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Abstract

The π-sharing theory is an extension of the passivity theory
to simultaneously accommodate the state and input-output sta-
bility. In this paper, theπ-sharing theory is used to develop
a procedure for synthesizing PID-type controllers that stabi-
lize multivariable linear time-invariant systems. The proposed
method is based on the linear matrix inequality formulation and
is easy to apply. Numerical examples are provided to show the
effectiveness of the method.

1 Introduction

The π-sharing theory [11], which simultaneously accommo-
dates state and input-output stability, offers a less known, but
alternative way of analyzing system stability. As an extension
of the concepts of passivity [7] and dissipativity [21], theπ-
sharing theory is particularly useful when applied to feedback
systems, because it uses the so-calledπ-coefficients to describe
the “energy storage and dissipation” of the subsystems. Hence,
for a feedback system consisting of two subsystems to be sta-
ble, a subsystem is allowed to be non-passive, as long as the
other subsystem is “passive enough”. In [11], the theory is
presented in the context of discrete-time single variable sys-
tems, and in [10] the corresponding theory for continuous-time
multivariable systems is developed. Moreover, the originally
difficult task of finding usableπ-coefficients is overcome for
linear time-invariant (LTI) systems in [10], where the problem
is translated into the solution of a set of linear matrix inequali-
ties (LMI’s) [3]. Thus for any finite dimensional LTI systems,
time-invariantπ-coefficients may be obtained conveniently.

In contrast to the less knownπ-sharing theory, the PID con-
troller is probably the most popular idea in the field of control
engineering. Determination of the controller parameters of a
PID controller has many different ways, ranging from empir-
ical tuning methods [1, 5, 12] such as the celebrated Ziegler-
Nichols rule, to sophisticated methods based on mathematical
theory [2, 6, 8, 13, 14, 15, 16, 18, 20] and neuro-fuzzy theory
[9, 17, 19]. However, for multivariable systems described by
the state-space model how to obtain stabilizing PID controllers

is still a challenging problem. In this paper, the multivariable
π-sharing theory is utilized to establish a set of LMI condi-
tions for a given multivariable LTI system. If there are feasible
solutions to these LMI conditions, then stabilizing PID-type
controllers may be found systematically for the system in dis-
cussion. Examples will be given to show the effectiveness of
the proposed method.

Before we start, some notations adopted in this paper are in-
troduced first. We useX ≥ 0 to denote that the matrixX is
symmetric and positive semi-definite, andX ≥ Y to denote
X − Y ≥ 0. Similar definitions apply to symmetric posi-
tive/negative definite matrices. IfX > 0, thenX1/2 denotes
the positive definite matrix such thatX1/2X1/2 = X. Letx(t)
andΦ(t), respectively, be any real vector and symmetric ma-
trix functions of timet, then(Φ)|x(t)|2 = xT(t)Φ(t)x(t) and
(Φ)‖x‖2T =

∫ T

0
xT(t)Φ(t)x(t)dt, whereT ≥ 0 is a constant.

If Φ = I, the identity matrix, then it is omitted from the nota-
tions. Finally, we let‖X‖ represent the induced two-norm of
the matrixX.

2 Multivariable π-sharing theory

For easy reference, the continuous-time multivariableπ-
sharing theory developed in [10] is briefly reviewed in this Sec-
tion, but restricted to the LTI case. Consider the systemS in
state-space form:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), (1)

wherex(t) ∈ Rn is the state vector,u(t) ∈ Rm is the input
vector,y(t) ∈ Rm is the output vector, andA, B, C, D are
constant matrices of appropriate dimensions. The systemS
is said [10, 11] to beπ-sharingwith respect toπ-coefficients
{Γ,Q,P,R}, if for all T ≥ 0

∫ T

0

uT(t)y(t)dt ≥ (Γ)|x(T )|2 − (Γ)|x(0)|2 + (Q)‖x‖2T
+ (P)‖y‖2T + (R)‖u‖2T , (2)

whereΓ,Q ∈ Rn×n are positive semi-definite symmetric ma-
trices, andP,R ∈ Rm×m are symmetric matrices. Basi-
cally (2) describes energy dissipativity [21] of the systemS
with a quadratic type energy supply rate. In [10, 11], it is



pointed out that the left hand side of (2) can be interpreted
as the energy supplied to the system from outside sources,
and is positive ifS sinks energy. In the right hand side of
(2), (Γ)|x(T )|2 − (Γ)|x(0)|2 and (Q)‖x‖T respectively pa-
rameterize energy stored and dissipated in state trajectory, and
(P)‖y‖2T +(R)‖u‖2T characterizes energy exchange ofS with
systems connected to it. Define thedissipativity matrixof the
systemS as

M =
[

M11 M12

MT
12 M22

]
, (3)

where

M11 = ATΓ + ΓA + Q + CTPC,

M12 = ΓB− 1
2
CT + CTPD,

M22 = DTPD− 1
2
(D + DT) + R.

