8,10]. Let’s consider the fol-
lowing quasi-linear first order PDE

a(z, t, u)
∂u

∂t
+ b(z, t, u)

∂u

∂z
= c(z, t, u) (15)

whereu is the dependent variable whilez, t are the independent
variables, anda, b, c are given functions ofz, t, u which are

continuously differentiable and satisfy the conditiona2 + b2 6=
0. Suppose that the solution surfaceu = u(z, t) has been deter-
mined, then Eq. 15 implies that the two vectors(a, b, c)T and
(ut, uz,−1)T are orthogonal. Thus, the PDE in Eq. 15 can be
interpreted geometrically as imposing the requirement that any
solution surfaceu = u(z, t) through a pointB(z, t, u) must be
tangent to(a, b, c)T . It then follows that

dt

a
=

dz

b
=

du

c
(16)

at the pointB. Eq. 16 defines a direction field in the(z, t, u)-
space and its integral curves are called the characteristic curves
of the PDE in Eq. 15. The projections of those curves onto
the (z, t) plane are referred to as the characteristics. If we in-
troduce a parameters running along the characteristic curves,
Eq. 16 can be written as

dt

a
=

dz

b
=

du

c
= ds (17)

Integration of this system yieldsF (z, t, u) = C1 and
G(z, t, u) = C2, so that the general solution of Eq. 15 is an
arbitrary function ofF andG. If ’initial data’ (namely, initial
conditions and feed data) are provided, then a unique solution
is obtained, provided that these initial data do not lie on a char-
acteristic curve. For multiple PDEs described by the system

ai(z, t, u1, ..., un)
∂ui

∂t

+bi(z, t, u1, ..., un)
∂ui

∂z
= ci(z, t, u1, ..., un)

for i = 1, . . . , n, this method is easily extended whena1 =
. . . = an = a andb1 = . . . = bn = b; in this case, the slopes
of the characteristics onto the plane(z, t) for each equation are
equal (the common slope isa/b ), so that a unique parameters
can be introduced.

For systems of the form in Eq. 14, since all the PDEs have the
same velocity, a unique parameters̃ is required to obtain the
characteristic differential equations

dt =
dz

V̄
=

dxi[
Vs(x)rs(x) + g(x) +

1
ε
Vf (x)r̄f (x)

]

i

= ds̃ (18)

for i = 1, . . . , n, where xi denotes the
ith component of the variable x, and
[Vs(x)rs(x) + g(x) + (1/ε)Vf (x)r̄f (x)]i the ith compo-
nent of the vector[Vs(x)rs(x) + g(x) + (1/ε)Vf (x)r̄f (x)].
Thus, the characteristics in the(z, t) plane are straight lines
of slope1/V̄ . The characteristic passing through the origin
delimits two regions: whenz > V̄ t, the information carried
along the characteristics corresponds to the initial conditions
(i.e., t = 0), whereas whenz < V̄ t the solution is influenced
by the feed data (i.e.,z = 0). An expression for the state vari-
ablex can be obtained in terms of̃s along the characteristics



such that
dx

ds̃
=

∂x

∂t

dt

ds̃
+

∂x

∂z

dz

ds̃

= 1
∂x

∂t
+ V̄

∂x

∂z

=
Dx

Dt

(19)

Eq. 19 implies that considering the ordinary differential equa-
tion for x along the characteristics is equivalent to taking the
total derivative. Note that this approach of taking the derivative
following the motion is equivalent to modeling the plug flow
reactor as the limit of a succession of continuously stirred tank
reactors. Along the characteristics, Eq. 14 is rewritten

dx

ds̃
=

Dx

Dt
= g(x) + Vs(x)rs(x) +

1
ε
Vf (x)r̄f (x) (20)

This formulation proves useful to derive the dynamics of the
original system in the fast and slow time scales.

3 Model reduction

3.1 Fast dynamics

Let us now consider the fast dynamics of Eq. 14. Since all
the components of the vectorx present boundary layers both in
time and in position, it seems natural to consider the derivation
of these fast dynamics in the framework of the characteristics.
Along the characteristics, the PDE system of Eq. 14 is trans-
formed into the ODE system of Eq. 20, which allows us to
apply methods developed for stiff ODEs [5,12]. We define a
stretched fast time scaleτ = t/ε, so that the system of Eq. 20
takes the form

Dx

Dτ
= ε g(x) + ε Vs(x)rs(x) + Vf (x)r̄f (x)

In the limit ε → 0, the description of the fast dynamics of the
system is obtained

Dx

Dτ
= Vf (x)r̄f (x) (21)

Since the matrixVf (x) has full column rank, the(n−p) quasi-
steady-state constraints that are to be satisfied point-wise and
time-wise are

0 = r̄f (x) (22)

These constraints imply reaction equilibrium for fast reversible
reactions and complete conversion for irreversible reactions.

