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Abstract

The aim of this paper is to provide a methodology for the de-
sign of practical continuous high gain event-based observers
for nonlinear systems with an almost everywhere injective r-
observability map. As opposed to other high gain approaches,
injectivity is allowed to be lost for a nonempty set of bad input
points. An example with simulations illustrates the procedure.

1 Introduction

The following forced single output nonlinear systems are con-
sidered

ẋ = f(x,u) = f � (x), x(0) = x0, y = h(x) (1)

where x ∈ X ⊂ �
n is the state vector, y ∈ �

is the output, and
u(t) : [0,∞) → U ⊂ �

p is a sufficiently smooth time function
that acts as an external input to system (1). Furthermore, the
vector field f and the function h are assumed to be sufficiently
smooth.

During the last ten years, the high gain approach has become
a standard procedure to design observers for nonlinear sys-
tems (1) [1, 5]. However, its use has been limited to the cases
where the nonlinear system is uniformly observable for every
input [5], i.e. with a globally diffeomorphic observability map
for any admissible input. In this paper, forced nonlinear sys-
tems (1) are considered, whose so-called suspension map [8]
—an input dependent observability map plus an identity map
on time derivatives of the inputs— is not injective everywhere.
Therefore there exists a subset of bad input points [12] where
no inverse exists.

The paper is organized as follows. In the next section, the sus-
pension map is defined and the property of r-observability for
a forced nonlinear system (1) is characterized. Bad input points
and the n-observability form are also defined. Section 3 intro-

duces the pseudo-observability form in order to compensate for
the lack of a true n-observability form for these systems; events
and δM -admissible trajectories are also defined here. Section 4
presents the main result, which is the construction of contin-
uous high gain event-based observers under trajectory restric-
tions. This is followed by an illustrating example, ending with
some conclusions.

2 Observability and bad input points

For nonlinear systems bad input functions u∗(t) may exist for
pairs of initial conditions (x0, x̄0) with x0 6= x̄0, such that
their respective outputs are identical for all time. Systems for
which no bad input functions exist are called uniformly observ-
able for every input [5].

Although observability is a generic property [10], not all sys-
tems are uniformly observable for every input and in fact the
existence of bad input functions, or respectively bad input
points, is quite common. Some observer design strategies have
already been proposed for systems with bad inputs, mainly for
bilinear [4], state-affine [7], or somehow detectable systems
[3]. In order to characterize a wider class of systems, consider
first a vector u ∈ U ⊂ � p(w+1) ,

u =
[
uT , u̇T , . . . ,

(w)
u T

]T

(2)

with w large enough. Define the r-th order suspension map [8]
whose domain is the state-input space XU = X × U

Qr : XU → � r × U , Qr

([
x

u

])
=

[
qr(x,u)

u

]
(3)

with qr is the input dependent r-observability map [16]

qr(x,u) =




L0
f � h

L1
f � h
...

Lr−1
f � h


 =




y
ẏ
...

(r−1)
y




(4)



where Lk
f � h are input dependent Lie derivatives of h along f � ,

defined by

L0
f � h(x,u) = h(x), (5)

Lk
f � h(x,u) =

∂Lk−1
f � h

∂x
· f � +

∂Lk−1
f � h

∂u
· du

dt
, k ≥ 1. (6)

Notice that w in (2) is such that the input u appears explicitly
until the (r − w)-th Lie derivative (6).

Injectivity of this map is a crucial property in the course of
observability analysis and observer design. Evidently, the map
(3) will never be injective if u(t) is a bad input function u∗(t).
However, even for “good” input functions bad input points
may be encountered in the corresponding trajectory. These are
points where the map (3) loses injectivity.

Definition 1 Consider a finite number r ≥ n. The points
(x∗,u∗) ∈ XU where the r-th order suspension map Qr given
by (3) is not injective are called bad input points of the map Qr.
The set of bad input points XB

U for a given r ≥ n is therefore

defined by1

XB
U =

{
(x∗,u∗) : ∃(x 6= x∗) ∈ X , s.t.

qr(x,u
∗) = qr(x

∗,u∗)
}
. (7)

Considering these bad input points the following characteriza-
tion of observability may be given:

Definition 2 System (1) is called r-observable if the comple-
ment XU \XB

U of the set of bad input points XB
U of the map Qr

is dense in XU with respect to the usual
�

n+p(w+1) topology.

Remark 1 The density condition implies that the bad input
point set XB

U is a “small” set when compared to the state-input
space XU . If XB

U is a lower dimensional manifold in XU , it
automatically fulfills the requirement.

