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Abstract 
A paper is concerned with a static decision (control) plant 
described by a relation with two kinds of unknown 
parameters: uncertain parameters described by certainty 
distributions and random parameters described by probability 
distributions. Different versions of the decision making in an 
open-loop control system are formulated and considered. A 
simple example illustrates the presented approach. 

1  Introduction 
There exists a great variety of definitions and formal 
descriptions of uncertain systems (see e.g. [9, 10, 12, 1]). The 
idea of so called uncertain variables based on uncertain logics 
has been introduced and developed as a tool for analysis and 
decision problems in a class of uncertain systems described 
by traditional models or by relational knowledge 
representations. Unknown parameters in these descriptions 
are considered as uncertain variables characterized by 
certainty distributions given by an expert and expressing 
his/her knowledge concerning different approximate values of 
the parameters [2, 4, 6, 3, 7, 8]. 

The purpose of this paper is to present a new idea concerning 
the application of uncertain variables to decision making for 
decision plants containing two kinds of the unknown 
parameters in the relational knowledge representation: 
uncertain parameters described by certainty distributions and 
random parameters described by probability distributions. 
The considerations are limited to static (memory less) plants 
and open-loop decision (control) systems, but the basic idea 
may be extended to more complicated cases. In Secs. 2 and 3 
a short presentation of the uncertain variables and a basic 
decision problem for a plant with uncertain parameters are 
given. Details can be found in [4, 6]. The basic problem is 
used in the formulations and considerations concerning 
different versions of the decision problem for a plant with 
uncertain and random parameters, described in Sec. 4÷7. 
 

2  Uncertain variables 
Let us consider a universal set Ω , Ωω∈ , a vector space 

kRX ⊂  and a function Xg →Ω: . Assume that for the 
fixed ω  the value )ω(gx =  is unknown and introduce two 
soft properties: The property  “ xx =~ ”  which means that  
“ x  is approximately equal to x” or “x is the approximate 
value of x ”,  and the property  “ xDx ∈~ ”  (where ) 
which means that  “the approximate value of 

XDx ⊆
x  belongs to 

”  or  “xD x  approximately belongs to ”.  For the fixed x 
a soft property concerning x becomes a proposition in multi-
valued logic and its logic value belongs to [0,1]. The logic 
values of our properties are denoted by v and are called 
certainty indexes. The variable 

xD

x  is called an uncertain 
variable. Two versions of uncertain variables have been 
introduced. 

Definition 1 (uncertain variable): The uncertain variable x  
is defined by the set of values X, the function 

)~()( xxvxh ==  such that  (i.e. the certainty 
index that 

1)(max =xh
xx =~ , given by an expert) and the following 

definitions: 
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The function  is called a certainty distribution.              )(xh

Definition 2 (C-uncertain variable): C-uncertain variable x  
is defined by the set of values X, the function 

)~()( xxvxh ==  given by an expert, and the following 
definitions: 
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 )~(1 )~( xcxc DxvDxv ∈−=∉ , 

  )  ~()~ ~( 2121 DDxvDxDxv cc ∪∈=∈∨∈ , 

 . )  ~()~ ~( 2121 DDxvDxDxv cc ∩∈=∈∧∈   

The certainty distribution for a particular x evaluates the 
expert’s opinion that xx =~ . In the case of C-uncertain 
variable the expert’s knowledge is used in a better way but 
the calculations are more complicated. 

A mean value of the uncertain variable x  is defined as 
follows 

 ∫ ∫ −⋅=
X X

x dxxhdxxxhxM .])([)()( 1  (3) 

3  Basic decision problem 
The uncertain variables may be used in the formulation and 
solving a decision problem for an uncertain plant ([6]). Let us 
consider a static (memory less) plant with the input vector 

 and the output vector . If the plant is described 
by a function 

Uu∈ Yy∈
)(uy Φ=  then the basic decision problem 

consists in finding the decision  such that  

where  is a desirable output value. Let us assume that the 
plant is described by a relation , which is not 
a function. The description in the form of a relation (a 
relational knowledge representation) means that the plant is 
nondeterministic, i.e. the fixed input  u  determines a set of 
possible outputs 
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For the requirement  where  is given by a 
user, the decision problem may consist in determining the 
largest set of the decisions  such that the implication 

 is satisfied. 
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D
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Consider now the plant described by YUxyuR ×⊂);,(  
where  is an unknown vector parameter which is 
assumed to be a value of an uncertain variable  

