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By combining the method of characteristics and singular per-
Abstract turbation arguments, we present a systematic framework to ob-

Thi dd he derivati ; it PDE %ailn a partial differential algebraic equation (PDAE) formula-
Is paper addresses the derivation of a non-sti MOGBh of the slow dynamics after a fast boundary layer in space

for cc_)nvectlon-_reactlon processes where the presence of laéﬂa time. We identify the constraints that are to be satisfied in
reaction rates '“d““r‘s snffness._ Th(_a slow Qynam|cs are Sho[W@ slow dynamics, and obtain an explicit non-stiff PDE model
to be modeled py a smgul:_;lr partial differential glgebr§|c SYSt€¥the slow (dominant) dynamics. As an illustration, the analy-
(PDAE) .fof which an equalent PDE system is derived. Thoels framework is applied to a simple chemical reaction system
method is illustrated in a simple example. exhibiting stiffness due to fast and slow reactions. We derive

a non-stiff PDE model using the proposed methodology, and,
1 Introduction show how the reduced order model compares well to the full

model.
Transport reaction processes often exhibit stiff dynamics due to

physical and chemical phenomena occurring on different char- )

acteristic time and length scales. Here we focus on tubu%r Modeling

reactors where the co-existence of fast and slow reactionsﬂ The stiff PDE model

duces stiffness. Hence, numerical simulations of such systems

are computationally expensive. Moreover, a direct applicati@onsider a PFR where the followirfg reactions involvingS
of distributed control methods may lead to ill-conditioned cospecies take place

trollers because the effect of small measurement or modeling

errors might be amplified. Thus, there is a need for techniques ZS_l vijAj =0 i=1,...R (1)
to derive non-stiff models that capture the essential dynamical =
features of the slow dynamics. where A; denotes the specigsandv;; denotes the stoichio-

Whereas the model reduction of chemical reaction systems ﬂ?fst”C coefficient of the Speclg'slh the reactlorg'. The mate- .
attracted a lot of attention for spatially homogeneous systeRifd and energy balances describing the evolution of the species
(see the review in [9]), very few efforts have been devoted to tREMPOSitions and temperature take the form

study of similar spatially inhomogeneous problems. Research
has focused both on analytical and computational approaches!C};

_0C; & o
Asymptotic methods have proved to be analytically challeng- ¢ _Vﬂ + Z vigri  j=1,....58

=1

ing; therefore, they are adequate only for small and simple R

problems. The computational singular perturbation approachai = 4’/82 L Z AH;r; + v (T" —T)
developed for stiff ordinary differential equations has been ex- 9t 9z pCp = pCpV

tended to reaction diffusion equations to provide a method to (2)
identify slow and fast subspaces [3]. However, this approach¥gh C;(t = 0,z) = f;(z) as initial conditions and’; (¢, z =
computationally intensive, as the vectors spanning those sllb= g;(t) as feed datafof = 1,..., .5, wheret denotes time,
spaces rely on the eigenvalues of the Jacobian of the sourgéenotes the position with respect to the entrance of the reac-
term and, therefore, depend on time and position. tor, C; denotes the molar concentration of spegies denotes

the temperaturé; is the axial velocity of the reacting mixture,

Here we consider non-isothermal plug flow reactors withy,q gensity of the reacting mixturé}, the mass heat capac-

fast and slow reactions. These reaction-convection proceqﬁ%f the mixture,7 the heat transfer coefficient, the area of
give rise to first order hyperbolic partial differential equationg, 5¢ transfer} the volume of the reactof;” the temperature
(PDEs). Because all the variables present temporal and qu}i:a[ e heat-transfer mediumy H; is the heat of reaction (with
boundary layers, there is no clear distinction between fast gpd | ,s,al convention ok H, < 0 for an exothermic reaction),
slow variables. Asymptotic methods are therefore not appify ;. is the reaction rate of the reactior(in moles per unit

priate since the absence of separation between fast and lgWme per unit volume). This model can be written in matrix



