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Abstract

The problem of (local) coordinates and feedback equivalence
of single-input affine nonlinear systems to feedforward forms
is studied and solved. The general theory is applied to linear
systems, and is illustrated through a simple four dimensional
example describing the dynamics of a food-chain.

1 Introduction

Following the seminal work [16] of Teel on stabilization of
nonlinear systems, a new class of systems, denominated feed-
forward systems has attracted the attention of the nonlinear
control community.
Feedforward systems are in general not feedback linearizable
and occur naturally in the model of simple physical systems,
e.g. the cart and pendulum system, the ball and beam (with fric-
tion). Therefore they have been regarded as an interesting class
of truly nonlinear systems, for which methods such as feedback
linearization or backstepping cannot be applied. Most of the at-
tention of the researches has been devoted to the stabilization
problem and several semiglobal and global stabilization results
have been derived, either via full state feedback and via mea-
surement feedback, see e.g. [5, 9, 16, 10, 8, 1, 6] and [14, 4]
and the references therein.
Most of the aforementioned works start from the assumption
that the system to be controlled is already in feedforward form.
As a result little attention has been devoted to the problem of
the intrinsic characterization of feedforward systems, i.e. to the
problem of deciding when a given nonlinear system can be (lo-
cally or globally) transformed, via a coordinates or a feedback
transformation, into a feedforward system.
Notable exceptions are the results in [16, Appendix 1] and
[15, 13]. In [16, Appendix 1] the problem of feedback equiva-
lence of a perturbed chain of integrators to a feedforward sys-
tem is studied and some sufficient conditions are proposed.
However, it must be noted that the (sufficient) conditions in
[16, Appendix 1] rely on a special structure of the system to be
transformed and on a special form for the transformed system.
In particular it is required that the transformed system is con-
trollable in the first approximation.
In this paper, we focus our attention on control affine systems,
as the more general case of non-affine systems can be dealt with
using the idea of dynamic extension, which has already been
used in the framework of feedback linearization of non-affine
systems, see e.g. [11, Theorem 6.12]. Also, as the definition
of feedforward systems is not unique [5, 9, 16], we consider

only the simplest possible description of feedforward systems.
Moreover, we do not take into consideration controllability and
detectability issues.
The present paper is organized as follows. In Section 2 we give
the definition of the feedforward forms we are interested in and
we state precisely the problems under investigation. Section 3
contains the main results of the paper, namely necessary and
sufficient conditions to transform a single-input affine nonlin-
ear control system into a feedforward system either via coor-
dinates or via feedback transformations. Note that these nec-
essary and sufficient conditions are only conceptual, i.e. they
rely on the existence of solutions of certain partial differential
equations, hence in practice they may not be easy to use. Our
method complements the approach of [15], where the problem
of approximate equivalence to feedforward forms has been ad-
dressed using the series expansions tools developed in [7]. In
Section 4 we discuss the special case of linear systems. Finally,
Sections 5 and 6 contain an illustrative example, concluding re-
marks and a discussion on open problems and future research
directions.

2 Definitions, basic facts and problem formula-
tion

As the notions of invariant distribution and of controlled in-
variant distribution will play a relevant role in the following
developments we recall here their definition [3].

Definition 1 A distribution ∆ is said to be invariant under the
vector field f if

τ ∈ ∆ ⇒ [f, τ ] ∈ ∆,

i.e. the Lie bracket of f with every vector field τ in ∆ is again
a vector field in ∆.

Definition 2 Consider a single-input system described by
equations of the form

ẋ = f(x) + g(x)u (1)

with x ∈ U ⊂ IRn.
A distribution ∆ is said to be controlled invariant on U if there
exists a feedback control law described by equations of the form
u = α(x) + β(x)v such that

[f + gα,∆] ⊂ ∆, [gβ,∆] ⊂ ∆

for all x in U . A distribution ∆ is said to be locally controlled
invariant if for each x ∈ U there exists a neighborhood U0 of
x with the property that ∆ is controlled invariant on U0.

The notion of local controlled invariance can be easily tested in
geometric terms, as expressed in the following statement (see
[3, Lemma 6.2.1]).



