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Keywords: PID Controller,7-Sharing Theory, LMI, Stabi- is still a challenging problem. In this paper, the multivariable

lization, Passivity. m-sharing theory is utilized to establish a set of LMI condi-
tions for a given multivariable LTI system. If there are feasible
Abstract solutions to these LMI conditions, then stabilizing PID-type

controllers may be found systematically for the system in dis-
The 7-sharing theory is an extension of the passivity theogussion. Examples will be given to show the effectiveness of
to simultaneously accommodate the state and input-output $k proposed method.
bility. In this paper, ther_-gharlng theory is used to OleVel()pl?;efore we start, some notations adopted in this paper are in-
a procedure for synthesizing PID-type controllers that stat&l— duced first. We us& > 0 to denote that the matriX is

lize multivariable linear time-invariant systems. The pProposeqd . metric and positive semi-definite, ad > Y to denote
method is based on the linear matrix inequality formulationard v~ gimilar definitions ap|,3Iy to _symmetric posi-

is easy to apply. Numerical examples are provided to show e/negative definite matrices. X > 0, thenX!/2 denotes

effectiveness of the method. the positive definite matrix such th&t'/2X1/2 = X. Letx(t)
and®(t), respectively, be any real vector and symmetric ma-
1 Introduction trix functions of timet, then(®)|x(t)|? = x T (t)®(¢)x(t) and

T xT(t)®(t)x(t)dt, whereT > 0 is a constant.

(®)[x[17 =

The m-sharing theory [11], which simultaneously accommay g _ I, the identity matrix, then it is omitted from the nota-

dates state and Input-output stability, offgr s a less known,.t%tnsl Finally, we let|X|| represent the induced two-norm of
alternative way of analyzing system stability. As an extensu:g e matrixX

of the concepts of passivity [7] and dissipativity [21], the
sharing theory is particularly useful when applied to feedback o .
systems, because it uses the so-catieefficients to describe 2  Multivariable w-sharing theory

the “energy storage and dissipation” of the subsystems. He

e . . L
for a feedback system consisting of two subsystems to be IET'E'L _eastyr/] refe(;enccla, tk(;e_ Cfgtllnubogs%l—nme. muI(tjl\_/artﬁhlg
ble, a subsystem is allowed to be non-passive, as long as Ya"ng theory develope in [10] s briefly reviewed in this Sec-

other subsystem is “passive enough”. In [11], the theory tion, but restricted to the LTI case. Consider the sysg&in

presented in the context of discrete-time single variable s? ate-space form:

tems, and in [10] the corresponding theory for continuous-time (1) = Ax(t) + Bu(t)

multivariable systems is developed. Moreover, the originally y(t) = Cx(t) + Du(t), 1)
difficult task of finding usabler-coefficients is overcome for

linear time-invariant (LTI) systems in [10], where the problem,herex(t) € R" is the state vectom(t) € R™ is the input
is translated into the solution of a set of linear matrix inequak’yector,y(t) € R™ is the output vector, and, B, C, D are
ties (LMI's) [3]. Thus for any finite dimensional LTI systemsconstant matrices of appropriate dimensions. The sySem
time-invariantr-coefficients may be obtained conveniently. s said [10, 11] to ber-sharingwith respect tor-coefficients

In contrast to the less knowm-sharing theory, the PID con- {1 Q. P, R}, ifforall 7> 0

troller is probably the most popular idea in the field of control .,

engineering. Determination of the controller parameters of ut(ty(t)dt > (D)|x(T)]* — (T)[x(0)]*> + (Q)|x||>
PID controller has many different ways, ranging from empir-/0

ical tuning methods [1, 5, 12] such as the celebrated Ziegler- + (P)|lyll7 + R)ull7, (2)
Nichols rule, to sophisticated methods based on mathematical - ) o )
theory [2, 6, 8, 13, 14, 15, 16, 18, 20] and neuro-fuzzy theofyherel’, Q € R"*" are positive semi-definite symmetric ma-
[9, 17, 19]. However, for multivariable systems described B{ices, andP,R € R™*™ are symmetric matrices. Basi-

the state-space model how to obtain stabilizing PID controll€r@!ly (2) describes energy dissipativity [21] of the syst&m
with a quadratic type energy supply rate. In [10, 11], it is



pointed out that the left hand side of (2) can be interpreté@mma 3 [10, 11]In Fig. 1, let the systers be the feedback
as the energy supplied to the system from outside sourcesnnection of subsysterSs andS,, which arer-sharing with

and is positive ifS sinks energy. In the right hand side ofespect to{T';, Q;, P1, R} and{T's, Qa, P2, Ry}, respec-