form as V(R—p+1)1 - VR1

TR—p+1
[ Cy ] [ Cy ] [ 0
! ! . T veopiys - vms ©)
: : : R—p+1 *AHR TR
. ) ‘ — e
% CJ = _Vag CJ + 0 gAV (3) PLp PLp
: S : P or in general form
Cs Cs 0 Ox ox
| T ] 7] 71T 5 = Voo 9@ +V@)ra(@) + Vi(@rs@)  (©)
i V11 e Vi1 e VR1 i . . . .
r where the subscripts and f denote the generalized stoichio-
: : : ] metric matrices and the reaction rate vectors for the slow and
V1j e Vij e VRj : the fast reactions, respectively.
=+ . . . T .
: : : ] Since each term of the vectef(z) corresponds to a fast reac-
1S e vis . VRS : tion rate which is expressed as the product of a large téyis (
—AHy  -AH;  —AHg TR of O(k*)) and a small termi( (C) is of O(1/k*)), the dynamic
L pCh pCyp pCp | system in Eq. 6 exhibits stiffness. In order to isolate the stiff-
ness to a single parameter, the large paranietés extracted
or in the following general form from the reaction rate for the fast reactions, so that
ki
0 _ 0 = i = R —
%z—va—j—l—g(x)—l—])(x)r(x) 4) re(x) = kdzag[k} (C) i=R—-p+1,...,R

- L By defining the(R — p) x (R — p) diagonal matrixKy(T') =
wherex = [C,...,Cs, T]" € X C IR™ is the vector of state diaglk; /k*], and the small parameter= 1/k*, the system dy-

variables of dimensiom = S + 1, V(z) is a(n x R) 'gen- npamijcs is described by the following PDE system with a small
eralized’ stoichiometric matrix;(«) denotes a&-dimensional parameter

reaction rate vector, angx) denotes the-dimensional vector
i ' ' i ox _ Ox 1 _
associated with heat transfer. Typically, the reaction rais — VL (@) + V(@) (z) + gi(x) K/ (T)7(C) (7)

expressed as;(z) = k;(T)7:(C), whereC = [Cy,...,Cs]T  dt 9z
is the vector of concentrations aig(T") is the reaction rate
constant. Without loss of generality, it is assumed that the maXtjXx)

. hat. in th fi has full column rank, i.e. the assumption of stoichiometric lin-
Itis assumed that, in the temperature range of intefetst o, mdependence of the fast reactions holds [12]. If the column
reactions have been identified; without loss of generality, wg . ¢y Vi(x) is o' < p, itis possible to constructa x p/
consider that the reactionis= 1,..., It —p are slow and the i, V’( ) with the p’ linearly independent columns, and a

react!ons =RE-p+l,....R a;be fast _More specifically, the mOdIerdp x 1 reaction rate vector}(z) is then defined, so
reaction rate of théR — p + 1)*" reaction evaluated at SOMEat Eq. 7 is written

nominal temperatur@® and denoted* = kr_,.1(7°) is as-

sumed to be a large parameter such that the reaction rates of ti&x - 0z Lo\

first R — p reactions are of much smaller order of magnitude ot _Va +g(z) + Vs(@)rs(2) + evf(x)rf(x) (8)
thank*, and the reaction rates of the remainpgeactions are
of the same order of magnitude &5 Following this classifi-

cation of slow and fast reactions, Eg. 3 takes the form

where

) = [V V@] @) V@) K(Tie(C) (©)

C_Yl C_Yl O It is also assumed that the Jacobian of the veﬁ}cﬁm) with
: : : respect tac is full row rank [12]. Indeed, if the row rank of
OV G| 216G | 0 UA 0F,(x) /0w is p* < p/, then there existsal x p' invertible ma-
ot : 0z : : pCLV trix E(z) such that the’ —p* last rows ofr’; (z) = E(2)7(z)
C; C O are equal to), and such that; () has a full row rank Jacobian.
o o Then, the system in Eg. 8 can be written
T T Th _T
T T 1
V?l V(R.—p)l . %t = —Vg— +9(@) + Vs(@)rs(z) + —Vi(@)rp(z)  (10)
+ V1g o VR—p)S : whereV;(z) = V}(x)E(m)—l has full column rank. This as-
—AH; —AHp_, TR—p sumption can be viewed as "kinetic” linear independence of the

pCp, pCy fast reactions.



