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Abstract

This paper describes an automatic identification proce-
dure for an induction motor. The transfer function of the
motor at standstill is used to obtain a linear parametric
model. An on-line parameter estimator is then derived
from this model. In the implementation of the proposed
estimator, a PI current controller is constructed to stabi-
lize the current signal and to prevent the flux from satu-
ration. An experiment with a persistently exciting input
verifies the theory of the proposed estimator and demon-
strates its usefulness in industry applications.

1 Introduction

Recently, many researh efforts have been spent in devel-
oping high performance AC drives for the induction motor
(IM) in accordince with critical industrial demands. As a
result of these efforts, a fast dynamic response of induc-
tion machine can be achived by the field-oriented control
(FOC) [1, 8]. The FOC techniques demand a good mo-
tor parameter’s knowledge to find an effective decoupling
between motor torque and motor flux actuating signals.

An efficient automatic measurement procedure in indus-
try application is developed which has to compromise con-
structor low-cost needs and customer satisfaction. There-
fore the automatic measurement procedure must present
simple, user friendly, and the accuracy on measures pa-
rameters comparable to that obtained from classical test
procedures; no need to mechanical-locking the shift or
load-disconnecting [6]. Consider this, a practical invert-
er system contain with standstill parameters identifica-
tion scheme is a present trend in drive technology as it
allows the automatic set-up of the control system (self-
commissioning) [2].

In the past years, the methods used for identifying the IM
parameters at standstill are: fitting of time responses or

of the frequency response by means of the linear squares
method [5], processing of time responses by the maximum
likelihood method [4, 9], considering the saturation effect-
s in the recursive least squares (RLS) method [11], and
the adjust model of model reference adaptive system (M-
RAS) [3]. A fully-automated procedure for measuring the
parameters of an induction motor are performed by the
PWM inverter [6].

In this paper an on-line estimator to determine stator re-
sistor, rotor resistor, stator inductance, and mutual induc-
tance is proposed, which also requires the transfer func-
tion at standstill. This is an analytic method so that the
convergence of the identification procedure is assured. Ac-
tually, the theory of the proposed estimator is a basis for
adaptive control. Thus, the estimator is easily implement-
ed on a FOC control system of AC drives. The persistently
exciting input signal is suggested to verify the theory in
the experiment. Furthermore, a feedback current control
loop is added in the implementation of the estimator and
then the persistently exciting voltage signal is generat-
ed by the feedback current control loop to constrain the
current under rated value. Experimental results validate
the identifcation procedure with good agreement between
estimated and nominal electrical parameters.

2 Model of an induction motor at
standstill

The mathematical model of an induction motor in a
stator-fixed frame (α, β) can be described by five non-
linear differential equations with four electrical variables
[stator currents (iαs, iβs) and rotor fluxes (ϕαr, ϕβr)], a
mechanical variable [rotor speed (ωm)], and two control
variables [stator voltages (uαs, uβs)] [8] as follows:

ϕ̇αr =
Lm
τr
iαs −

1
τr
ϕαr − pωmϕβr (1)

ϕ̇βr =
Lm
τr
iβs −

1
τr
ϕβr + pωmϕαr (2)

i̇αs = −γiαs +
K

τr
ϕαr + pKωmϕβr + αsuαs (3)

1



i̇βs = −γiβs +
K

τr
ϕβr − pKωmϕαr + αsuβs (4)

ω̇m = −B
J
ωm +

Te
J
− TL

J
(5)

where Rs and Rr are the stator and rotor resistance,
Ls, Lr, and Lm are the stator, rotor, and mutual induc-
tance, B and J are the friction coefficient and the the
moment of inertial of the motor, p is the number of pole-
pairs. Furthermore, τr = Lr/Rr is the rotor time con-
stant and the parameters used in (1)-(5) are defined as
σ ≡ 1 −M2/(LsLr), K ≡ Lm/(σLsLr), αs ≡ 1/(σLs),
γ ≡ Rs/(σLs) +RrL

2
m/(σLsL

2
r), and µ ≡ pLm/(JLr).