Lemma 1 Let ∆ be an involutive distribution. Suppose ∆ and
∆ + span{g(x)} are non-singular on U . Then ∆ is locally
controlled invariant if and only if

[f,∆] ⊂ ∆ + span{g(x)}, [g,∆] ⊂ ∆ + span{g(x)}.
We now define two special classes of systems, referred to as
feedforward forms and strict feedforward forms, respectively.
Definition 3 The single-input affine nonlinear system (1), with
state x ∈ U ⊂ IRn, is said to be in feedforward form if the
vector fields f(x) and g(x) are described by equations of the
form

f(x)=



f1(x1, · · · , xn)
f2(x2, · · · , xn)

...
fn(xn)


 g(x)=



g1(x1, · · · , xn)
g2(x2, · · · , xn)

...
gn(xn)


 .

Definition 4 The single-input affine nonlinear system (1), with
state x ∈ U ⊂ IRn, is said to be in strict feedforward form if
the vector fields f(x) and g(x) are described by equations of
the form

f(x)=



f1(x2, · · · , xn)
f2(x3, · · · , xn)

...
0


 g(x)=



g1(x2, · · · , xn)
g2(x3, · · · , xn)

...
c


 ,

with c ∈ IR. Note that, without loss of generality, we can as-
sume c = 1.
We are now ready to give a precise formulation of the problem
addressed in the paper.
Problem 1 (Coordinates equivalence problem) Given a single-
input nonlinear system described by equations of the form (1),
with x ∈ U ⊂ IRn, and a point x0 ∈ U find (if possible) a
neighborhood U0 of x0 and a coordinates transformation z =
Φ(x), defined on U0, such that, in the new coordinates z, the
system is in (strict) feedforward form.

Problem 2 (Feedback equivalence problem) Given a single-
input nonlinear system described by equations of the form (1),
with x ∈ U ⊂ IRn, and a point x0 ∈ U find (if possible)
a neighborhood U0 of x0, a coordinates transformation z =
Φ(x), defined on U0, and a state feedback control law

u = α(x) + β(x)v
such that, in the new coordinates z, the closed loop system

ẋ = f(x) + g(x)α(x) + g(x)β(x)v
is in (strict) feedforward form.

3 Main results

3.1 Coordinates equivalence

Proposition 1 The system (1) is locally coordinates equivalent
to a system in feedforward form if and only if there exists a
nested sequence of distributions

∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆n−1, (2)

with ∆i i-dimensional and involutive, such that
[f,∆i] ⊂ ∆i (3)

and
[g,∆i] ⊂ ∆i, (4)

for all i = 1, · · · , n− 1.

Remark 1 The above statement can be found, in possibly dif-
ferent forms, in [3, 11]. It is here presented to highlight the
difference between the problems of coordinates and feedback
equivalence to feedforward forms and of that to strict feedfor-
ward forms. Moreover, our proof (see also [6, Chapter 9]) is
different from the proof provided therein.

Proof.(Only if) The proof is trivial, hence omitted.
(If) The sufficiency can be proven using iteratively the re-
sult in [11, Theorem 3.49] (see also the results in [3, Lemma
1.6.3, Proposition 1.7.2]). It can be shown that the original n-
dimensional problem can be reduced to a (n− 1)-dimensional
problem using a coordinates transformation. Then, the (n−1)-
dimensional problem has the same properties of the original
one, hence we show that the reduction procedure can be ap-
plied (n− 1) times to obtain a system in feedforward form. �
The conditions in Proposition 1 can be strengthened to obtain a
characterization of strict feedforward systems, as illustrated in
the following statement.

Proposition 2 The system (1) is locally coordinates equiva-
lent to a system in strict feedforward form if and only if there
exist a nested sequence of distributions as in expression (2),
with ∆i i-dimensional and involutive and n real functions
λ1(x), λ2(x), · · · , λn(x), with λi(x0) = 0 and dλi(x0) �= 01,
such that

∆⊥
1 �/ dλ1 ∈ R

n

∆⊥
2 �/ dλ2 ∈ ∆⊥

1
...