Moreover, the vectof;;(z) can be written as continuously differentiable and satisfy the conditiohi- b2 #
0. Suppose that the solution surface- u(z, t) has been deter-
u f}l(a:) mined, then Eq. 15 implies that the two vectéusb, c)” and
+,uz, —1)* are orthogonal. Thus, the PDE in Eq. 15 can be
_ ' _ o _ interpreted geometrically as imposing the requirement that any
Wheref;‘cl(.r) is ap*-dimensional vector. Similarly, the matrixsolution surface; = u(z,t) through a point3(z, t,u) must be

V;(x) can be decomposed as tangent to(a, b, ¢)T. It then follows that
Vi) = [ Vi) V() ] (12) i de du .
a b ¢

whereV;!(z) is an x p* matrix, andV;?(z) is an x (p/ —
p*) matrix. By using the decomposition introduced in Eq. 13t the pointB. Eqg. 16 defines a direction field in tife, ¢, u)-
and Eq. 12, the system in Eq. 10 is equivalent to the followirghace and its integral curves are called the characteristic curves

system of the PDE in Eq. 15. The projections of those curves onto
the (z,t) plane are referred to as the characteristics. If we in-
ox _ Oz 1 B . o
— = Vo +g(@) + Vs(x)rs(z) + =Vi(2)75 () troduce a parametarrunning along the characteristic curves,
ot _ §§ € Eq. 16 can be written as
= 7V&+g(x)+vs(x>75(x)
L .2 7 (z) at _dz _du _
+E[Vf() Vit(z) | fO =5 = =ds a7
= O Loty o
= V3, ta@) + Vs(a)rs(z) + gil(x)rfl(l‘) Integration of this system vyields'(z,t,u) = C; and

(13) G(z,t,u) = Cs, so that the general solution of Eq. 15 is an
whereV;l(ac) has full column rank, anﬁ}l(a:) has a full row arbitrary function ofF" andG. If 'initial data’ (hamely, initial
rank Jacobian. conditions and feed data) are provided, then a unique solution
s obtained, provided that these initial data do not lie on a char-

In what follows, for simplicity, the prime and asterisk supet]- - . )
scripts are dropped and the system in Eq. 13 is expressed agcterlstlc curve. For multiple PDEs described by the system

8ui

O e V@) @)+ @) () (et n) T a
where stoichiometric and kinetic linear independencies are as- +bi(z,t,ur, .oy ) a?:l = ci(z,t,u1, .y Un)
sumed to hold. The hyperbolic equations of Eq. 14 are stiff
in the sense that all the equations contain the large paraméser; = 1,...,n, this method is easily extended whep =
(1/€). There is no clear distinction between the fast and the. = a,, = e andb, = ... = b, = b; in this case, the slopes
slow variables; all the variables exhibit boundary layers both gf the characteristics onto the plafie t) for each equation are
time and in position. equal (the common slopedg’d ), so that a unique parameter

can be introduced.

2.2 The method of characteristics For systems of the form in Eq. 14, since all the PDEs have the

The fundamental strategy in the method of characteristics isSgmne velqm_ty, a unique param_etiars required to obtain the
find a substitution which transforms the given PDE into orfd1aracteristic differential equations
in which all but one of the variables can be treated as param-

eters in the sense that they can be held constant temporagity- % = dzi : = ds5 (18)

which effectively reduces. the PDE into an OD.E'system. This Vi(z)rs(z) + g(z) + —Vi(2)7s(2)

approach has been used in combination with sliding mode tech- € i

nigues for controller design of single quasi-linear first order

hyperbolic PDEs [11,4]. for i = 1,...,n, where i denotes the
ith component of the variable =, and