Now, consider the IM at standstill, i.e., the IM is con-
trolled to produce zero torque, so that the motor is at
standstill with ωm = 0. This can be achieved by magne-
tizing the IM in the β-axis. Under such a circumstance,
uαs, iαs , and ϕαs are all zero. Thus, it follows from (1)-
(4) that the model of an IM at standstill consists of only
the state space equations along the β-axis:

ϕ̇βr = − 1
τr
ϕβr +

Lm
τr
iβs (6)

i̇βs = −γiβs +
K

τr
ϕβr + αsuβs (7)

Taking Laplace transforms fo both sides of (6) and(7) and
then substituting the result of (6) into that of (7), we
obtain the transfer function of the present system as

iβs
uβs

=
b1s+ b0

s2 + a1s+ a0
(8)

where 
a1 = (RsLr +RrLs)/(σLsLr)
a0 = RsRr/(σLrLs)
b1 = 1/(σLs)
b0 = Rr/(σLrLs)

(9)

These four parameters will be identified by an on-line
paramter estimator described in the next sectin.

3 On-line parameter estimator

To derive an on-line parameter estimator, we should trans-
form (8) to a linear parametric model. Since the sys-
tem is second-order, it needs a second-order filter for
the transformation. It is, however, desirable to make
the order of the resulting linear parametric model as
low as apossible. This motivates us to use the filter of
Λ(s) = (s + h1)(s + h0). Let z ≡ s2iβs/Λ(s). It then
follows from (8) that

z = [−a1 − a0 b1 b0]


siβs/Λ(s)
iβs/Λ(s)
suβs/Λ(s)
uβs/Λ(s)

 (10)

According to the definition of z, it is apparent that

iβs = z +
(h1 + h0)s+ h1h0

Λ(s)
iβs

=
(h1 + h0 − a1)s+ (h1h0 − a0)

Λ(s)
iβs

+
b1s+ b0

Λ(s)
uβs (11)

which leads to the linear parametric model as follows.

iβs = θ∗Tw (12)

where

θ∗ =


c1
c2
c3
c4

 =



b0 − b1h1
h0 − h1
b1h0 − b0
h0 − h1

−a0 + a1h1 − h2
1

h0 − h1
a0 − a1h0 + h2

0
h0 − h1

 , (13)

w =


w1
w2
w3
w4

 =


1

s+ h1
uβs

1
s+ h0

uβs
1

s+ h1
iβs

1
s+ h0

iβs

 (14)

Note θ∗ is the vector of the parameters to be esimated
and w is the vector of measured signals. The measured
singals in (14) is only first-order, instead of secomd-order.
This is because we took a factored second-order filter Λ(s)
in advance.

Let the estimate of iβs be îβs:

îβs = θ̂
T
w (15)

where θ̂ is the estimate of θ∗. Moreover, define a normal-
ized estimation error as

ε =
iβs − îβs
m2 (16)

where m2 = 1 + n2
s with n2

s = αwTw and α > 0. The
purpose of m is to make w/m bounded. We further define
a quadratic cost function as

J(θ̂) =
ε2m2

2
=

(iβs − θ̂
T
w)2

2m2 (17)

The gradient method to minimize J(θ̂) is the trajectory
of

˙̂
θ = −Γ∇J(θ̂) = Γεw (18)

where Γ is a diagonal matrix with positive diagonal en-
tries. Equation (18) is then used as the gradient on-line
parameter estimator for (15).

It is shown in [7] that if w is bounded and PE (persistently
exciting), then θ̂ converges exponentially to θ∗. Since the
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filter λ is a stable trasfer function, w is bounded if uβs
and iβs are bounded. uβs is the input signal and is given
by the user, while iβs is the output of a physical system
whose response to a finite input is still finite. Thus, we
can simply assume that the boundedness of w is always
satsified.

The PE property of w can be related to the sufficient
richness of uβs [10]. A simple result is that w ∈ <4 is PE
if and only if uβs is sufficiently rich of oder 4. According
to the definition, the signal uβs is sufficiently rich of oder
n = 4 if it consists of at least n/2 = 2 distinct frequencies.
It is then not difficult to construct the input signal so that
w is PE.