If the n-th order suspension map (3) is globally injective, then
the input dependent n-observability map (4) can be used as
state transformation z = qn(x,u), x = q−1

n (z,u). Sys-
tem (1) is thus transformed to the n-observability form

ż = Anz + Bnϕ(z,u), z(0) = qn(x0,u(0)), (8)

y = Cnz (9)

with the characteristic nonlinearity ϕ defined by

ϕ(z,u) = Ln
f � h

(
q−1

n (z,u),u
)

(10)

and the matrices An, Bn, and Cn given by

Ar =

[
0 I

0 0T

]
, Br =

[
0

1

]
, Cr =

[
1, 0T

]
(11)

1The superscript B denotes that it is the set of bad input points.

where 0 ∈ �
r−1 is a vector of zeros and I is the identity ma-

trix of dimension r − 1. The n-observability form (8)–(11) is
therefore a chain of integrators and all the nonlinearities are
concentrated on the single term ϕ, which describes the right
hand side of the dynamic equation for zn, the (n − 1)-th time
derivative of the output y.

3 Events and the pseudo-observability form

Throughout the rest of the paper it is assumed that system (1)
is n-observable2 and the bad input point set XB

U is not empty.
Since injectivity of the n-observability map (4) of system (1) is
not satisfied for some set of bad input points XB

U , it is not pos-
sible to construct an n-observability form (8)–(9) using (10).
A natural question to ask is whether it is possible to construct
something similar whose trajectories resemble those of the out-
put y(t) and its derivatives. The pseudo-observability form is
proposed as a positive answer to this question.

First restrict the domain of Qn to the complement of the bad
input point set3 XG

U = XU \ XB
U . Then there exists a (left) in-

verse Q−1
n : Qn(XG

U ) → XG
U with a restricted domain, which

is the image of XG
U under Qn. Now construct an open neigh-

borhood Nε to the set of bad input points XB
U . For example,

consider the following ε-neighborhood4 to the bad input point
set XB

U

Nε =
{
(x,u) ∈ XU : d

(
XB

U , (x,u)
)
< ε

}
(12)

where d(W ,w) is a distance function from a point w to the set
W . Build the complement N comp

ε = (
�

n × U) \ Nε, which
is closed by definition. Consider a compact subset XC

U of XU

and build

K = XC
U ∩ N comp

ε . (13)

The set K is compact, because XC
U is compact and N comp

ε is

closed, thus Qn(K) is compact. These sets are schematically
represented in Figure 1. Furthermore, since K ⊂ XU , it does
not contain any bad input points. Therefore Qn with domain
restricted to K is injective and the inverse Q−1

n restricted to
Qn(K) is continuous. Calling this restricted inverse Q−1

n,K,
then

Q−1
n,K : Qn(K) → K, Q−1

n,K ∈ C0. (14)

If only the set K is considered, then ϕ in (8) can be uniquely
defined, i.e.

ϕK : Qn(K) → �
, ϕK = Ln

f � h ◦Q−1
n,K. (15)

2If not, then it is assumed that the system can previously be immersed in an
r-observable system of order r > n as shown in [11] and [13].

3XG

U
corresponds to the good input points; hence the superscript G.

4The notation Nε is here used to denote any open neighborhood, although
here it refers to an ε-neighborhood.



K

N comp
ε

Nε

XU

X C
U

XB
U

Figure 1: Schematic representation of the sets XU , XB
U , Nε,

N comp
ε , XC

U , and K.

The domain of ϕ will now be extended to include also points
outside the set Qn(K) using the following theorem due to
Tietze [14].

Theorem 1 (Tietze) Let X be a metric space, Y a closed sub-
set of X , and f : Y → [0, 1] a continuous function. Then f has
a continuous extension g : X → [0, 1].

It follows from Tietze’s theorem that, since Qn(K) is compact
(i.e. closed and bounded) and the inverse Q−1

n,K is continuous,

it is possible to “complete” Q−1
n,K and propose a continuous

function QI
n with the following properties:

QI
n :

� n × U → XU , QI
n ∈ C0, QI

n

∣∣
Qn(K)

= Q−1
n,K.

(16)

A nonlinear function ϕ̄ can now be constructed as

ϕ̄ :
� n × U → �

, ϕ̄ = Ln
f � h ◦QI

n. (17)

Remark 2 Tietze’s theorem can also be used to propose ϕ̄
without necessarily extending the restricted inverse Q−1

n,K and
then using equation (17). ConstructϕK using equation (15) and
then extend its domain; the theorem can be used since Qn(K)
is compact and ϕK is continuous. Then ϕ̄|Qn(K) = ϕK.

