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Abstract :

Induction motors, thanks to their numerous advantages, are
widely used in the industry. In this study a sliding mode
controller is designed to control the position of the actuator.
This controller uses diding sectors, inside which a norm of
the state decreases .The control is designed to transfer the
state from the outside to the inside of this sector, and when
inside it, the control action becomes zero.

1 Introduction

Induction motors are relatively cheap, reliable and do not
need maintenance, but were not used in robotics and
manipulators drives due to the complexity of their model
which is non linear, coupled and of high order.

Therefore these difficulties do not simplify the motor control
and positioning, but the introduction of the field-oriented
control technique allows the induction motor to obtain static
and dynamic performances as those of the direct current
motor [6]. This technique which is caracterised by the
decoupling between the flux and the torque, simplifies greatly
the control of the system.

As some parameters change with the heating of the motor,
and as the load is usually unknown, the classical techniques
of control such as PID is revealed insufficient and the use of
robust control is necessary..

Variable structure control is known to be robust to parameter
uncertainty and externa disturbances because of the diding
motion on a predefined hyperplane. The sliding mode control
isthen used for the position control of the motor

Various approaches of dliding mode controllers have been
proposed for continuous and discrete systems[1,4, 9].

Furuta [1] proposed the use of the non linear control law
depending on subsets of the state space which are obtained
by partitioning the space into sectors.

Furuta and Pan in [7] proposed the use of diding sectors with
avariable structure controller which drives the system state to
an appropriately determined sector in the space inside which a
norm of the system state decreases without any control action.
Variable structure control based on PR diding sector is active
only when the system state is outside of the PR-diding
sector. Such control is said “lazy” because the control input is
zero as long as the state remains in the sector [2, 3,5,8].

In this paper we design a sliding sector which is a subset of
the state space and inside which the norm of the system state

is decreasing while the control input is zero. Such dliding
sector exists for any given system including continuous or
discrete time systems.

The resolution of the Riccati equation is used for the synthesis
of both the continuous and the discrete time PR-diding
sectors.

The organization of the paper is as follows: In section 2, the
modelisation of the motor is described. Section 3 defines the
vectorial control of induction motors.

Section 4, defines the diding sector and designs VSS
controllers corresponding to these dliding sectors for
continuous time systems, while section 5 presents the design
of the discrete time controller based on PR-dliding sectors.

2 Modelisation of an asynchronous motor

After the application of the Park transformation, the
mechanical and electrical equations expressed in a d-q
synchronously rotating reference frame are written as
follows [6]:
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The stator voltages are considered as control variables, the
load torque as a disturbance and the states variables can be



chosen in different ways. The state vector can be defined as
X :[ lI—'dr lIqu '
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3 Vectorial control by rotor flux orientation

The field oriented control [6] is a technique introduced by
Blashke. The motor’s dynamical equations can be written in a
frame fixed to the rotor flux. In this new frame , by
maintaining the rotor flux constant , we have a linear relation
between the speed and the control variable.

Let consider the rotor flux, ), and the torque T . as control
references and let inverse the model by rotor flux orientation ,
we obtain the following equations :

1
lgs = L_lr//r (2)
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where ¢y =, and ¢, =0

The application of the field oriented control simplifies
considerably the control structure represented on figure 1, and
reduces the problem to that of alinear system of second order
given by equations (5) .The field-weakening is used for the
rotor flux control. This last is held constant and equal to its
nominal value for speeds slower than the nominal value of the
speed, and it decreases for speeds higher.

The mechanical equation of the systemis given by:

f T
@, (t) = {—jwm (t) - TL(t)}

The state representation is given by :
X = AX +BU + DT,
The state variables are given by:
X =0, -6, x, =8, = w,and the control is U=ig
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4 Sliding mode controller with PR-dliding sector

In this paper sliding mode control with PR-sliding sector is
proposed.

This controller is designed such that a lyapunov function
which represents a P-norm decreases with a derivative less
than a specified negative value. Inside the PR-dliding sector,
this norm decreases for zero input and specified velocity, and
outside it the variable structure control law is used.

Let consider alinear time invariant continuous-time system:

x(t) = AX(t) + Bu(t)

wherexJ[0"and u(t) (0 0 are state and input vectors.
The pair (A,B) is controllable.

v

4.1 PR-dliding sector [2]
A normisdefined on 0" and is used in the following.
The P-Norm| ||p of the system state is defined as :

I, =[P, xo0" ®

where P 0 0™ isa positive definite symmetric matrix.
The square of the P-norm is denoted as.