Xx∈
x   described 

by  given by an expert. Now the set of all possible 
outputs is as follows 

)(xh

 . (4) )};,(),(:{);( xyuRyuYyxuDy ∈∈=

For the requirement  we can formulate and solve the 

following decision (or control) problem: Given  and 
, find u  maximizing the certainty index  

yDy∈

)(, xhR

yD ˆ

 )](~[]~);([)( xDuvDxuDvuv uyy ∈=⊆=  (5) 

where ∈⊂ ~,~  mean that the properties are satisfied for the 
approximate value  x, and  

 . (6) });(:{)( yyu DxuDUuxD ⊆∈=

The optimal decision  u   maximizes the certainty index that 
the set of possible outputs approximately belongs to . It is 
easy to note that  

ˆ
yD
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Denote by  the value maximizing . Then the set of 

the optimal decisions  and 

*x )(xhx

: *xU∈ )}({ uDuD xu ∈=
1)ˆ( =uv . If x  is considered as C-uncertain variable then, 

according to (2), one should determine u  maximizing cˆ
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2
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4  Decision problem for the plant with random 
parameters 
Consider a plant described by YUwxzyuR ×⊂),,;,(  where 

Zz∈  is a vector of external disturbances which may be 
measured, Xx∈  is a value of an uncertain variable x  
considered in Sec. 3, and  is a value of a random 
variable 

W∈w
w~  described by a probability density . In 

general 
)w(f

w  is a vector and W  is a vector space. Now the sets 
in (4) and (6) depend on z  and w : 

 , (9) )},,;,(),(:{),,;( wxzyuRyuYywxzuDy ∈∈=
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Then,  v  and v  in (5), (7) and (8) depend on  z  and  w: c
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Consequently, the optimal decisions u  and  depend on  z  
and  w: 
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Now two versions of the decision problem may be proposed: 

 



Decision (control) problem – version I: Given , 
, and , find  or u  maximizing the expected 

value of  or v , respectively. 
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The decision u  is determined in analogous form, 
with  in the place of v . 
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Decision (control) problem – version II: Given , 
,  and , find  or  as the expected value of 

 or , respectively. 
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The results in versions I and II may be different, i.e. in 
general  and  (see example in Sec. 6). They 
have different practical interpretations. In version I  (or 

) is a decision maximizing the mean value of the certainty 
index that the requirement  is approximately satisfied, 
where the mean certainty index is understood in a 
probabilistic sense as an expected value. In version II as an 
optimal decision  (or ) we accept the mean value of the 
decision maximizing the certainty index that the requirement 
is approximately satisfied for the given w. Using the 
description and names presented in [3, 6] we may say that 

 is a knowledge of the decision making (or a 
random decision algorithm in an open-loop system), obtained 
from the knowledge of the plant 

21 uu ≠

),(ˆ wzu

21 cc uu ≠
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given by an expert. In versions I and II the different forms of 
a determinization consisting in replacing an uncertain 
description by a corresponding deterministic model (see [3, 
6]) have been applied. In version I the function v  is 
replaced by G  and in version II the random decision 
algorithm  is replaced by the deterministic control 
algorithm . Two versions of the knowledge-based 
decision making in open-loop systems are illustrated in Figs. 
1 and 2. 
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Figure 1: Open-loop control system – version I. 
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Figure 2: Open-loop control system – version II. 

5  Another formulation of the decision problem 
It is possible to inverse the order of the considerations 
concerning the uncertain and random parameters and to 
introduce another approach to the decision problem, in which 
the certainty index that yy DxwzyD ⊆~),,;(  will be replaced 
by the probability  
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),,;( wxzuDy  and  are determined by (9) and 
(10), respectively. 
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Decision (control) problem – version II: Given R, , 
 and , find u  as a mean value of u  where 
 is the decision maximizing the probability (13), i.e. 
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The considerations for C-uncertain variables have an 
analogous form. The decisions (14) and (15) have no evident 
practical interpretation and the approach presented in this 
section is not recommended. 