∆⊥
n−1 �/ dλn−1 ∈ ∆⊥

n−2

0 �= dλn ∈ ∆⊥
n−1

(5)

and
dLfλ1 ∈ ∆⊥

1
...

dLfλn−1 ∈ ∆⊥
n−1

dLfλn = 0

dLgλ1 ∈ ∆⊥
1

...
dLgλn−1 ∈ ∆⊥

n−1

dLgλn = 0.

(6)

Proof. (Only If) Assume there exists a local coordinates trans-
formation y = Φ(x) such that the transformed system with
state y is in strict feedforward form. Then, simple computa-
tions show that the distributions ∆i = span{ ∂

∂y1
, · · · , ∂

∂yi
}

are i-dimensional and involutive. Moreover, the functions
λ1(y) = y1, λ2(y) = y2, · · · , λn(y) = yn, fulfil conditions
(5) and (6) and dλi(0) �= 0.
(If) The existence of a series of nested distributions that are
involutive and non-singular implies the existence of a set of
coordinates

z = Φ(x), (7)
in which the distributions are described by the expressions

∆i(z) = span
{

∂

∂z1
,
∂

∂z2
· · · , ∂

∂zi

}
. (8)

Next, consider n functions λ1(z), λ2(z), · · · , λn(z) such that
conditions (5) and (6) holds. Because of the expression (8),
condition (5) implies that each function λi(z) will in fact be
a function of (zi, zi+1, · · · , zn) with ∂λi

∂zi
not identically equal

to zero at zero, for all i. For that, and because dλi(0) �= 0,

1Without loss of generality, it will be assumed for the rest of the paper that
x0 = 0.



the functions λ1(z), λ2(z), · · · , λn(z) define a local diffeomor-
phism

y = Λ(z) =



λ1(z1, z2, · · · , zn−1, zn)
λ2(z2, · · · , zn−1, zn)

...
λn(zn)


 . (9)

We obtain

ẏ =



Lf̃λ1(z)

...
Lf̃λn(z)




z=Λ−1(y)

+



Lg̃λ1(z)

...
Lg̃λn(z)




z=Λ−1(y)

u.

Conditions (6), written in the z-coordinates, are

dLf̃λi ∈
[
span{ ∂

∂z1
, · · · , ∂

∂zi
}
]⊥

dLg̃λi ∈
[
span{ ∂

∂z1
, · · · , ∂

∂zi
}
]⊥ i = 1, · · · , n− 1

dLf̃λn = 0, dLg̃λn = 0,

The claim then follows from the interpretation of the relations
above and from the triangular structure of the transformation
(9). �

Remark 2 For a system to be coordinates equivalent to a
strict feedforward form it, necessarily, has to be coordinates
equivalent to a feedforward form. Indeed conditions (3) and
(4), i.e. the invariance of the distributions under the vector
fields f and g, are implied by the existence of the functions
λ1(x), λ2(x), · · · , λn(x) with the properties (5) and (6). This
can be easily verified considering the change of coordinates (9)
and conditions (6), and keeping in mind that

∆i(ω) = span
{

∂

∂ω1
,
∂

∂ω2
· · · , ∂

∂ωi

}
forω = {z, y}.

Remark 3 To establish coordinates equivalence to a strict
feedforward form, one might be tempted to consider the condi-
tions

[f,∆i] ⊂ ∆i−1, [g,∆i] ⊂ ∆i−1. (10)
However, for a vector field satisfying condition (10) the fol-
lowing implications are true (as in the rest of the paper, we
denote with g̃ the vector field expressed in the coordinates in
which the set of distributions ∆i are expressed by (8)). For
all i = 1, · · · , n and all scalar functions µ(z) the vector field
µ(z) ∂

∂zi
is in ∆i, whereas all vectors in ∆i−1 have zero entries

in the positions i, i+ 1, · · · , n. Then, by (10)
∂µ
∂zi
g̃ − µ(z) ∂g̃

∂zi
⊂ ∆i−1 ⇒ ∂µ

∂zi
g̃i − µ(z)∂g̃i

∂zi
= 0.

But the only way that this is true for all functions µ(z) is if
g̃i = 0 for all i = 1, · · · , n, i.e. g̃(z) = g(x) = 0. The same for
the vector field f . Hence conditions (10) are not correct.