Assume that ϕ̄ can be constructed Lipschitz continuous every-
where and if not, that it can be approximated by such a func-
tion. Consider the following system

ζ̇ = Anζ + Bnϕ̄(ζ,u), ζ(0) = ζ0, y = Cnζ (18)

with An, Bn, and Cn given by (11) and ϕ̄ given by (15). If
the solution x(t; x0,u(t)) of (1) remains in K for t ∈ [0, T ],
T > 0, and furthermore ζ0 = qn(x0,u(0)), then the trajectory
ζ(t; ζ0,u(t)) of (18) corresponds to y(t) with

y =
[
y, ẏ, . . . ,

(n−1)
y

]T

(19)

during t ∈ [0, T ], but not afterwards. However, it is known that
the output and its derivatives are continuous functions of time,
so consider the time function

% :
�

+ → �
, % ∈ C0, %(t) = Ln

f � h(x(t),u(t)), (20)

and propose the system

ż(t) = Anz(t) + Bn%(t),

z(0) = qn(x0,u(0)),

y(t) = Cnz(t).

(21)

Viewing %(t) as an external signal, generated using sys-
tem (1) and equation (20), it is clear that the solutions
z(t;qn(x0,u(0)), %(t)) of (21) are equal to the trajectories
qn(x(t; x0,u(t)),u(t)), which correspond to y(t). Now de-
fine the signal

δ :
�

+ → �
, δ(t) = %(t) − ϕ̄(z(t),u(t)). (22)

It is quite easy to verify that δ :
�

+ → �
is (absolutely) con-

tinuous everywhere and that δ(t) = 0 when (x(t),u(t)) ∈ K.

Using (22), another way of writing (21) is

ż(t) = Anz(t) + Bn [ϕ̄(z(t),u(t)) + δ(t)]

z(0) = qn(x0,u(0)),

y(t) = Cnz(t).

(23)

This form is called the pseudo-observability form of system (1).
Its trajectories reproduce exactly those of y(t). Notice that (23)
is similar to the usual n-observability form (8)–(11), but the
“defects” in the nonlinearity ϕ̄ are corrected by an external sig-
nal δ(t) with special properties.

A trajectory that remains near the bad input points XB
U or out-

side the set K generates a nonzero signal δ(t) in the pseudo-
observability form (23). It is then desirable to restrict trajec-
tories of the system (1), such that they generate a signal δ(t)
which is at least bounded. The motivation for this restriction
follows the persistence of excitation condition found in adap-
tive control and observation theory [2, 9], or the condition of a
regularly persistent input needed in observer design for bilinear
and state-affine systems [4, 6, 7]. Trajectories (x(t),u(t)) are
not allowed to remain at bad input points for prolonged periods
of time.

Definition 3 For a given compact set K and a nonlinearity ϕ̄, a
trajectory x(t; x0,u(t)) of system (1) is called δM -admissible
with a finite δM > 0 if δ(t) in the pseudo-observability form is
bounded by δM , i.e.

|δ(t)| ≤ δM for all t ≥ 0. (24)

The bound δM on the signal δ(t) somehow implies that trajec-
tories must not remain outside K (even outside XC

U ) for pro-
longed periods of time, for then δ(t) may become too large.
The periods outside K are called events. The i-th event ∆∗

i =
(tini , t

out
i ) is the time interval such that

(x(t),u(t)) ∈ Kcomp = XU \ K for all t ∈ ∆∗
i . (25)



Remark 3 If only trajectories for which events are finite are
considered, i.e. tout

i −tini is finite, and the event interval contains
no finite escape time, then these trajectories are δM -admissible
for some δM > 0. To see this, recall the continuity property of
δ(t) and the fact that δ(tini ) = δ(tout

i ) = 0. It implies that |δ(t)|
has a maximum δM

i during ∆∗
i ; then δM = maxi δ

M
i .

4 Continuous high gain event-based observer

As in the continuous observer approach [15], a dynamic part in
observability coordinates is considered, while an algebraic part
is used to obtain the estimate x̂(t) in original coordinates. The
continuous high gain event-based observer uses an approxi-
mate n-observability form using ϕ̄ given by (17). It leads to an
approximate high gain observer that estimates y(t) (see (19)).
The algebraic part may be implemented using a generalized in-
verse of the suspension map QI

n.