The next lemma qualifies a set ofπ-coefficients in terms of the
negative semi-definiteness of the dissipativity matrix.

Lemma 1 [10, 11] If M ≤ 0, Γ ≥ 0, andQ ≥ 0, then system
S in (1) isπ-sharing with respect to{Γ,Q,P,R}.

Note that the conditions in the above lemma are LMIs with
respect to the variables{Γ,Q,P,R} for a givenS.

In the π-sharing theory, theπ-stability is defined to include
state and input-output stability at the same time. Below is the
definition of theπ-stability.

Definition 1 [10, 11] The system (1) isπ-stable, if there exist
γ1, . . . , γ4 ∈ R such that

‖y‖T ≤ γ1‖u‖T + γ2|x(0)|
and

sup0≤t≤T |x(t)| ≤ γ3‖u‖T + γ4|x(0)|

for all u(t) ∈ Rm, x(0) ∈ Rn, andT ≥ 0.

Note that the first condition in Definition 1 is the condition for
L2 stability, and the second condition implies stability in the
sense of Lyapunov when the external inputu ≡ 0. The next
lemma, adapted from [10, 11] for the LTI case, gives a suffi-
cient condition of theπ-stability in terms of theπ-coefficients.

Lemma 2 If R ≥ r0I, P ≥ p0I > 0 andΓ ≥ γI > 0, then
the systemS in (1) isπ-stable withγ1 = (1 +

√
p0δ)/p0, γ2 =√

γ0/p0, and γ3 = γ4 =
√

ξ/γ, whereδ = |min{0, r0}|,
γ0 = the maximum eigenvalue ofΓ, and ξ = max{γ0, δ +
(1 +

√
p0δ)/p0,

√
γ0/p0}.

An important advantage of theπ-sharing theory is thatπ-
coefficients of the feedback system shown in Fig. 1 can be ex-
pressed in a composite form of those of individual subsystems,
as the following lemma shows.

Lemma 3 [10, 11] In Fig. 1, let the systemS be the feedback
connection of subsystemsS1 andS2, which areπ-sharing with
respect to{Γ1, Q1, P1, R1} and{Γ2, Q2, P2, R2}, respec-
tively. IfR1 + P2 > 0, thenS is π-sharing with respect to the
compositeπ-coefficients

{Γ,Q,P,R} =
{[

Γ1 0
0 Γ2

]
,

[
Q1 0
0 Q2

]
,

P1 + R2,R1[R1 + P2]−1P2

}
. (4)

By the above lemma, a sufficient condition to ensure thatS is
π-stable is thatΓ1 > 0, Γ2 > 0, P1+R2 > 0, andR1+P2 >
0. Note that the condition is a set of LMIs.

3 PID-type controller synthesis

The feedback system in Fig. 2 has a square LTI plant in the for-
ward path, a PI-controller in the feedback path, a disturbance
inputw, and a reference inputr. In this paper the effect of the
disturbance is not considered, so it is assumed thatw = 0. No-
tice that though Fig. 2 looks like a feedback configuration, the
PI-controller is actually in the forward path with respect to the
input-output pair(r,y1). Let the plant be described by

ẋ(t) = Apx(t) + Bpu1(t)
y1(t) = Cpx(t) + Dpu1(t),

(5)

wherex(t) ∈ Rn, u1(t), y1(t) ∈ Rm, andAp,Bp,Cp,Dp

are given constant matrices with appropriate dimensions. The
PI-controller is described by

ẋc(t) = Bcu2(t)
y2(t) = Ccxc(t) + Dcu2(t),

(6)

wherexc(t), u2(t), y2(t) ∈ Rm, andBc,Cc,Dc are constant
matrices with appropriate dimensions. It is assumed thatBc is
given, or set toI by default. The problem is to find the I-gain
Cc and P-gainDc so that the feedback system isπ-stable.

