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Abstract 
 
This paper gives stability analysis of the nonlinear predictive 
control strategy based on the off-line identified RBF-ARX 
model which is a pseudo-linear time-varying ARX model 
with system working-point dependent Gaussian RBF neural 
network style coefficients. The predictive controller doesn’t 
require on-line parameter estimation; it may be applied to a 
class of smooth nonlinear processes whose working-point 
varies over a wide range. Stability analysis of the nonlinear 
predictive controller is given both in unconstrained case and 
in case of a posterior input constraint. An industrial 
experiment result of the predictive control design is also 
revealed for illustrating its effectiveness and feasibility. 
 
1. Introduction 
 
Based on the model-based predictive control (MPC) 
framework [2], a large concern for MPC is now to be 
focused on the nonlinear predictive control on the basis of a 
nonlinear model describing the behavior of system to be 
controlled. There have been some reports and applications no 
nonlinear MPC, in which some control schemes (see e.g. [6]) 
were based on the direct use of nonlinear models, but there 
resulted in on-line solving a higher order nonlinear 
optimization problem, which is computationally expensive 
and may get stuck in a local minimum. Some methods (see 
e.g. [1]) used the piecewise linearization technique to 
describe the nonlinear behavior of a system, so the model 
was linearized at each sampling interval, which resulted in 
the solution of a (or a set of) quadratic programming 
problem at each such interval, as in the case of linear MPC. 
However, the estimation of many linear models being valid 
only in each small region is not easy in practice. 
 
In general, the success of MPC is highly dependent on a 
reliable system model. In fact, a large number of nonlinear 
processes may be regarded as this kind of system whose 

working-point varies with time, and which can be locally 
linearized at any fixed working-point. Therefore, in some 
cases an alterative suitable for nonlinear MPC is to use a 
linear time-varying autoregressive model as internal model 
of MPC, but on-line quickly and accurately estimating its 
time-varying coefficients is usually difficult. To avoid 
on-line estimating time-varying parameters of internal model 
in nonlinear MPC, Peng et al. [8] proposed a hybrid 
pseudo-linear time-varying RBF-ARX model built on the 
basis of the Gaussian RBF networks and linear ARX model 
structure to implement MPC for a class of smooth nonlinear 
systems with working-point dependent dynamics. In the 
MPC proposed, all the model parameters were estimated 
off-line by using a quickly-convergent structured nonlinear 
parameter optimization method (SNPOM) proposed by Peng 
et al. [9]. The RBF-ARX model at any working-point may 
be treated as a linear ARX model; therefore the quadratic 
programming routines could be used to solve the optimal 
control problem at each sampling interval. In this paper, 
under the assumption that the modeling error of RBF-ARX 
model is relatively bounded, the stability problems of the 
RBF-ARX model-based nonlinear predictive controller are 
discussed without constraint or with a posterior input 
constraint. Finally, the effectiveness and feasibility of the 
MPC design presented are illustrated by an industrial 
experiment result to a nonlinear chemical process. 
 
2. The RBF-ARX model based MPC 
 
Consider the nonlinear SISO system with working-point 
dependent dynamics, which can be described by the 
following discrete time NARX (nonlinear ARX) model, i.e. 
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where  is the output,  is the input,  is the 
measurable disturbance, and 

( )y t ( )u t ( )v t
( )tζ  is the modeling error 

generally assumed as a white noise. We use the RBF-ARX 
model (2) below [8], which is a ARX model with RBF neural 
network-type coefficients, to approximate system (1) as 
follows 
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where j
kZ  are the centers of RBF networks; kλ  are the 

scaling parameters; ,
j

i kc ,  are the scalar weighting 

coefficients; 

0
kc

2
i  denotes the vector 2-norm, and 1q−  is the 

unit delay operator. The state variable  in model 
(2), which makes the model coefficients vary with 
working-point, may be the output signal, the input signal, an 
external signal, or a composition of the above two or more 
signals. In fact, a signal which governs system’s working- 
point is more suitable to be used as  in model (2). 

( 1)t −W
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Model (2) has an autoregressive structure similar to a linear 
ARX model, and its state-dependent coefficients make the 
model dynamics change with system working-point. It is 
clear that the local linearization of model (2) is a linear ARX 
model at any working-point by fixing  in (2). In 
general, model (2) does not require too many RBF centers 
compared with a single RBF network model, because the 
complexity of the model is dispersed into the lags of the 
autoregressive parts of the model. In this paper, the 
RBF-ARX model (2) is used as the internal model of the 
predictive controller given in this section. In order to avoid 
some potential problems caused by parameter estimation 
online, such as parameter divergence failure, all the 
parameters of model (2) are identified off-line by the 
structured nonlinear parameter optimization method 
(SNPOM) [9], which could largely accelerate the 
computational convergence of parameter optimization 
process, especially for the RBF-ARX model with more 
linear weights and less nonlinear parameters.  