Remark 4 The solution of the coordinates equivalence prob-
lem relies upon the solution of a set of partial differential equa-
tions, namely the partial differential equations defining the dis-
tributions ∆i. For example, the distribution ∆1 can be com-
puted solving the system of (linear) partial differential equa-
tions ∂f

∂x
δ(x) − ∂δ

∂x
f(x) = α(x)δ(x)

∂g

∂x
δ(x) − ∂δ

∂x
g(x) = β(x)δ(x)

(11)

in the unknown α(x), β(x) and δ(x) =
col{δ1(x), δ2(x) · · · δn(x)}. It is worth noting that the
existence of a solution of the above system of partial dif-
ferential equations strongly depends upon the choice of the
functions α(x) and β(x).

3.2 A necessary condition for strict feedforward forms

As explained in Remark 4, the applicability of the results in
Propositions 1 and 2 depends on the solution of some non-
trivial partial differential equations. On the other hand, it is
known that a necessary and sufficient condition for a linear
system to be coordinates equivalent to a system in strict feed-
forward form is that its eigenvalues are equal to zero. Deriva-
tion of similar, easy-to-check necessary conditions for nonlin-
ear systems would prove very useful. In this section we present
a necessary condition for the coordinates equivalence of a non-
linear system (1) to a system in strict feedforward form. For
simplicity, we restrict ourselves to the first step of the proce-
dure i.e. we are looking for equivalence to the form

ẏ =



f̂1(y2, · · · , yn)
f̂2(y2, · · · , yn)

...
f̂n(y2, · · · , yn)


 +



ĝ1(y2, · · · , yn)
ĝ2(y2, · · · , yn)

...
ĝn(y2, · · · , yn)


u. (12)

Consider the one-dimensional involutive distribution ∆1 =
span{τ1}. According to Proposition 2 (see also the explanation
in [6, Remark 9.1]), for a system that is coordinates equivalent
to a at-the-first-step strict feedforward form, i.e. to a system
of the form (12), there exist a one-dimensional distribution ∆1

and n real functions λ1(x), λ2(x), · · · , λn(x) such that the fol-
lowing hold.

1. Conditions (5): ∆⊥
1 �/ dλ1 ∈ R

n and dλi ∈ ∆⊥
1 , for

i = 2, · · · , n, i.e.
< dλ1, τ1 >�= 0 and < dλi, τ1 >= 0. (13)

2. Condition (6): dLfλi ∈ ∆⊥
1 for i = 2, · · · , n, i.e. (see

[11]),
< d (< dλi, f >) , τ1 >= 0 ⇐⇒

dλi
∂f
∂xτ1 + f ′ ∂2λi

∂x2 τ1 = 0.
(14)

As mentioned in Remark 2, the distribution ∆1 is invariant un-
der the vector field f (and the same holds for g), i.e. there exists
a real function k(x) such that

[f, τ1] =
∂τ1
∂x

f − ∂f

∂x
τ1 = k(x)τ1. (15)

Multiplying both sides of equation (15) by the nonsingular ma-
trix

M =



dλ1

dλ2

...
dλn


 (16)

and using (13) and (14) we obtain a matrix equation, the first
row of which rewrites as

dλ1
∂τ1
∂x

f + τ ′1
∂2λ1

∂x2
f = k(x)dλ1τ1,

i.e. ∂

∂x
(Lτ1λ1)f = k(x)Lτ1λ1 (17)

while the rest n− 1 rows are automatically satisfied.
Moreover, by equation (13) Lτ1λ1 �= 0, hence k(0) = 0. A
necessary condition can be obtained by the conditions (15) and
(17).



Corollary 1 If system (1) is coordinates equivalent to a system
which is at-the-first-step in a strict feedforward form, then there
exist a vector field τ1 �= 0 and functions λ1(x) and k(x) with
dλ1 �= 0 and k(0) = 0 such that equations (15) and (17) hold.