Based on the multivariableπ-sharing theory stated in Section
2, it is easy to see that if there existCc, Dc, {Γ1, Q1, P1, R1},
and{Γ2, Q2, P2, R2} such that

M1 =
[

AT
p Γ1 + Γ1Ap + Q1 + CT

p P1Cp

BT
p Γ1 − 1

2Cp + DT
p P1Cp

Γ1Bp − 1
2C

T
p + CT

p P1Dp

DT
p P1Dp − 1

2 (Dp + DT
p ) + R1

]
≤ 0, (7)

Γ1 > 0, Q1 ≥ 0, (8)

M2 =
[

Q2 + CT
c P2Cc

BT
c Γ2 − 1

2Cc + DT
c P2Cc

Γ2Bc − 1
2C

T
c + CT

c P2Dc

DT
c P2Dc − 1

2 (Dc + DT
c ) + R2

]
≤ 0, (9)

Γ2 > 0, Q2 ≥ 0, (10)

P1 + R2 > 0, R1 + P2 > 0, (11)

then our goal is reached. To find feasible solutions of the above
matrix inequalities, a procedure is suggested here. First ignore



the inequalities in (9) and (10). Then add an extra matrix in-
equalityP2 < 0, which together with (7), (8), and (11) form a
set of LMIs with respect to the variablesΓ1, Q1, P1, R1, P2,
andR2. To continue, it is assumed that there exists a set of fea-
sible solution for the LMIs withP2 < 0, which may be found
by using suitable computing softwares [4]. Now, the matrix
inequality (9) is re-written as

M2 =
[

Q2 Γ2Bc

BT
c Γ2 R2

]
− 1

2

[
0 CT

c

0 DT
c

]
− 1

2

[
0 0
Cc Dc

]

+
[

0 CT
c

0 DT
c

]
P2

[
0 0
Cc Dc

]
≤ 0,

or equivalently,
[

Q2 Γ2Bc

BT
c Γ2 R2 + 1

4 P̂
−1
2

]
≤

[
0 CT

c P̂1/2
2

0 DT
c P̂1/2

2 + 1
2 P̂

−1/2
2

][
0 0

P̂1/2
2 Cc P̂1/2

2 Dc+ 1
2 P̂

−1/2
2

]
,

whereP̂2 = −P2 > 0. The above matrix inequality holds if

R2+
1
4
P̂−1

2 ≤(DT
c P̂1/2

2 +
1
2
P̂−1/2

2 )(P̂1/2
2 Dc+

1
2
P̂−1/2

2 ), (12)

Γ2Bc = (CT
c P̂1/2

2 )(P̂1/2
2 Dc +

1
2
P̂−1/2

2 ), (13)

Q2 ≤ CT
c P̂2Cc. (14)

The matrix inequality (12) is satisfied by setting

Dc = P̂−1/2
2 (R2 +

1
4
P̂−1

2 + Z)1/2 − 1
2
P̂−1

2 , (15)

whereZ may be any symmetric matrix makingR2 + 1
4 P̂

−1
2 +

Z > 0. Also, in (15)Dc makesDT
c P̂2 + 1

2I = (R2 + 1
4 P̂

−1
2 +

Z)1/2P̂1/2
2 , a nonsingular matrix. Hence the matrix equation

(13) may be satisfied by setting

Cc = (DT
c P̂2 +

1
2
I)−1BT

c Γ2, (16)

whereΓ2 is at designer’s choice, but it needs to be positive
definite to satisfy (10). Finally, anyQ2 ≥ 0 which is less than
or equal toCT

c P̂2Cc ≥ 0 may be selected to satisfy the matrix
inequality (14) and the condition aboutQ2 in (10). However,
the actual determination ofQ2 is not necessary as it does not
affect the selections of controller gainsCc andDc.

The proposed PI-controller synthesis procedure contains three
matricesBc, Z, andΓ2 that may be tuned by the designer.
A simple default choice isBc = I, Z = 0, andΓ2 = gI,
whereg > 0 is the gain adjustment factor for the I-gainCc.
While the second half part of the procedure is straightforward,
at this point it is appropriate to consider more closely the LMIs
that must be solved in the first half part of the procedure. The
second LMIR1 + P2 > 0 in (11) and the extra LMIP2 < 0

clearly requireR1 > 0, but then the(2, 2)-block of the main
LMI in (7) dictates thatDp be at least nonsingular. Thus for
any plant with the singular direct transmission gain matrix, the
proposed procedure can not be applied. However, there is a
remedy. For the plant described by (5) with a singularDp,
consider the control system configuration displayed in Fig. 3,
where a feedforward compensation with the transfer function
matrix s

s+αDf is utilized to produce an augmented plant with
input u1 and output̂y1. Clearly the direct transmission gain
matrix of the augmented plant isDf + Dp, which can always
be arranged to be nonsingular. The objective of the high-pass
filter s

s+α with α À 1 is to ensure that inside the bandwidth of
the control system, responses of the true plant outputy1 will be
close to those of the augmented plant outputŷ1. In particular,
when a PI-controller is called for, it is usually desired thaty1

has no steady-state errors in response to the reference inputr
consisting of the step signals. This is guaranteed by using the
high-pass filter, provided the augmented system is stabilized by
the PI-controller.