6  Example 

To illustrate the presented approach let us consider a simple 
example with a plant without disturbances, described by 
inequality 
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where u, y, x, w are one-dimensional positive variables and 
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Assume that  x  is a value of an uncertain variable x  with 
triangular certainty distribution: 
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Using (11) it is easy to obtain the following results for the 
given  w  ([6]): 
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Now assume that  w  is a value of a random variable with 
rectangular probability density: 

  




 ≤≤

=
−

,otherwise0
0for)(

1 ββ wwf

1<β . 

Then, according to (12) with  instead of , we 
may obtain the following formula for 
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To obtain  the function  should be maximized with 
respect to u. In version II, using (16) we have 

1cu )(uG
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. For the numerical data the 

functions  are presented in Fig. 3 and the results are as 
follows: 
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Data Results 
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It is easy to show that 
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In version II, using (16) we have 
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7  Two-level description of the uncertainty 
The approaches analogous to those presented in Secs. 4 and 5 
may be applied to uncertain systems with two-level 
description of the uncertainty [8]. Two cases of such a 
description may be considered. 

Case 1 
The plant is described by the relation  
where the unknown vector parameter  is a value of an 
uncertain variable  described by the certainty distribution 

 given by an expert. In this notation  denotes 
the unknown vector parameter which is assumed to be a value 
of a random variable  described by the probability density 

. In this case the certainty distribution may be 
considered as a description of the uncertainty on the first 
level, and the probability density – as a description on the 
second level (or the second order uncertainty). 

The certainty indexes  and  in (5), (7) and (8) depend on 
 and : 

  

where 
 , 

 , 
and 

 . 

Consequently, the optimal decisions u  and  
depend on z  and w , and the further considerations are the 
same as in Sec. 4. 

Case 2 
The plant is described by the relation YUwzyuR ×⊂),;,(

Ww∈
 

where the unknown vector parameter  is a value of a 

random variable w~  described by the probability density 
. In this notation );( xwf Xx∈  denotes the unknown vector 

parameter which is assumed to be a value of an uncertain 
variable x

Dy

 characterized by the certainty distribution  
given by an expert. In this case the probability density may be 
considered as a description of the uncertainty on the first 
level, and the certainty distribution – as a description on the 
second level (or the second order uncertainty). 
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Now, the probability introduced in Sec. 5 is as follows 
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Consequently, the optimal decision u  maximizing the 
probability  depends on 

),(ˆ xz
;( zup z  and x , and the further 

considerations are the same as in Sec. 5. The considerations 
for C-uncertain variables have an analogous form. 

The two-level descriptions of the uncertainty in the cases 1 
and 2 have the different interpretations. In the case 1 we 
consider a group of experts giving the same form of the 
certainty distributions  with the different values of (h  
chosen randomly from a set of variables described by the 
probability density . In the case 2 the unknown value )(w

 in the knowledge representation has been chosen 
randomly from a set of variables described by the probability 
density  with the unknown parameter );( xw  
characterized by an expert in the form of the certainty 
distribution h . )(x

8  Conclusions 

A method of decision making for a static plant described by a 
relation with uncertain and random parameters has been 
presented. Two approaches to the decision problem described 
in Sec. 4 may be recommended. The similar formulations of 
the decision problem may be applied for the uncertain plant 
with tow-level description of the uncertainty. 

The determination of the decision in version I may be more 
complicated than in version II, but the result in version I has 
better practical interpretation. Numerical examples and 
simulations have shown that the parameters in the certainty 
distribution  given by an expert may have a significant 
influence on the quality of the control. It is then reasonable to 
apply an adaptation consisting in self-adjusting of these 
parameters in the system with a real plant or with its 
simulator. 

)(xh

It is worth noting that the formulations and solutions of the 
decision problem under consideration may be presented for a 
discrete case, i.e. for a case with finite sets X  and W : 

..., mx , }...,,2 nww . Then the 

 



probability density  is replaced by the probability 
distribution 
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and the integrals in the formulas for mean values are replaced 
by the sums. For example, the formulas analogous to (3) and 
(12) have the forms 
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respectively. 

The idea presented in the paper may be extended to 
dynamical systems and systems with a distributed knowledge 
[5, 8], for the stability analysis [7] and for the recognition 
problem [11], described by a knowledge representation with 
uncertain and random parameters. 
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