( 1)t −W

 
Based on model (2) at time t , the  step 
ahead optimal predictive output is given in [8] by 
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where  is the prediction horizon, and  is the control 
horizon after which control is assumed to have no change, i.e. 
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Consider the following optimization problem without 
constraint: 
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where  is the tunable control weighting 
matrix. The optimal solution of the above optimization 
problem without constraint is given by 
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In the solved optimal controls from (9), just first component 
 in  is used as control input. In practice, if just 

considering only input constraint, to avoid using QP routines, 
according to the posterior input constraint rule below, the 
predictive control  can be derived as follows 
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Note that the above RBF-ARX model-based predictive 
controller does not require the parameter estimation online, 
because its internal model is an off-line estimated global 
model.  
 

 



 

3. Stability analysis 
 

In this paper, we give the stability analysis of the off-line 
estimated RBF-ARX model-based nonlinear predictive 
control strategy presented in Section 2. To this end, assume 
that the plant under control is now described by 
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   (11) 
which is just rewritten by model (2), and  is the 
modeling error including the unmodeled dynamics. Besides, 
assume that the reference signal  and the measurable 
disturbance signal  are all bounded. For  in 
model (11), we have now to introduce the following (see 
[5]). 
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Assumption 3.1: The modeling error  in (11) is 
relatively bounded, i.e. for any , there exist nonnegative 
constants 
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Note that a relatively bounded modeling error  is not 
guaranteed to be bounded unless the plant input and output 
sequences are bounded. If now defining the state vector 

 below, then model (11) can be written as 
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The optimal control is given by 
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in which the first element  is applied as the predictive 
control law. Since there are the linear relations between 

 and  or , and between  and  
or , the predictive control law  can be written as 
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time-varying suitable row vectors or scalar depending on the 
parameters of model (11), which are easily obtained from 
(17) and (4-6). Therefore, the closed-loop control system 
(14) and (18) can be written as 
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3.1 Unforced system stability 
 
Before considering the stability of the closed-loop system 
(19), let us first give the stability conclusion of the unforced 
system below 
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To derive the results given in Theorem 3.1, we have now to 
introduce the following. 
 
Lemma 3.1: For RBF-ARX model (11) or (2) with the RBF 
network-style parameters, the parameters are bounded, and 
the parameter variations are slow, i.e. there exist positive 
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after updating the RBF center j
kZ  at each search iteration 

in the model parameter optimization process (Peng et al., 
2003). Thus, in (2), one can see that  
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implies the boundedness of . Furthermore, it is easy to 
confirm that for an exponential function below 
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which is a constant, furthermore, from the computation 
formula of j

kλ  in (26), yields that j
kλ  is typically smaller. 

This implies that the parameter variations of model (11) are 
slow.                                        □ 
 
Lemma 3.2: If properly choosing ,  and  in (16), 
make all eigenvalues of 
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[4]), where the explicit parameter relations can be given as 
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□ 
3.2 Stability conclusions 
 
The stability properties of the RBF-ARX model-based 
nonlinear predictive control system without constraints can 
now be stated in the next Theorem 3.1. 
 
Theorem 3.1: There exists a constant 0eε >  such that, for 
the system satisfying (12) with known 0 1eσ≤ < , u eε ε<  
and y eε ε< , and satisfying the condition given in Lemma 
3.2, the closed-loop control system (11) and (18) is such that 
the signals  and  are uniformly bounded for any 
initial state, any bounded disturbance signal  and any 
bounded reference signal . 
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Consider now the stability problem of the control system 
with input constrains. We have first to introduce the 
following. 
 
Assumption 3.2: The system (11) to be controlled is 
open-loop stable at any .                          □ t
 
It is easy to be confirmed that all eigenvalues of  in 
Appendix are strictly inside the unit circle under Assumption 
3.2.  
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The objective function of the RBF-ARX model (11) based 
predictive control with the posterior input constraint is given 
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First solve (34) without constraint to obtain , then 
update the solution according to the constraint, and the final 
predictive control  is given by (10). Now the control 
system stability in case of the posterior input constraints is 
stated in the next Theorem 3.2. 

( )u t�

( )u t

 
Theorem 3.2: Under the conditions satisfying Assumption 
3.1-3.2, and the condition given in Lemma 3.2, there exists a 
constant 0eε >�  such that, for the systems satisfying (12) 
with known 0 1eσ≤ <� , u eε ε<� �  and y eε ε<� � , the 
closed-loop control system (11) and (10) is such that the 
signals  and  are uniformly bounded for any 
initial state, any bounded disturbance signal  and any 
bounded reference signal . 