3.2 Slow dynamics

We now consider the derivation of the slow dynamics of the
system of Eq. 14. Note that, in the slow time scale, the con-
straintsr̄f (x) = 0 must be satisfied. Moreover, in the limit
ε → 0, the term(1/ε)(r̄f (x) = 0) becomes indeterminate. Let
r = limε→0[r̄f (x)]/ε be the vector of indeterminate, yet finite,

reaction rates of the independent fast reactions in the slow time
scale. Then, the slow dynamics of the system in Eq. 14 are
described by the following system

∂x

∂t
= −V̄

∂x

∂z
+ g(x) + Vs(x)rs(x) + Vf (x)r

0 = r̄f (x)
(23)

Thus, the slow dynamics of the reaction-convection system are
modeled by a singular PDAE system: the algebraic variablesr
are implicitly specified by the constraints, which implies that
these constraints are to be differentiated in order to obtain an
expression forr. Note that, along the characteristics, Eq. 23
yields

Dx

Dt
= g(x) + Vs(x)rs(x) + Vf (x)r

0 = r̄f (x)
(24)

This implies that, along the characteristics, the slow dynamics
of the system are modeled by a DAE system.

The following proposition gives a PDE representation of the
PDAE system of Eq. 23.

Proposition Consider the PDAE system of Eq. 23; then a PDE
representation is given by the system:

∂x

∂t
= −V̄

∂x

∂z
+ g(x) + Vs(x)rs(x)

−Vf (x)
[
LVf (x)

r̄f (x)
]−1

.Lhr̄f (x)
0 = r̄f (x)

(25)

with h(x) = Vs(x)rs(x) + g(x),

Lhr̄f (x) =




Lhr̄f1

...
Lhr̄fp




whereLhr̄fi is the standard Lie derivative of theith component
of r̄f (x) with respect toh(x), and

LVf (x)
r̄f (x) =

[
LVf 1

r̄f . . . LVf p
r̄f

]

whereVf i is theith column ofVf (x).

Proof Since the constraints are to be satisfied both in time and
in space, we consider their total derivative (or equivalently, we
consider the DAE system obtained along the characteristics and
differentiate with respect to the parameter running along the
characteristics)

0 =
Dr̄f (x)

Dt
=

∂r̄f (x)
∂t

+ V̄
∂r̄f (x)

∂z

=
∂r̄f (x)

∂x

∂x

∂t
+ V̄

∂r̄f (x)
∂x

∂x

∂z
=

∂r̄f (x)
∂x

[
∂x

∂t
+ V̄

∂x

∂z

]

=
∂r̄f (x)

∂x

Dx

Dt
(26)



where
∂r̄f

∂x
is the Jacobian of the vectorr̄f with respect tox =

[C1, . . . , CS , T ]T .

By taking into account the expression of the total derivative
for the state variables vectorx, the total derivative of the con-
straints takes the form

0 = Lhr̄f (x) + LVf (x)
r̄f (x)r (27)

Note that we can write thep × p coefficient matrix for the al-
gebraic variabler as the product of the two following matrices

LVf (x)
r̄f (x) =

∂r̄f (x)
∂x

Vf (x)

Since both stoichiometric linear independence and kinetic lin-
ear independence hold, the first matrix in the above product has
full row rank, and the second one has full column rank, which
implies thatLVf (x)

r̄f (x) is an invertible matrix, so that an ex-

pression for the algebraic variable is obtained

r = −
[
LVf (x)

r̄f (x)
]−1

Lhr̄f (x) (28)

Direct substitution of the previous expression into Eq. 23 yields
Eq. 25, thus completing the proof.

Remark Note that the PDAE system modeling the slow dy-
namics can be considered as a ’hidden’ DAE system, since,
along the characteristics, the system of Eq. 23 takes the form
of the DAE system of Eq. 24. This idea allows us to extend
the notion of index developed for DAE systems to PDAE sys-
tems of the form of Eq. 23. Several notions of indexes have
already been introduced for PDAEs, most of them for numer-
ical solution purposes. In [1,6], the authors defined perturba-
tion, spatial and time indexes for parabolic PDAEs, which en-
abled them to obtain convergence theorems for specific numer-
ical approximation methods. By generalizing these concepts
to hyperbolic linear PDAEs with linear time-dependent DAE
boundary conditions, Gunther and Wagner [2] proved that the
index of the approximate DAE depends on the method adopted
to discretize the PDAE. In a more general framework where
the PDAEs are then viewed as abstract Cauchy problems in
any direction in the independent variable space, Martinson and
Barton [7] generalized the notion of differential time index in-
troduced for DAEs to PDAEs to estimate an upper bound for
the number of boundary conditions needed to obtain a well-
posed problem. For PDAEs of the form of Eq. 23, we showed
that an expression for the algebraic variabler can be obtained
from the total derivative of the constraints. So, the index of the
DAE system of Eq. 24 is equal to two. If we define the index
for a PDAE of the form of Eq. 23 as the number of total dif-
ferentiations needed in order to obtain an equivalent PDE, then
the index of this PDAE system is equal to two.