(2), (D)|x(T)|> = ()|x(0)|*> and (Q)||x||r respectively pa- tively. IfR; + Py > 0, thenS is w-sharing with respect to the
rameterize energy stored and dissipated in state trajectory, anthpositer-coefficients

(P)|lyl%+ (R)|lul|? characterizes energy exchangeSofith

systems connected to it. Define ttissipativity matrixof the {r,Q,P,R} = {{ ry o ] , { Q 0 } 7

systemS as 0 T 0 Q

M — { Mii My, } 3) P, + Ry, Ri[Ry + P 'Ps}. 4)
M{, My, |’
where By the above lemma, a sufficient condition to ensure Shat
w-stableisthal’; > 0,2 > 0,P;+Ry > 0,andR; +P, >
M;; = ATT+TA+Q+CTPC, 0. Note that the condition is a set of LMIs.
1
M;; = I'B-_-C'+C"PD :
12 2= T ’ 3 PID-type controller synthesis
1
M;; = D'PD - 7D+ D') +R. The feedback system in Fig. 2 has a square LTI plant in the for-

ward path, a Pl-controller in the feedback path, a disturbance
The next lemma qualifies a setofcoefficients in terms of the inputw, and a reference input In this paper the effect of the
negative semi-definiteness of the dissipativity matrix. disturbance is not considered, so it is assumedwhat 0. No-

tice that though Fig. 2 looks like a feedback configuration, the
Lemma1 [10, 11]If M < 0,T > 0, andQ > 0, then system PI-controller is actually in the forward path with respect to the
Sin (1) is w-sharing with respect t§T", Q, P, R}. input-output pair(r, y1). Let the plant be described by

x(t) = Apx(t) + Bpuy(t)

y1(t) = Cpx(t) + Dyuy (1), )

Note that the conditions in the above lemma are LMIs with
respect to the variabldT", Q, P, R} for a givenS.

wherex(t) € R", ui(t), y1(t) € R™, andA,,B,,C,,D,

ALe given constant matrices with appropriate dimensions. The
Pl-controller is described by

In the w-sharing theory, ther-stability is defined to include
state and input-output stability at the same time. Below is t
definition of ther-stability.
X.(t) = Beoua(t)
Definition 1 [10, 11] The system (1) is-stable, if there exist y2(t) = Cexc(t) + Deua(t), ©
1, ---,7v4 € R such that
wherex.(t), us(t), y2(t) € R™, andB,, C., D, are constant

[yll7 < mllallr + v2(x(0)] matrices with appropriate dimensions. It is assumedBhas
and given, or set td by default. The problem is to find the I-gain
supg<;<7 [%(t)] < ysllullr + v4]x(0)] C. and P-gairD,. so that the feedback systenmisstable.
for all u(t) € R™, x(0) € R", andT > 0. Based on the multivariable-sharing theory stated in Section

2, itis easy to see that if there ex(St, D, {T'1, Q1,P1, R4 },

' . : ... i . and{FQ,QQ,PQ,RQ} such that
Note that the first condition in Definition 1 is the condition for

Lo stability, and the second condition implies stability in the AT, +TYA,+Q, +CI'P,C
) M, = P P P P
sense of Lyapunov when the external input= 0. The next BEI‘l - 1C, + DEPlcp

lemma, adapted from [10, 11] for the LTI case, gives a suffi-

_1lcT T
cient condition of ther-stability in terms of ther-coefficients. I'B, —3C, +C, P1D,

<o, (7
D P,D, - 5(D,+Dj}) + R, } =0.(

Lemma2 If R > roI, P > poI > 0 andT > ~I > 0, then r, >0, Q Z% 8)

the systen$ in (1) is w-stable withy; = (14 v/pod)/po, Y2 = M, — { - Q2 %1- C. Pz(%c

V0/po, andys = v4 = /€/v, whered = |min{0, 7o}, B T; - 3C.+D,P:C.