Consider the system

˙̂z = Anẑ + Bnϕ̄(ẑ,u) + 1
2S

−1
θ CT

n · [y −Cnẑ] ,

ẑ(0) = ẑ0

(26)

with the matrices An, Bn, and Cn as in (11), Sθ the matrix
solving the Lyapunov equation [5]

θSθ + AT
nSθ + SθAn = CT

nCn, (27)

and ϕ̄ ∈ C0 :
�

n × U → �
constructed as explained in Sec-

tion 3 (see (17)).

Theorem 2 Consider an n-observable system (1) and some
δM > 0. For any open neighborhood Nε of the set of bad
input points, some compact K from (13), and a correspond-
ing approximation ϕ̄ from (17), there exists θ > 1 sufficiently
large for system (26), such that the error e(t) = ẑ(t) − y(t)
converges to a ball of arbitrary radius ε > 0 in finite time for
every δM -admissible trajectory, i.e. the error trajectories are
uniformly ultimately bounded.

Proof: The proof follows closely that of the conventional high
gain observer [5]. Assume the state z(t) of the pseudo-observ-
ability form (23) resembles y(t). Define the error e = ẑ − z,
whose dynamics are

ė =
(
An − 1

2S
−1
θ CT

nCn

)
e + Bnϕ̃(z, ẑ,u) + Bnδ (28)

with ϕ̃(z, ẑ,u) = ϕ̄(ẑ,u) − ϕ̄(z,u) and consider the Lya-
punov function V (e) = eT Sθe. Use equation (28) and the
Lyapunov equation (27) to obtain

V̇ (e) = −θeT Sθe + 2eT SθBnϕ̃(z, ẑ,u) + 2eT SθBnδ.
(29)

Express it in terms of the norm ‖e‖2
Sθ

= eT Sθe and use the
Schwartz inequality,

d

dt
‖e‖Sθ

≤ − 1
2θ‖e‖Sθ

+ ‖Bnϕ̃(z, ẑ,u)‖Sθ
+ ‖Bnδ‖Sθ

,

(30)

such that using properties of the norm ‖ · ‖Sθ
(see [5]) and the

Lipschitz property, it becomes

d

dt
‖e(t)‖Sθ

≤ −γ‖e(t)‖Sθ
+

√
S1n,n

θn−
1
2

|δ(t)| (31)

where γ = 1
2θ − κ with κ =

k
√

S1n,n

c1

(k is the Lipschitz
constant of ϕ̄, S1 is the solution of (27) for θ = 1, and
c21 = λmin[S1]). An explicit expression for an upper bound
on ‖e(t)‖Sθ

can be obtained

‖e(t)‖Sθ
≤ exp [−γt] ‖e(0)‖Sθ

+

+

√
S1n,n

θn−
1
2

∫ t

0

exp [−γ(t− τ)] |δ(τ)|dτ
︸ ︷︷ ︸

s(t)

. (32)

From properties of the norm ‖ · ‖Sθ
, it can also be expressed

using the Euclidean norm (additionally with c22 = λmax[S1])

‖e(t)‖ ≤
(
c2
c1

)
θn−1 exp [−γt] ‖e(0)‖ +

√
S1n,n

c1
s(t).

(33)

The first term of (33) decays exponentially to zero, although
some initial overshoot may occur. The second term is a
bounded continuous time function because |δ(t)| is bounded.
Furthermore, it is the first order linear response to the forcing
function |δ(t)|. So therefore s(t) ≤ δM/γ for all t ≥ 0 and
finally

‖e(t)‖ ≤
(
c2
c1

)
θn−1 exp [−γt] ‖e(0)‖ +

√
S1n,n

c1
· δM
γ

.

(34)

For every ‖e(0)‖, there thus exists Tε ≥ 0 such that

‖e(t)‖ < ε for all t ≥ Tε. (35)

The value of ε can be made arbitrarily small by increasing the
value of γ. To finish the observer design, make θ = 2(γ + κ).

�

Remark 4 For a bigger compact K and a smaller ε in the
open neighborhood Nε, the set of δM -admissible trajectories
becomes bigger, which seems beneficial. However, usually the
Lipschitz constant k of the approximation ϕ̄ also grows, and
consequently the gain θ needs to be larger.

Remark 5 The calculations of ϕ and Q−1
n,K, together with the

constructions of ϕ̄ and QI
n may become increasingly complex

for high order systems, so this approach should be taken with
care.

Theorem 2 allows building the dynamic part of an observer for
system (1), but an algebraic part is still needed to obtain the



estimate x̂(t) of x(t). Since the inverse Q−1
n is uniformly con-

tinuous in Qn(K) (because K is compact), if used as algebraic
part then also x̂(t) − x(t) → 0, at least in K. But during the
events, nothing can be guaranteed.