( )y t ( )u t
( )v t

( )ry t
Proof: For system (11) with the posterior input constraints, 
in the case that the input is not constrained, the unforced 
system is described by (23). Otherwise, in the constrained 
case, system (14) can be also represented by 

0

ˆ ˆ( ) ( 1) ( 1) ( 1) ( 1)
ˆ         ( 1) ( 1) ( 1) ( )

t t t t u t

t t a t e

= − − + − −

+ − − + − +

α A α B

D V L L t
    (35) 

here the constrained input ( 1)u t −  obtained by (10) can be 
regarded as a bounded disturbance signal, thus, the unforced 
system in this case is as follows 

ˆ( ) ( 1) ( 1)t t t= − −α A α              (36) 
which is exponentially stable, according to Assumption 3.2, 
the boundedness of ˆ ( )tA , the small ˆ ˆ( ) ( 1)t t− −A A  

showed in Lemma 3.1, as well as the conclusion given in 
Lemma 3.2 (see [3,4]). Furthermore, for a proper choice of 

,  and  in (34), yields that the unforced system 
(23) in the unconstrained case can be also exponentially 
stabilized as is stated in Theorem 3.1. Then, in view of the 
boundedness of the reference signal, the measurable 
disturbance signal and the local mean value, from 
closed-loop system (19) in unconstrained case or (35) in the 
constrained case, we have 
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where for 0 ασ≤ <�  and suitable finite nonnegative 
constants 0δ , 1δ  and 2δ . The rest of part in this proof is 
similar to Theorem 3.1, and is omitted here.             □ 
 
4. Real-time control example 
 
A real-time control example from an industrial experiment is 
given in this section. Fig.1 shows the structure diagram of a 

Nitrogen Oxide (NOx) decomposition (de-NOx) process in 
thermal power plants. This process is nonlinear 
non-stationary, which has the dynamics changing with the 
load demand  of power plants [7]. In fact, the 
working-point of the process is dependent on the load , 
and at a different load  the process dynamics may be 
described by a different linear model, thus this process may 
be described by a load  dependent RBF-ARX model. 
In Fig.1, the predictive controller works with the existing 
gain-scheduling PI controller in parallel. The purpose of the 
de-NOx process control is to reduce the NOx concentration 
in exhaust gas in order to protect environments. The PI 
controller is hard to achieve a good trade-off between control 
performance and ammonia (NH3) consumption.  

( )w t
( )w t

( )w t

( )w t

 
In this paper, we use a RBF-ARX model (37) with the 
coefficients similar to (2) as the internal model of MPC 

1 1 1 1
0, 2 1

2 1

( ) ( ) ( )( ( 1) ( 1)) ( ) ( 1)

                                         ( ) ( 1) ( )              (37)
t t t t
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where  is the NOx concentration in exhaust gas;  
is the NH3 flowrate-set computed by the MPC;  is the 
NH3 flowrate-set offered by the PI controller; and  is 
the NOx concentration in the de-NOx device inlet, which is 
measurable disturbance. Note that the variables of describing 
working-point state in RBF-ARX model (37) is the load 
demand sequence 

( )y t ( )u t
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1( )v t

( 1)t −W .  
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Fig. 1. Structure diagram of Nitrogen Oxide (NOx) 

decomposition (de-NOx) process and control system. 
 
The estimated result of RBF-ARX model (37) using the 
structured nonlinear parameter optimization method [9] by 
the real data from a de-NOx process under the 
gain-scheduling PI controller alone is shown in Fig. 2. Fig. 3 
reveals a set of real-time control results both of the PI 
controller and of the estimated RBF-ARX model-based 
predictive controller presented in Section 2. From Figs.2-3, 
one can see that the estimated RBF-ARX model shows better 
modeling precision, and the RBF-ARX model-based MPC 
proposed gives much better real-time control performance 
compared to the PI control alone. 
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Fig. 2. The estimated residual and histogram of RBF-ARX 

model (37) for the sample data. 
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Fig. 3. Real-time control results; the solid line is , and 
the dotted line is  in the third subplot above. 
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5. Conclusions 
 
For a class of smooth SISO nonlinear systems which may be 
characterized by a linear model at certain fixed 

working-point, an off-line estimated RBF-ARX model might 
be applied as a global model to represent the system over a 
larger operation range. The RBF-ARX model based MPC 
presented did not resort to the parameter estimation on-line, 
and the adaptation for the time-varying working-point was 
offered by the working-point dependent RBF neural 
network-style coefficients of its internal RBF-ARX model. 
The stability analyses of the proposed predictive control 
strategy without constraint or just with the posterior input 
constraint have been given. A real-time control example 
showed the effectiveness and feasibility of the nonlinear 
MPC design presented. The future work would be to study 
the stability analysis with both input and output constraints. 
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Appendix 
The matrixes , ,  and  in model (14) are defined as follows: ˆ ( 1)t −A ˆ ( 1)t −B ˆ ( 1)t −D L
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