3.3 Feedback equivalence

In this section we show how the conditions expressed in Propo-
sitions 1 and 2 have to be modified in order to solve the feed-
back equivalence problem, i.e. Problem 2.
Proposition 3 Consider system (1). Let

∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆n−1, (18)

be a nested sequence of distributions with ∆i i-dimensional
and involutive, and such that the distributions ∆i+span{g(x)}
are non-singular.
Then the system (1) is locally feedback equivalent to a system
in feedforward form if and only if

[f,∆i] ⊂ span{g} + ∆i and [g,∆i] ⊂ span{g} + ∆i, (19)

for all i = 1, · · · , n− 1.

Proof. (Only if) The proof of the necessity is straightforward,
hence it is omitted.
(If) We prove the sufficiency in a constructive, iterative way,
as for Proposition 1. By equations (19) the distribution ∆1, is
a controlled invariant distribution for system (1). Hence, by
[3, Lemma 6.2.1], there exists a local change of coordinates
z = Φ(x) and a feedback control law u = α(x) + β(x)v such
that, in the new coordinates, the closed loop system is described
by equations of the form ż = f̃(z) + g̃(z)v, with

f̃(z) =



f̃1(z1, · · · , zn)
f̃2(z2, · · · , zn)

...
f̃n(z2, · · · , zn)


 g̃(z) =



g̃1(z1, · · · , zn)
g̃2(z2, · · · , zn)

...
g̃n(z2, · · · , zn)


 .

Moreover, in the new coordinates one has ∆1 = span{ ∂
∂z1

}.
Repeating the same arguments used in the proof of Proposi-
tion 1 we conclude that the original n-dimensional problem of
feedback equivalence is now reduced to a (n− 1)-dimensional
problem. This reduced problem has the same properties of the
original one, hence further reduction can be performed. It is
worth noting that the feedback transformation used at step i
does not depend upon the first (i − 1) coordinates, hence the
change of feedback used at step i does not change the structure
of the first i− 1 equations of the system. �

Remark 5 The conditions for feedback equivalence are obvi-
ously weaker then the conditions for coordinates equivalence.
In particular, the partial differential equations defining ∆1 are
(in the case of feedback equivalence)

∂f

∂x
δ(x) − ∂δ

∂x
f(x) = α(x)δ(x) + γ(x)g(x)

∂g

∂x
δ(x) − ∂δ

∂x
g(x) = β(x)δ(x) + η(x)g(x),

(20)

with the unknown α(x), β(x), γ(x), η(x) and δ(x) =
col{δ1(x), δ2(x) · · · δn(x)}. This partial differential equa-
tions are (in principle) easier to solve then the corresponding
equations (11) because of the presence of two more free pa-
rameters, namely γ(x) and η(x).

Remark 6 It is worth noting that the results concerning the
feedback equivalence are not as elegant as the ones on coor-
dinates equivalence. This is because in the proof of the suf-
ficiency of the feedback equivalence we need the technical
assumption that the distributions ∆i + span{g(x)} be non-
singular. This assumption is required to construct the feed-
back laws inducing the invariance of the distributions ∆i (in
the closed loop system), but it is not necessary. As a matter of
fact the regularity of the above distributions is not needed in the
proof of the necessity. This fact should not be surprising and is
a direct consequence of the small gap existing in the character-
ization of locally controlled invariant distributions, as observed
in [3, Remark 6.2.1].
To address the problem of feedback equivalence to strict feed-
forward forms, we present first the following preliminary re-
sult.
Proposition 4 The system (1) is locally feedback equivalent to
a system in strict feedforward form if and only if there exists
a coordinates transformation z = Φ(x) such that system (1)
written in the z-coordinates is described by equations of the
form

ż = b(z)(c(z) + e(z)u) + h(z), (21)
where c(z) and e(z) are scalar functions, with e(0) �= 0, and
b(z) and h(z) are vector fields in strict feedforward form, i.e.,

b(z) =



b1(z2, · · · , zn)

...
bn−1(zn)

cd


 , h(z) =



h1(z2, · · · , zn)

...
hn−1(zn)

ch


 .