L=|x =x"Px>0, OxOO"x#0

If the autonomous system (7) is stable then :
L=x(A"P+PAT k<0, OxOO" (10
If the system (7) isinstable, the inequality (10) does not hold.
And we can have L>0 for xono"
L <0, forsomeother xI".

The sector where L < 0, isasubset in which the P-norm
decreases.

The PR-dliding sector is asubset of (1" defined by:

s={x| xT(ATP+PAT k< —x"Rx, x00O"} (11)
where P 0O™" is a positive definite symmetric matrix, and
R DOO™ is a podtive semi-definite symmetric
matrix R=CTC.ROO™ | >1and (C,A) is an observable

pair. Such PR- sliding sector exists because at least the zero
state satisfies this condition. Inside the PR-sliding sector, the

P-Norm ||x||pof the plant (7) without any control action

decreases because: L < -X'Rx< 0, OxOS (12)
Furuta shows that for any plant (7) ,the PR-sliding sector
defined by (11) can be rewritten as:

©)

some and

S= {x| s(x) < 62(x)} (13)
wheres?(x) = (X'Px) =0 (14)
and &(x) = (xT |32x) >0 (15)

P and p, are nxn a positive semi-definite symmetric matrices.

Denote A = (AP + PA" + R) (16)
Then the PR-dliding defined by (11) is determined by :

X'AXx<0 (17)

UTQU =diag(r, ..., 1oy (18)

where :r; (i=1,2,....,n) are the characteristics roots of A which
are all real because/ issymmetric.

Assume:

=_ .1 |I’1|+r1 |r2|+r2 |rn|+rn1

P= dlag[ B I (19
= . |r1|_r1 |r2|_r2 |rn|_rn1

P, —dlag( SRR (20)



51 52 are composed of the positive eigenvalues and the
negatives eigenvalues of A , respectively.

uTQu =R, -R, (21)
P20 (=12 (22)
P =UTPU (23)
Q=P -P, P >0 (i=1,2) (24)

A simplified PR-sliding sector isasubset of 0" defined as
(2 s={s |s<ae, xoo, (26)
where the linear functional s(x) ,and the square root o (x) of
the quadratic function d2 (x) are respectively determined by:
s(x) =, sooM (27)
5(x) =Vx"dx ,A00™ andA >0 (A £ 0) (28)
Inside the simplified PR-dliding sector S (26), the P-norm

decreases with zero input and the derivative of the candidate
Lyapunov function L(t) satisfies the condition

L=%XTPX=SZ(X)—52(X)—XTRX

L<-x"Rx, O x(t)OS (29)
A smplified PR-dliding sector can be designed by using the
following RICCATI equation:

ATP+PA"T -PBB'P=-Q
where Q0 0 ™" is a positive definite-symmetric matrix.
As the pair (A,B) in (7) is assumed to be controllable, the
positive definite-symmetric solution P OO0 ™"
of the Riccati equation (30) exists.

If we take the solution P to design the PR-sliding sector, then
for zero input

L(t) =x™ (0)(ATP+PAT x(t) (31)
L(t) = x™ (t)(PBBT PJx(t) - x" Qx (32)
For any controllable plant , if the positive definite symmetric

solution P of the Riccati equation is used to define the P-norm
and the positive semi-definite symmetric matrix R is chosen

0 thatA=Q-R=0 and A#Owhere QO™ in the
Riccati equation (30) is a positive definite-symmetric matrix,
then the PR-sliding sector defined in (13) can be rewritten as
the following simplified PR- sliding sector.

(30)

s={xI[sx}<a0, xO0"} (33)
where  s(x) = X(t) S=B'P (34)
3(x) =4/x" (D)AX(Y) (35)
A=Q-R (36)

4.2 Variable structure controller design

The controller is designed using the following steps:
a-The parameter matrices Q, P,R, and A may be chosen as:
* Choose an nxn positive-definite symmetric matrix Q.
» Choose a positive constant r (0<r<1) and let A =rQ and

R=(1-r)Q

b- Solve the Riccati equation for the positive definite
symmetric matrix P

¢- To avoid the chattering occurring on the boundary of the
PR-dliding sector an inner sector S, and an outer sector

S, are subsets of the PR-diding sector and defined as:
S :{x| (x| <as(x, x0O ”}
So={xI @ e < [sx) < a(),

where O<a <1

S=S 0S,and S n'S, =0 with O thenull setin O".

d- The variable structure control law will be active to move

the state from the outside of the diding sector into the inside

of the inner sector, then the input will become zero until the

state move to the outside of the PR-dliding sector.