Hyperbolic PDE systems of the form of Eq. 14 are easip{;s(m)rs(x) +g(z) + (1/e)Vs(2)7s(z)], the ith compo-
amenable to the method of characteristics. We review sofgnt of the vector]V, (z)rs(z) + g(m); (1/€) Vs ()7 ().
results as they are discussed in [8,10]. Let's consider the fghys the characteristics in tie, ¢) plane are straight lines
lowing quasi-linear first order PDE of slope1/V. The characteristic passing through the origin
ou ou delimits two regions: when > Vt, the information carried
o + b(z;t,u)& =c(z,t,u) (15) along the characteristics corresponds to the initial conditions
’ (i.e.,t = 0), whereas when < V't the solution is influenced
whereu is the dependent variable whitet are the independentby the feed data (i.ez = 0). An expression for the state vari-
variables, ands, b, ¢ are given functions of, ¢, which are ablex can be obtained in terms éfalong the characteristics

a(z,t,u)



such that reaction rates of the independent fast reactions in the slow time

dv _ Ovdt Ovde scale. Then, the slow dynamics of the system in Eq. 14 are

— = — =+t ==
ds ot ds 0z ds described by the following system
_ L Ox SO Ox _ Oz
= 15 V5 9 2L = V@) + V@@ + Vi@ o
e 0 = 7p(x)
- Dt Thus, the slow dynamics of the reaction-convection system are

Eq. 19 implies that considering the ordinary differential equaiodeled by a singular PDAE system: the algebraic variables
tion for = along the characteristics is equivalent to taking there implicitly specified by the constraints, which implies that
total derivative. Note that this approach of taking the derivati¥gese constraints are to be differentiated in order to obtain an
following the motion is equivalent to modeling the plug flowexpression forr. Note that, along the characteristics, Eq. 23
reactor as the limit of a succession of continuously stirred taields
reactors. Along the characteristics, Eq. 14 is rewritten

Dx

de Dz 1 i D 9(x) + Vs(x)rs(x) + Vi (2)r (24)

E- D g(z) + Vs (x)rs(z) + EVf(l')Tf(fL’) (20) 0 = 74(a)
This formulation proves useful to derive the dynamics of thEhis implies that, along the characteristics, the slow dynamics
original system in the fast and slow time scales. of the system are modeled by a DAE system.

The following proposition gives a PDE representation of the

3 Model reduction PDAE system of Eq. 23.
3.1 Fastdynamics Proposition Consider the PDAE system of Eq. 23; then a PDE

representation is given by the system:
Let us now consider the fast dynamics of Eq. 14. Since all

the components of the vectopresent boundary layers both in Oz _ _Vaj + (@) + Vs(2)rs(z)
time and in position, it seems natural to consider the derivation 0t 0z * _f -
of these fast dynamics in the framework of the characteristics. —Vy(x) [LV (x)ff(z)} L7 (x) (25)
Along the characteristics, the PDE system of Eq. 14 is trans- 0 = 7p(x) -
formed into the ODE system of Eq. 20, which allows us to
apply methods developed for stiff ODEs [5,12]. We definewith h(x) = V,(z)rs(x) + g(z),
stretched fast time scale= t/¢, so that the system of Eq. 20
takes the form Lyry,
Dz v v _ Lyry(x) =
Dr € g(z) + e Vs(o)rs(z) + .f(x)Tf(x) thfp
In the limite — 0, the description of the fast dynamics of thgvhereL, 7, is the standard Lie derivative of tlith component
system is obtained of 7 (x) with respect tdh(z), and
D _ _ _
Fi = Vf(x)ff(.r) (21) évf(z)rf(x) = [ LV}HTf e Lprrf }

Since the matri®’; () has full column rank, thén — p) quasi- WhereVy; is theith column ofVy ().

steady-state constraints that are to be satisfied point-wise @9gof Since the constraints are to be satisfied both in time and

time-wise are in space, we consider their total derivative (or equivalently, we
consider the DAE system obtained along the characteristics and

0=7s(x) (22) differentiate with respect to the parameter running along the
These constraints imply reaction equilibrium for fast reversibfdaracteristics)
reactions and complete conversion for irreversible reactions. Dip(z) 0rp(z) - OFs(z)
0 = =
) Dt ot 0z

3.2 Slow dynamics

_ - _ _ Org) 0w [ 0rs(x) Ox _ Org(a) [Or 0
We now consider the derlvatlt_)n of the slo_w dynamics of the = or ot or 92 on ot 92
system of Eg. 14. Note that, in the slow time scale, the con-
straints7;(«) = 0 must be satisfied. Moreover, in the limit o7 (z) Dz
e — 0, the term(1/¢)(7;(x) = 0) becomes indeterminate. Let = Tor Di

r = lim._o[Fs(x)]/e be the vector of indeterminate, yet finite, (26)