Proof. (Only if) Suppose that system (1) is locally feedback
equivalent to a system in strict feedforward form. Then there
exists a feedback u(x) = α(x) + β(x)v, with β(x) �= 0
and a coordinates transformation z = Φ(x) such that the sys-
tem ż = f̃f (z) + g̃f (z)v is in strict feedforward form, with
ff (x) = f(x) + g(x)α(x), gf (x) = g(x)β(x), f̃f (z) =
∂Φ
∂x ff (x)

∣∣
x=Φ−1(z)

and g̃f (z) = ∂Φ
∂x gf (x)

∣∣
x=Φ−1(z)

.

Applying the transformation z = Φ(x) to the original system
(1), one gets

ż = f̃(z) + g̃(z)u (22)
which is necessarily transformed into a strict feedforward form
by the feedback

u(z) = u(x)|x=Φ−1(z) = α̃(z) + β̃(z)v.
This implies that for the vector field g̃f one has

g̃f (z) = g̃(z)β̃(z)
�

g̃f 1(z2, · · · , zn) = g̃1(z)β̃(z)
...

g̃f n−1(zn) = g̃n−1(z)β̃(z)
cg = g̃n(z)β̃(z),

(23)

with cg �= 0. Similar computations can be drawn for the vector
field f̃f and thus, it becomes clear that α̃(z) and β̃(z) are such
that

β̃(z) =
cg

g̃n(z)
=
g̃f n−1(zn)
g̃n−1(z)

= · · · =
g̃f 1(z2, · · · , zn)

g̃1(z)

α̃(z) =
cf − f̃n(z)
g̃n(z)

= · · · =
f̃f 1(z2, · · · , zn) − f̃1(z)

g̃1(z)
.



From this, with tedious but straighforward computations (see
[6]), it follows that the vector fields g̃(z) and f̃(z) must possess
a special structure, namely,

g̃(z) = ψg(z)g̃n(z) and f̃(z) = ψf (z) + ψg(z)f̃n(z), (24)

where ψg(z) and ψf (z) are vector fields in strict feedforward
form.
From equations (24), we conclude that system (22) can be writ-
ten in the form of equation (21) with c(z) = f̃n(z), e(z) =
g̃n(z), b(z) = ψg(z) and h(z) = ψf (z), i.e. the vector fields
f̃(z) and g̃(z) are described by

f̃(z) = h(z) + b(z)f̃n(z), g̃(z) = b(z)g̃n(z),
which proves the claim.
(If) Consider a system described by (21). Applying the feed-
back

u(z, v) = − c(z)
e(z)

+
1
e(z)

v

we get
ż = h(z) + b(z)v

which is in strict feedforward form and feedback equivalent to
system (1). �
Proposition 4 gives necessary and sufficient conditions for
feedback equivalence to strict feedforward forms, however,
these conditions are not phrased in the geometric framework
that has been used for the results presented so far. We over-
come this shortcoming with the next result.
Proposition 5 The system (1) is locally feedback equivalent to
a system in a strict feedforward form, if and only if the follow-
ing hold.

1. There exists a nested sequence of distributions (18) with
∆i i-dimensional and involutive, and such that the distri-
butions

∆i + span{g(x)}
are non-singular.

2. There exist n real functions λ1(x), λ2(x), · · · , λn(x) with
dλi(0) �= 0, such that (5) holds, Lgλn �= 0 and moreover

dLfλ1−Lgλ1
Lgλn

dLfλn ∈ ∆⊥
1

dLfλ2−Lgλ2
Lgλn

dLfλn ∈ ∆⊥
2

...
dLfλn−1−Lgλn−1

Lgλn
dLfλn ∈ ∆⊥

n−1

dLgλ1−Lgλ1
Lgλn

dLgλn ∈ ∆⊥
1

dLgλ2−Lgλ2
Lgλn

dLgλn ∈ ∆⊥
2

...
dLgλn−1−Lgλn−1

Lgλn
dLgλn ∈ ∆⊥

n−1.

(25)

Proof. (Only if) This is trivially proven following the steps in
the proof of Proposition 4.
(If) Consider system (1) and the change of coordinates

z = Λ(x) =



λ1(x)
λ2(x)

...
λn(x)


 ,

where the functions λi are such that condition (5) holds, with
the nested sequence of distributions of expression (18). Writ-
ing the system equations in the z-coordinates and applying the
feedback

u = −Lfλn

Lgλn
+

1
Lgλn

v. (26)

we obtain

ż =




Lfλ1 − Lf λn

Lgλn
Lgλ1

Lfλ2 − Lf λn

Lgλn
Lgλ2

...
0


 +




Lgλ1
Lgλn
Lgλ2
Lgλn

...
1


 v

�
= f� + g�v.