4 Example

Let us apply the preceding modeling procedure to a simple ex-
ample. We consider a reaction system consisting of the follow-

ing three reactions in an isothermal plug flow reactor

A
k1−→ B

B
k2−→ A

B
k3−→ C

whereA,B, andC represent three different species. The re-
action rates for these reactions are given byr1 = k1CA,
r2 = k2CB andr3 = k3CC respectively. The values of the
reaction rate constants arek1 = 110, k2 = 100, k3 = 10, and
the velocity isV̄ = 2, in consistent units.

Sincek1 >> k3 andk2 >> k3, the first and the second re-
actions are much faster than the third reaction. Defining the
small parameterε = 1/k∗ = 1/k1, the dynamic model can be
expressed in the matrix form of Eq. 7

∂

∂t




CA

CB

CC


 = −V̄

∂

∂z




CA

CB

CC


 +




0
−1
1


 r3

+
1
ε



−1 1
1 −1
0 0




[
k
′
1 0
0 k

′
2

] [
r̄1

r̄2

]

wherek
′
1 = (k1/k∗), k

′
2 = (k2/k∗), r̄1 = CA andr̄2 = CB .

The 3 × 2 matrix Vf (x) is clearly of rank1. Thus, we se-
lect the first column as the new stoichiometric matrixV ′f (x) =
[−1 1 0]T , so that the modified reaction rate is

r̄
′
f (x) =

1
k∗

[k1r̄1 − k2r̄2] =
k1

k∗

[
r̄1 − r̄2

κ

]

whereκ =
k1

k2
represents the equilibrium constant for the fast

reversible reactionA ⇀↽ B. It is easily checked that the Jaco-
bian of the vector̄r

′
f (x) has full row rank, so that the dynamic

model is expressed in the form of Eq. 14

∂

∂t




CA

CB

CC


 = −V̄

∂

∂z




CA

CB

CC


 +




0
−1
1


 r3

+
1
ε



−1
1
0


 k1

k∗

[
r̄1 − r̄2

κ

]
(29)

We used an ODE solver to integrate the ODE system obtained
along the characteristics for the PDE system of Eq. 29 where,
for simplicity, the initial conditions and the feed data are taken
to be identical:fA(z) = gA(t) = 10, fB(z) = gB(t) =
16, fC(z) = gC(t) = 0 in the appropriate units. The concen-
tration profiles show that the concentrations of the three species
exhibit boundary layers both in time and in space.

By multiplying Eq. 29 byε and considering the limitε → 0,
the quasi-steady-state constraints are obtained

0 = r̄1 − r̄2

κ



which implies that the fast reversible reaction is at equilibrium
everywhere along the reactor.

In the limit ε → 0, the algebraic variabler is defined

r = limε→0
1
ε

k1

k∗

[
r̄1 − r̄2

κ

]

so that the slow dynamics are described by the following sys-
tem

∂

∂t




CA

CB

CC


 = −V̄

∂

∂z




CA

CB

CC


 +




0
−1
1


 r3 +



−1
1
0


 r

0 = r̄1 − r̄2

κ

An expression of the algebraic variable can be easily obtained
from the total derivative of the constraints

r = − k2.k3

k1 + k2
CB = − k1.k3

k1 + k2
CA

so that the slow dynamics are modeled by the following non-
stiff PDE system

∂

∂t




CA

CB

CC


 = −V̄

∂

∂z




CA

CB

CC


 +




0
−1
1


 r3

−


−1
1
0


 k2.k3

k1 + k2
CB (30)

where[CA CB CC ]T ∈M = {x ∈ X : 0 = r̄f (x)}.
Figure1 and2 show the concentration profiles for the species A
at positionz = 3 and at timet = 3, respectively. Similar plots
can be obtained for the speciesB andC. It can be observed
that the two models are in excellent agreement.
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Figure 1: Concentration profile for A for the original system
(dashed) and the reduced-order system (solid) at z=3
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