After a PI-controller (6) is designed for the augmented plant in
Fig. 3, it is seen that

u1(s) = −F(s)[ŷ1(s)− r(s)]

= F(s)[r(s)− y1(s)]− s

s + α
F(s)Dfu1(s),

whereF(s) = 1
sCcBc + Dc. Thus

u1(s) =
s + α

s
[s(I + DcDf ) + CcBcDf + αI]−1

(sDc + CcBc)[r(s)− y1(s)]. (17)

This expression enables one to return to the basic control sys-
tem configuration in Fig. 2, but the PI-controller therein is re-
placed by a controller with the transfer function matrix in (17).
Note that the modified controller is basically a PID-type, as can
be seen in the special case of single-input-single-output sys-
tems, where (17) reduces to

u1(s) =
(s + α)(sDc + CcBc)

s[s(1 + DcDf ) + CcBcDf + α]
[r(s)− y1(s)],

similar in the form to the standard realizable PID controller

u1(s) =
cDs2 + cP s + cI

s(s/β + 1)
[r(s)− y1(s)]

with β À 1.

4 Examples

Example 1:For the plant (5) withn = 3, m = 2,

Ap =



−5 44 −60

1 0 0
0 1 0


 , Bp =




1 0
0 1
0 0


 ,

Cp =
[

1 1 0
0 1 1

]
, Dp =

[
0.2 0

0 0.2

]
,



the proposed PI-controller synthesis procedure can be applied
directly. However, our numerical experiences show that if the
LMIs P2 < 0, (7), (8), and (11) are solved blindly for any
feasible solutions without setting any preferences, then often in
the solution‖R2‖ is large and‖P2‖ = ‖P̂2‖ is small, resulting
in a large‖Dc‖. Hence an objective function‖R2‖ − ‖P2‖ is
set to be minimized. Based onBc = I, Z = 0, andΓ2 =
1000I, the optimal solution leads to

Cc =
[

1999.9997 0.0011
0.0011 1999.9924

]
,

Dc =
[

101.8133 0.0027
0.0003 101.8135

]
.

The feedback system response tor(t) = [ r1(t) r2(t) ]T,
wherer1(t) is the unit-step signal andr2(t) = 0, is shown
in Fig. 4a. It is seen that fory1(t) there are no steady-state
errors as desired, and the decoupling effect is pretty good as
y2(t) is kept small. Also, in Fig. 4b the two control inputs of
u1(t) have moderate magnitudes. Whenr1(t) = 0 andr2(t) is
the unit-step signal, the response characteristics are about the
same, except that the magnitude ofu1(t) is larger.

Example 2:For the plant (5) withn = 2, m = 1,

Ap =
[

1.5 −0.5
1 −1

]
, Bp =

[
1

0.5

]
, Cp =

[
1 0.5

]
,

andDp = 0, a feedforward compensation0.8s
s+200 is adopted

to form the augmented plant. Then corresponding toBc = 1,
Z = 0, andΓ2 = 1, the gainsCc = 2.0000 andDc = 4.8028
are obtained from applying the optimization procedure intro-
duced inExample 1. The simulation results in Fig. 5 shows the
response of the feedback system to the step reference signal
r(t), where it can be seen that, except during a short transient
period,y1(t) andŷ1(t) are very close.

5 Conclusion

In this paper the multivariableπ-sharing theory is utilized to
develop a procedure for synthesizing PID-type controllers. An
LMI-based sufficient condition is established to let the users of
the procedure easily determine if a PI-controller can be found.
Notice that theπ-sharing theory is originally devised to handle
nonlinear systems. Therefore if for any nonlinear system a set
of suitableπ-coefficients exists, then the procedure proposed in
this paper has the potential to be applicable as well. This part
is currently under investigations.
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Figure 1: A feedback system.
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Figure 2: A feedback system with a PI-controller.

PI-Controller

Plant

s
s+αDf-

?

?

- -

r−+¾ ¾
u2

y1

+
+

y2

w ŷ1
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Figure 3: A plant controlled by a feedforward controller and a
PI-controller.



(a)

(b)

Figure 4: (a) Output responses of the system in Example 1 due
to r1 = unit step, andr2 = 0. (b) Control inputs of the system
in Example 1 due tor1 = unit step, andr2 = 0.

Figure 5: Step responses of the system in Example 2.
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