Where? is the Jacobian of the vectey with respect ta: = ing three reactions in an isothermal plug flow reactor

xZ
[Cl,...,CS,T]T. k1

A — B
By taking into account the expression of the total derivative B k2, 4
for the state variables vecter, the total derivative of the con- B s o
straints takes the form
I = where A, B, andC represent three different species. The re-
0= Lyp(@) + L, . 7r(@)r (27) P "

action rates for these reactions are giveniy = £1C4,

N h ite th fici i for the al ro = koCp andrs = k3Cc respectively. The values of the
otet_ at We can write the x p coefficient matnx_ or the al" reaction rate constants ate = 110, ko = 100, k3 = 10, and
gebraic variable as the product of the two following matrices,o velocity isV = 2, in consistent units

I () = ors(x) V() Sincek, >> k3 andky >> ks, the first and the second re-
=V¢(z) ox actions are much faster than the third reaction. Defining the
Since both stoichiometric linear independence and kinetic lipmMall parameter = 1/k* = 1/k,, the dynamic model can be
ear independence hold, the first matrix in the above product [R@ressed in the matrix form of Eq. 7
full row rank, and the second one has full column rank, which
Ca Ca 0

implies thatL 7¢(x) is an invertible matrix, so that an ex- 0 _ 0
. =V (@) o . — | Cs | ==V —|Cs | +]| -1 |rs
pression for the algebraic variable is obtained ot C 0z C 1
C c
r=—[L, 7@ L) (28) Ll Uk o
€ T2
Direct substitution of the previous expression into Eq. 23 yields 0 0 ?

Eq. 25, thus completing the proof. , ,
_ wherek, = (k1/k*), ky = (k2/k*), 71 = C4 andry = Cp.
Remark Note that the PDAE system modeling the slow dy- _ )

namics can be considered as a 'hidden’ DAE system, sind&€ 3 x 2 matrix V;(z) is clearly of rankl. Thus, we se-
along the characteristics, the system of Eq. 23 takes the fdfit the first column as the new stoichiometric mawix(z) =

of the DAE system of Eq. 24. This idea allows us to exterld-1 1 0]7, so that the modified reaction rate is

the notion of index developed for DAE systems to PDAE sys- B

tems of the form of Eq. 23. Several notions of indexes have 7 (;) = i* (k171 — ko] = ]Li {,:1 _ 7;2}

already been introduced for PDAES, most of them for numer- k k

ical solution purposes. In [1,6], the authors defined perturba- by

tion, spatial and time indexes for parabolic PDAESs, which ewheres = T represents the equilibrium constant for the fast

abled them to obtain convergence theorems for specific NUM@Kersible reactiont = B. It is easily checked that the Jaco-

ical approximation methods. By generalizing these concepgn of the vectoF}(x) has full row rank, so that the dynamic
to hyperbolic linear PDAEs with linear time-dependent DAR,qdel is expressed in the form of Eq. 14

boundary conditions, Gunther and Wagner [2] proved that the

index of the approximate DAE depends on the method adopted 5 Ca P Ca 0

to discretize the PDAE. In a more general framework where — | Cg |==V=| C |+ ]| -1 |rg
the PDAEs are then viewed as abstract Cauchy problems in ot Ce 9z Ce 1

any direction in the independent variable space, Martinson and 1

Barton [7] generalized the notion of differential time index in- +} k1 {F _ @} (29)
troduced for DAEs to PDAES to estimate an upper bound for € 0 ke Lt

the number of boundary conditions needed to obtain a well-

posed problem. For PDAEs of the form of Eq. 23, we showggle ysed an ODE solver to integrate the ODE system obtained
that an expression for the algebraic variablean be obtained 4iong the characteristics for the PDE system of Eq. 29 where,

from the total derivative of the constraints. So, the index of thgy simplicity, the initial conditions and the feed data are taken
DAE system of Eq. 24 is equal to two. If we define the indey pe identical: f4(z) = ga(t) = 10, fu(z) = gp(t) =

for a PDAE of the form of Eq. 23 as the number of total dif16’ fo(z) = go(t) = 0in the appropriate units. The concen-

ferentiations needed in order to obtain an equivalent PDE, thegion profiles show that the concentrations of the three species
the index of this PDAE system is equal to two. exhibit boundary layers both in time and in space.