It can be easily checked that the vector fields f� and g� are
coordinates equivalent to strict feedforward form. �

4 Linear systems

Consider a linear single-input system described by equations
of the form

ẋ = Ax+ bu. (27)
For such a system Problems 1 and 2 can be easily solved, as
shown in the following (simple) statements.

Corollary 2 The system (27) is coordinates equivalent to a
feedforward form if and only if all the eigenvalues of the matrix
A are real.

Proof. The claim can be easily proved using standard linear
algebra. However, it is interesting to observe that, under the
stated assumptions the partial differential equations used to de-
fine the distributions ∆i can be trivially solved. For example,
the partial differential equations for ∆1 reduces to

A δ(x) − ∂δ(x)
∂x

Ax = α(x)δ(x)

−∂δ(x)
∂x

B = β(x)δ(x),

with δ(x) = col(δ1(x), δ2(x), · · · , δn(x)). These equations
admit the obvious solution α(x) = λi, β(x) = 0 and δ(x) =
vi, with λi and vi such that Avi = λivi. �

Corollary 3 The system (27) is coordinates equivalent to a
strict feedforward form if and only if all the eigenvalues of the
matrix A are equal to 0.

Corollary 4 Any linear controllable system is feedback equiv-
alent to a strict feedforward form.

5 Examples

The theory presented in Section 3 is illustrated through an ex-
ample. Consider a four dimensional model of a food-chain sys-
tem [2, 12], i.e.

ẋ1 = −x1 + x1x2

ẋ2 = −x1x2 − x2 + x2x3

ẋ3 = −x2x3 − x3 + x3x4

ẋ4 = −x3x4 − x4 + u.

(28)

This system describes the behavior of a (normalized) four
species ecologies, in which the species described by x2 and
x3 act as preys and predators, x1 acts as predator and x4 acts
as prey. The species described by x4 is fed by the environment
through the input signal u. Obviously, the system is defined in
the (open) positive orthant IR4

+, which is a positive invariant set
for all trajectories as long as u > 0.



The qualitative behavior of system (28) has been exten-
sively studied in the biological and game theory communities,
whereas a few control problems have been discussed in [12].
System (28) is not in feedforward form, and there is no obvi-
ous change of feedback and/or change of coordinates that trans-
forms the system into a feedforward form. Nevertheless, the
system can be (locally) transformed into a feedforward form,
as detailed in the following statement.

Proposition 6 System (28) is locally feedback equivalent to a
feedforward form around any point x0 ∈ IR4

+.

Proof. Simple but tedious computations show that the distribu-
tion

∆1 = span
{


x3

0
x3

2x2 − x4




}

is a controlled invariant distributions for system (28). Hence,
following the construction in [3, Lemma 1.6.1] we define (lo-
cally) new coordinates z1 = φ1(x), z2 = φ2(x), z3 = φ3(x)
and z4 = φ4(x) such that

span{dφ2, dφ3, dφ4} = ∆⊥
1 .

A possible choice for such new coordinates is

z =



z1
z2
z3
z4


 =




x1

x2

x3 − x2 − x1

x3(x4 − 2x2)


 .

The above coordinates transformation is a diffeomorphism on
IR4

+. Written in the z-coordinates, the system is brought to a
feedforward form with a re-definition of the control u. �

6 Conclusions and outlook

The problems of local coordinates and feedback equivalence of
a single-input nonlinear system to a class of feedforward sys-
tems have been studied and a geometric characterization of the
problems has been proposed. The investigation has been re-
stricted to a special subclass, however, similar conditions can
be given for more general classes of systems and in particular
for the so-called block feedforward systems.
The solution of the global problem requires existence of global
(controlled) invariant distributions and completeness of the
vector fields in the distributions. On the other hand, no ma-
jor differences are to be expected in dealing with multi-input
systems.
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