The above proposed on-line estimator is used to obtain a
convergent value of θ̂. The next step is to calculate the
coefficients of (8) from the value of the estimate θ̂ by

â1 = h1 + h0 − ĉ3 − ĉ4
â0 = h1h0 − h1ĉ4 − h0ĉ3
b̂1 = ĉ1 + ĉ2
b̂0 = h0ĉ1 + h1ĉ2

(19)

which follows from (14), where ĉi are the entries of θ̂
∗
. The

inverse relation of (9) allows us to obtain the parameter
estimates as 

R̂s = â0/b̂0
R̂r = â1/b̂1 − R̂s
L̂s = L̂r = R̂r b̂1/b̂0

L̂m =
√
L̂2
s − L̂s/b̂1

(20)

Alternatively, we can combine (19) and (20) to directly
calculate out the parameter estimates as follows.

R̂s = (h1h0 − h0ĉ3 − h1ĉ4)/(h0ĉ1 + h1ĉ2) (21)
R̂r = (h1 − h0 − ĉ3 − ĉ4)/(ĉ1 + ĉ2)− R̂s (22)
L̂s = L̂r = R̂r(ĉ1 + ĉ2)/(h0ĉ1 + h1ĉ2) (23)

M̂ =
√
L̂2
s − L̂s/(ĉ1 + ĉ2) (24)

4 Experiment

The experimental system is a PC-based control system.
A servo control card on the ISA bus of the PC provides
eight A/D converters, four D/A converters, and an en-
coder counter. The ramp comparison modulation circuit
is used to generate the PWM for driving the IGBT module
inverter. The sampling time for the adaptive identification
is 0.3ms. The induction motor in the experimental system
is a 4-pole, 5HP, and 220V with the rated current 14 A,
rated speed 1700 rpm, and rated torque 20.95 Nm.

In our rigorious concept , the overall impedence of IM
at standstill is smaller for the sake of the senondary-side

is taken as short-circuit while IM motor equavilent cir-
cuit model is applied, which inducing the current is more
sensitive to the input voltage variation. Little voltage in-
cresement will enlarge the output current of IM which will
be simpler falling into the condition of flux saturation. If
the saturation flux is excited by over current, then the IM
parameter identification accuracy will be influenced. To
alleviate this problem, we implemented the proposed pa-
rameter estimator on a current-controlled PWM inverter,
which is shown in Fig. 1. In the experiment, the input of
voltage vαs is always set to be zero, whereas vβs is gener-
ated by a PI controller as follows:

uβs = (kp + ki/s)(i∗βs − iβs) (25)

where kp and ki are the regulator gains. The feed-
back signal iβs is the measured current by a Hall sen-
sor. A dead-time compensator [6] is also considered in
this experimental system in order to reduce the effects of
the inverter dead-time. The input current command is

IM

2
to
3PI

Inverter
+

_

*
si β

su β

0=suα

Parameters
Estimated

siβ

asi

asu

bsu

csu

bsi csi

Figure 1: Block diagram of the identifying implement of
an induction motor at standstill.

i∗βs = 2 sin(t)+4 sin(4t)+8 sin(8t), which consists fo three
distinct frequencies and can make the signals w PE. The
parameters of the filter in the parameter estimator are
h0 = 30 and h1 = 80, while the PI controller has the gains
of kp = 1.6 and ki = 116.

The experimental results are reported in Fig. 2 to Fig. 4.
The history of the current command and that of the mea-
sured one are shown Fig. 2. They match very well. It can
be seen from Fig. 3 that the estimates ĉi converge to some
values. The stead-state values aare recorded as ĉ1 = 0.23,
ĉ2 = 0.22, ĉ3 = 0.34, and ĉ4 = 0.32. We then use (24)
to obtain the parameter estimates R̂s = 0.5, R̂r = 0.65,
L̂s = L̂r = 0.064, L̂m = 0.05. Besides, the estimate histo-
ries of the electrical parameters are also depicted in Fig. 4.
As a conclusion, we found that the resulting estimates of
the electrical parameters are very close to the nominal
values given by the manufacturer.