7o = the maximum eigenvalue Bf and{ = max{vy, ¢ + B, - 1CT + CI'P,D, ] <0, ()

(1+vPod)/po, /70/po}- DI'P,D, — L(D.+DI)+R, | =
I';>0,Q: >0, (10)

An important advantage of the-sharing theory is thatr- P,+Ry>0, R, + Py >0, (11)

coefficients of the feedback system shown in Fig. 1 can be ex-
pressed in a composite form of those of individual subsystentisen our goal is reached. To find feasible solutions of the above
as the following lemma shows. matrix inequalities, a procedure is suggested here. First ignore



the inequalities in (9) and (10). Then add an extra matrix iatearly requireR, > 0, but then thg2, 2)-block of the main
equalityP, < 0, which together with (7), (8), and (11) form aLMI in (7) dictates thatD,, be at least nonsingular. Thus for
set of LMIs with respect to the variabl®y, Qq, Py, Ri, P>, any plant with the singular direct transmission gain matrix, the
andR:. To continue, itis assumed that there exists a set of fggoposed procedure can not be applied. However, there is a
sible solution for the LMIs witiP, < 0, which may be found remedy. For the plant described by (5) with a singulxy,

by using suitable computing softwares [4]. Now, the matrigonsider the control system configuration displayed in Fig. 3,

inequality (9) is re-written as where a feedforward compensation with the transfer function
- matrix >~ Dy is utilized to produce an augmented plant with
M, — { %2 I:B. } 21 [ 0 CvT ] 1 { 0 0 } input u; and outputy;. Clearly the direct transmission gain
BT Ro 2|0 D, 2 Cc D matrix of the augmented plant13; + D,, which can always
0 C? 0 0 be arranged to be nonsingular. The objective of the high-pass
+ [ 0 Df } Py { C. D, } <0, filter =, with o > 1 is to ensure that inside the bandwidth of
the control system, responses of the true plant oytputill be
or equivalently, close to those of the augmented plant output In particular,
when a Pl-controller is called for, it is usually desired tigat
Qo 2B, has no steady-state errors in response to the referencerinput
BIT, R,+1P;! |= as o y - por hP
ct2 27T 3h 2 consisting of the step signals. This is guaranteed by using the
0 Cgpéﬂ 0 0 high-pass filter, provided the augmented system is stabilized by
0 D;fp;/er%f,;uz [f’é/QCc Pé/2Dc+%f’Q_l/2 » the Pl-controller.

) After a Pl-controller (6) is designed for the augmented plant in
whereP, = —P, > 0. The above matrix inequality holds if Fig. 3, it is seen that

Rot Py <(DIPY2 4 B 4)(PY2D, 40P, 1) wils) = —FEfi(s) —x(s)
S
= F(s)[r(s) —yi(s)] - S+aF(S)DfU1(5),
. . 1._
I,B, = (CIPY?)(P)*D, + 7P 2, (13) whereF(s) = 1C.B, + D,. Thus

_|_
up(s) = > - %s(I+D.D;) + C.B.D; +al] "

(SDC + Cch)[r(S) Al (5)] (17)

Q. < C/P,C.. (14)

The matrix inequality (12) is satisfied by setting
s 1. 1. This expression enables one to return to the basic control sys-
D.=P, ""(Ra+ ZPgl +Z)1/? — §P2’1, (15) tem configuration in Fig. 2, but the PI-controller therein is re-
placed by a controller with the transfer function matrix in (17).
whereZ may be any symmetric matrix makifi), + ip;l + Note that.the modifieq controller is_ basiqally a I?ID—type, as can
Z > 0. Also, in (15)D, makesDEf’2+ %I _ (R2+if’2_1+ be seen in the special case of single-input-single-output sys-

1/2731/2 . . . . tems, where (17) reduces to
Z)'/ P.’“, a nonsingular matrix. Hence the matrix equation

(13) may be satisfied by setting sy (s) = (s+ a)(sD. + C.B.)
e 1. o s[s(1+ D.Dys)+ C.B.Dy + ¢
C.=(D.Py+ 51)_ B_. T, (16)

[r(s) —y1(s)];

similar in the form to the standard realizable PID controller

whereT'; is at designer’s choice, but it needs to be positive

definite to satisfy (10). Finally, an2 > 0 which is less than ui(s) =
or equal toCTP,C, > 0 may be selected to satisfy the matrix s(s/B+1)
inequality (14) and the condition abo(¥, in (10). However, .., 8> 1.

the actual determination @@, is not necessary as it does not

affect the selections of controller gaifis. andD...

cD32 +cps+cr

[r(s) = y1(s)]