An algebraic part could be constructed using QI
n defined

in (16)5, but this could be problematic. A more practical ap-
proach could be to use Q−1

n,K until an event occurs, then main-
tain a constant value of x̂(t) during the event, and afterwards
return to using Q−1

n,K as follows:

x̂(t) =

{
Q−1

n,K(ẑ(t),u(t)) when t /∈ ∆∗
i

x̂(tini ) when t ∈ ∆∗
i .

(36)

5 An example

Consider the forced nonlinear system of second order

ẋ1 = (x1 − u)x2, ẋ2 = −x1, y = x1 (37)

with X =
� 2 and U =

� 2 . The system is r-observable with
r = n = 2 and the suspension map is

Q2(x,u) =
[
x1, x2(x1 − u), u, u̇

]T
. (38)

Bad input points are given by XB
U = {(x,u) ∈ � 4 : x1 = u}

with x = [x1, x2]
T and u = [u, u̇]T . An ε-neighborhood is

given by Nε = {(x,u) ∈ � 4 : |x1 − u| < ε}. Since L2
f � h =

[(x1 − u)x2 − u̇]x2 − x2
1 + ux1, then

Q−1
2,K =

[
y, ẏ

y−u
, u, u̇

]T

(39)

implies that

ϕK(y,u) = L2
f � h ◦Q−1

2,K =
ẏ(ẏ − u̇)

y − u
− y2 + uy. (40)

To construct ϕ̄, propose a continuous approximation ψε(y, u)
to 1/(y − u), e.g.

ψε(y, u) =

{
1/(y − u) if |y − u| ≥ ε

(y − u)/ε2 if |y − u| < ε .
(41)

Then ϕ̄ can be constructed as

ϕ̄(z,u) = (z2
2 − u̇z2) · ψε(z1, u) − z2

1 + uz1. (42)

The dynamic part of a continuous high gain event-based ob-
server is implemented as

˙̂z =

[
ẑ2

ϕ̄(ẑ,u)

]
+

[
θ

θ2/2

]
· [y − ẑ1] , (43)

ẑ(0) =
[
x̂1,0, (x̂1,0 − u(0)) x̂2,0

]T
.

Evidently, as the ε-neighborhood is made smaller and the con-
tinuous approximation ψε(y, u) to 1/(y− u) is made more ex-
act, the Lipschitz constant of ϕ̄ grows, thereby needing a higher

5Some abuse of notation is being used here, since QI
n also includes the

identity map of � .

value of θ. On the other hand, a smaller ε makes more trajec-
tories be considered δM -admissible for a given δM . A clear
compromise takes place.

The algebraic part could be implemented calculating x̂1 = ẑ1,
x̂2 = ẑ2 · ψε(ẑ1 − u). However, every time ẑ1 = u, then
ψε = 0 (see (41)) and thus x̂2 is forced to zero. The other
approach is to proceed as in (36); consider ε̂ > 0 and the set
N̂ε = {(ẑ,u) : |ẑ1 − u| < ε̂}. Use x̂2 = ẑ2/(ẑ1 − u) until
the trajectory enters the set N̂ε. This value is then retained
until the trajectory leaves N̂ε (notice N̂ε 6= Nε). The result is
a discontinuous estimate x̂(t), with small “jumps” every time
the trajectory leaves the set N̂ε.

Simulation results are shown in Figure 2 with initial condition
x0 = [1, 1]T and input u(t) = − cos t. The gain is θ = 20 and
the nonlinearity ϕ̄ is built as in (42) using (41) with ε = 0.02.
The error e2(t) = ẑ2(t) − ẏ(t) in observability coordinates
is shown on the top figure, while the bottom one shows the
estimation x̂2(t) of x2(t) using ε̂ = 0.14. Notice ε̂ > ε, such
that some time is allowed for ẑ2/(ẑ1 − u) to begin converging
to x2 after an event.

0 5 10 15
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2
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Figure 2: Error e2(t) and state estimation x̂(t) (- -) of original
coordinates x(t) (—) for a continuous high gain event-based
observer (41)–(43) for system (37).

6 Conclusions

Continuous high gain event-based observers have been pro-
posed for nonlinear systems with bad input points. If trajecto-
ries are restricted not to remain in a neighborhood of the subset
of bad input points for long periods of time, the dynamic part
gives an approximate estimate of the output and a certain num-
ber of its time derivatives, with a uniform ultimate bound on
error trajectories. The algebraic part is implemented with the
inverse of the transformation to observability coordinates when
it exists, and with other (heuristic) approaches when not.
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