5 Conclusions

An approach based on the adaptive gradient algorithm has
been developed for identifying the IM parameters in PWM
inverter-fed drivers at standstill. A linear regression mod-
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el of the induction motor at standstill is obtained taking
in zero torque which is generated in the only β-axis mag-
netized voltage applied condition. Identification scheme of
adaptive gradient algorithm is implement based on the the
parametric form of linear model of the induction motor.
Persistent exciting propriety of the input voltage wave-
form is ensure the the parameters’ convergence property.
So rich input signal is required in the adaptive identify-
ing procedure. For inhibit the over flux saturation to in-
flurence the identification results, the β-axis current contrl
loop controller of IM is developed to overcome this prob-
lem. The identification procedure system is implemented
in a PC-based controller to drive a 5HP induction motor.
Experimental results show the parameters identifying with
good agreement between estimated and nominal electrical
parameters.
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Figure 2: Identification procedure input signal: (a) com-
mand current, (b) measured current.
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Figure 3: Identification procedure of the estimated pa-
rameters , (a) ĉ1, (b) ĉ2, (c) ĉ3, and (d) ĉ4.

Acknowledgments

This paper was in part supported by the National
Science Council, Taiwan under Grant No. NSC91-2213-
E-009-071.

References

[1] A. Belini, G. Figalli, and L. Cava, “A discrete feed-
back sub-optimal control for induction motor drives,”
IEEE Trans. Ind. Appl., pp. 422-428, March/April
1985.

0 1 0 2 0 3 0 4 0 5 0

0

0 . 5

1

1 . 5

2

2 . 5

Rs

t i m e  ( s e c )

0 1 0 2 0 3 0 4 0 5 0

0

0 . 5

1

1 . 5

2

2 . 5

Rr

t i m e  ( s e c )

0 1 0 2 0 3 0 4 0 5 0
0

0 . 0 5

0 . 1

Ls

t i m e  ( s e c )

0 1 0 2 0 3 0 4 0 5 0
0

0 . 0 5

0 . 1

Lm

t i m e  ( s e c )

(a) (b)

(c) (d)

)(ˆ ΩrR

)(ˆ hLm

)(ˆ ΩsR

)(ˆ hLs

Figure 4: Identification procedure of the IM parameters:
(a) R̂s, (b) R̂r, (c) L̂s, and (d) L̂m.

[2] A. M. Khambadkone and J. Holtz, “Vector-controlled
induction motor drive with a self-commissioning
scheme,” IEEE Trans. on Ind. Elect., vol. 38, no. 3,
pp. 322-327, Oct. 1991.

[3] G. S. Buja, R. Menis, and M. I. Valla, “MRAS iden-
tification of the induction motor parameters in PWM
inverter drives at standstill,” in Proc. of 2000 IEEE-
IECON Ann. Meet., vol. 2, 2000, pp. 1041-1047.

[4] H. B. Karayaka, M. N. Marwali, and A. Keyhani,
“Induction machine parameter tracking from test da-
ta via PWM inverters,” in Proc. of 1997 IEEE-IAS
Ann. Meet., 1997, pp. 227-233.

[5] J. R. Willis, G. J. Brook, and J. S. Edmonds, “Deriva-
tion o induction motor models from standstill fre-
quency responses test,” IEEE Trans. on Energy Con-
version, vol. 4 pp. 118-125, Mar. 1989.

[6] M. Aiello, A. Cataliotti, and S. Nuccio, “A fully-
automated procedure for measuring the electrical pa-
rameters of an induction motor drive with rotor at
standstill,” in Proc. of 2002 IEEE-IAS Ann. Meet.,
2002, pp. 681-685.

[7] P. A. Ioannou and J. Sun, Robust adaptive control.
Prentice-Hall Press, 1996.

[8] P. Vas, Vector Control of AC Machines. Clarendon
Press, 1996.

[9] S. I. Moon and A. Keykani, “Estimation of induction
machine parameters from standstill time-domain da-
ta,” IEEE Trans. on Ind. Applicat., vol. 30, no. 6,
pp. 1609-1615, Nov./Dec. 1994.

[10] S. Sastry and M. Bodson, Adaptive control: Stabili-
ty, Convergence and Robustness. Prentice-Hall Press,
1989.

[11] Z. M. A. Peixoto and P. F. Seixas, “Electrical param-
eter estimation considering the saturation effects in
induction machines,” in Proc. of 2000 IEEE-PESC
Ann. Meet., 2000, pp. 1563-1568.

4


	Session Index
	Author Index