. . 4 Examples
The proposed PI-controller synthesis procedure contains three

matricesB,, Z, andT'; that may be tuned by the designerf=xample 1:For the plant (5) withh = 3, m = 2,
A simple default choice iB. = I, Z = 0, andT'; = ¢I,

whereg > 0 is the gain adjustment factor for the I-gay.. -5 44 —60 Lo
While the second half part of the procedure is straightforward, Ap = 0 0, By,=10 1]/,
at this point it is appropriate to consider more closely the LMIs 0 1 0 0 0
that must be solved in the first half part of the procedure. The 1 1 0 0.2 0
second LMIR; + P, > 0in (11) and the extra LMP, < 0 Cp = [ 01 1 } ’ D, = { 0 0.2 ] ’



the proposed PI-controller synthesis procedure can be appligd K. J. Astrom, H. Panagopoulos, and Tabiglund, “Design
directly. However, our numerical experiences show that if the of Pl controllers based on non-convex optimizatiohjto-
LMIs Py, < 0, (7), (8), and (11) are solved blindly for any  matica,vol. 34, pp. 585-601, (1998).

feasible solutions without setting any preferences, then often in

the solution|R; || is large and|Ps || = ||P|| is small, resulting [3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,
in a large||D.||. Hence an objective functiofR|| — ||P2|| is Linear Matrix Inequalities in System and Control Theory.
set to be minimized. Based . = I, Z = 0, andT'y = Philadelphia, PA: SIAM, (1994).

10001, the optimal solution leads to ] ) ) o
[4] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali,

c. - { 1999.9997 0.0011 } LMI Control Toolbox,Natick, MA: The MathWorks Inc.,
¢ 0.0011 1999.9924 |’ (1995).
101.8133 0.0027
} . [5] G. C. Goodwin, S. F. Graebe, and M. E. SalgaGon-

trol System Designinglewood Cliffs, NJ: Prentice Hall,
The feedback system responserto) = [ ri(t) 72(t) |7, (2001).
wherer (t) is the unit-step signal anch(t) = 0, is shown
in Fig. 4a. Itis seen that foy,(¢) there are no steady-statg6] E. Grassi, K. S. Tsakalis, S. Dash, S. V. Gaikwad, W.
errors as desired, and the decoupling effect is pretty good as MacArthur, and G. Stein, “Integrated system identifica-
ya(t) is kept small. Also, in Fig. 4b the two control inputs of  tion and PID controller tuning by frequency loop-shaping,”

D. = { 0.0003 101.8135

u; (t) have moderate magnitudes. Whef(it) = 0 andry(t) is IEEE Trans. Contr. Syst, Teckgl. 9, pp. 285-294, (2001).

the unit-step signal, the response characteristics are about the

same, except that the magnitudewqit) is larger. [7]1 D. J. Hill and P. J. Moylan, “Stability results for nonlin-
) ear feedback systemsfutomatica,vol. 13, pp. 377-382,

Example 2:For the plant (5) witth = 2, m =1, (1977).

A, = { 1'? (1? } » By = [ O.é } ,Cp=[1 05], [8] M. T. Ho, A. Datta, and S. P. Bhattacharyya, “Robust and
non-fragile PID controller designlht. J. Robust and Non-

andD, = 0, a feedforward compensatioﬁ% is adopted linear Control,vol. 11, pp. 681-708, (2001).

to form the augmented plant. Then correspondinggto= 1,

7 =0, andI'; = 1, the gaing’, = 2.0000 and D, = 4.8028 [9] B.G. Hu, K. I. M. George, and G. G. Raymond, “A system-

are obtained from applying the optimization procedure intro- atic study of fuzzy PID controllers-function-based evalua-

duced inExample 1 The simulation results in Fig. 5 shows the  tion approach,”[EEE Trans. Fuzzy Syswpol. 9, pp. 699-

response of the feedback system to the step reference signal712, (2001).

r(t), where it can be seen that, except during a short transient

period’yl(t) andg1<t) are very close. [10] S. C. Hu, | K. Fong, and T. S. Kuo, “Multivariable
pi-sharing theory and its application on the Lur'e prob-
lem,” IEEE Trans. Automat. Contwrpl. 43 pp. 1501-1505,

5 Conclusion (1998).

In this paper the multivariable-sharing theory is utilized to
develop a procedure for synthesizing PID-type controllers.
LMI-based sufficient condition is established to let the users of
the procedure easily determine if a Pl-controller can be found.
Notice that ther-sharing theory is originally devised to handle
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Figure 1: A feedback system.
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Figure 4: (a) Output responses of the system in Example 1 due
tor; = unit step, and, = 0. (b) Control inputs of the system
in Example 1 due te; = unit step, and-, = 0.
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