By multiplying Eq. 29 bye and considering the limi¢ — 0,

4 Example the quasi-steady-state constraints are obtained

Let us apply the preceding modeling procedure to a simple ex-
ample. We consider a reaction system consisting of the follow- 0=7m— .



which implies that the fast reversible reaction is at equilibrium
everywhere along the reactor.

In the limite — 0, the algebraic variableis defined
. 1k
r= lzme_)()zk—* [rl — —}

KR
so that the slow dynamics are described by the following sys-

tem
9 Ca i Cy 0 —1
5 Cg = —Vaf Cp + —1 r3 + 1 r
oo “ | o 1 0
0 - Fl—rﬁ
K

An expression of the algebraic variable can be easily obtained
from the total derivative of the constraints [2]
 koks _ ik

ki +ks © 7 ki+ko

so that the slow dynamics are modeled by the following non-
stiff PDE system (3]

Ca Ca 0
g CB = *Vag CB + -1 T3
t Ceo o Cc 1
Y “
2-h3
— C 30
Clptes e

T _ 5]
where[Cy Cp Co|l" e M={zc X :0="7¢(z)}.

Figurel and2 show the concentration profiles for the species A
at positionz = 3 and at timef = 3, respectively. Similar plots [6]
can be obtained for the speci&andC. It can be observed
that the two models are in excellent agreement.

Concentration of A

(7]

(8]

9]

Ti me

(10]

Figure 1: Concentration profile for A for the original system
(dashed) and the reduced-order system (solid) at z=3 (11]

References [12]

[1] S.L. Campbell, W. Marszalek. “The index of an infi-
nite dimensional implicit systemMath. Comput. Model.
Dyn. Syst.5, pp. 18-42, (1999).

Concentration of A

Posi tion

2.5 3

Figure 2: Concentration profile for A for the original system
(dashed) and the reduced-order system (solid) at t=3

M. Gunther, Y. Wagner. “Index concepts for linear
mixed systems of differential-algebraic and hyperbolic-
type equations”, SIAM J. Sci. Compuyt22, pp. 1610-
1629, (2000).

M. Hadjinicolaou, D.A. Goussis. “Asymptotic solution
of stiff pdes with the csp method: the reaction diffu-
sion equation”, SIAM J. Sci. Comput20, pp. 781-810,
(1999).

E.M. Hanczyc, A. Palazoglu. “Sliding mode control of
nonlinear distributed parameter chemical procesded’,
Eng. Chem. Res34, pp. 557-566, (1995).

A. Kumar, P. Daoutidis. “Control of non-linear dif-
ferential algebraic equation systems”Chapman and
Hall/CRC, (1999).

W. Lucht, K. Strehmel, C. Eichler-Liebenow. “Indexes
and special discretization methods for linear partial differ-
ential algebraic equationsBIT, 39, pp. 484-512, (1999).

W.S. Martinson, P.l. Barton. “A differentiation index for
partial differential algebraic equations”SIAM J. Sci.
Comput, 21, pp. 2295-2315, (2000).

P. Moon, D.E. Spencer. “Partial differential equations”,
Heath (1969).

M.S. Okino, M.L. Mavrovouniotis. “Simplification of
mathematical models of chemical reaction systems”,
Chem. Rey98, pp. 391408, (1998).

H.K. Rhee, R. Aris, N.R. Amundson. “First-order partial
differential equations”Prentice Hall (1986).

H. Sira-Ramirez. “Distributed sliding mode control
in systems described by quasi-linear partial differential
equations”,Syst. Contr. Lett.13, pp. 177-181, (1989).

N. Vora, P. Daoutidis. “Nonlinear model reduction of
chemical reaction systems”AIChE J, 47, pp. 2320—
2332, (2001).



	Session Index
	Author Index