Furutain [2] showsthat :

Corresponding to the inner and outer sectors of the PR-dliding

sector S, withA=rQand R= (1— r)Q for some positive

constantsO<a <land O<r <1, the variable structure

control law: u(t) = —a(s(x), é'(x))(SB)_1 (SAx+ Ks(x)) (39

Ensures the movement of the state from the outside of the

diding sector into the inside of the inner sector and the

decreasing of the P-norm, and results in a quadratically stable
variable structure control system if the positive coefficient K

(37)

x00"} (38)

is large enough so that K >max{%,K0}, where the

positive constant Ko,
inequality:

2K,a’rQ+STSA+ATSTS>0 (40)
o(s(x), (X)) is a hysterisis dead zone function on s(x) and
o(X) and is defined as:

satisfies the following quadratic

0 xS
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4.3 Simulation results:

Simulation results shown on figure 2 were carried out for a o
step position of 3.14 rad and a sampling time of Ts=.01s, the .
coefficient of the control law is K=45 and the coefficient
defining inner and outer sectors is a=0.28 . We see that the
position converges towards its reference value rapidly and the 20
control input is sometimes inactive.
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v This is due to the fact that when the state is inside the PR-
dliding control, there is no control action until it moves
(d) outside of it.The system state P- norm decreases in the state

space.
Furthermore the rotor fluxes are maintained to their reference

values Pg=1Wb andy,= OWb



5 Discrete-time sliding mode controller The discrete-time PyRy-sliding sector can be defined as a
subset of the continuous PR-diding sector.The PR-Sliding

The discretization of the system: X(t) = Ax(t) + Bu(t) septpr becomes smaller after mpling.The discr.ete PR-
Sliding sector becomes closer to the continuous-time one
yieldsto: X = @ +TU, (41)  when the sampling frequency increases.

The control is given at every sampling instant kT, where Tsis 5.2 variable structure controller design
the sampling period” The control, input is held constant

between sampling:  U()=UKA< t < (k + 1)A (42) ;I;)r;leosve?gn of the discrete sliding mode controller is done as
3 o e & . » Choose the nxn positive definite symmetric matrix Qg.
where X, = X(KA); = €T = Ie dr « Solve the discrete time Riccati equation (47) with Py its
0

solution to design the discrete time PyRy-sliding sector.

* Choose the positive constant r (0<r<1) and let Ay =rQyq
and Ry = (1-r)Qq

» The discrete time control law to move the system state

1 from the outside to the inside of the PyRy-dliding sector is
x| os (XI Py Xy )2 , X, 00" where Py OO™" isapositive  given by:

5.1 Discrete PR-dliding sector [3]

Asfor the continuous case anorm s defined on ("

The P, -Norm|| o, Of the system state is defined as:
d

definite symmetric matrix. U = 0 Xy U8y
The sguare of the P, -normis denoted as: k7= (Sd I')_l(Sd &Ky + Kq (sign(Syl sy )Jk) X 0S4
= "Xk "2 — XI P, >0, Ox, 00", x#0 (43) where the coefficient K4 satisfies the condition O<K <1.

pd 1 1

The discrete PR-gliding sector is asubset of (" defined by: 5-3 Simulation results

Simulation results shown on figure 3 were carried out for a
s, :{x| XkT((/’TPd(/"Pd)Xk <Ry, X DD“}(44) step position of 3.14rgwd.
where Pyisanxn positive definite symmetric matrix. Q=100* ; r=0.91; alpha=.28; Kd=0.012
: . o . : 01
and Rd isanxn positive semi-definite symmetric matrix.

Inside the PyR-sliding sector, the P-Norm ||X||p of the plant We see a fast convergence of the position to its reference
d

value.We notice that in some time intervals, the control is
(41) without any control action decreases because zero: this is due to the fact that the state moves into the PR-
AL, =Ly -L =X (¢T P,p- P, )Xk sliding sector.
< —xp RyX, <0, Ox, 0S,(45)

A simplified PR-sliding sector is defined as
Sa =1 | s <% 0O} (46) y

w
2]

TE

where s, = Syxcand 3, =Xk Ay X, N
To design the discrete-time simplified PyqRd-dliding sector the 8 1o /
following discrete time Riccati equation is solved: 05 3
Pd =Qd +¢TPd¢_¢TPdr(1+rPdr)_erPd¢ (47) ° 0-0 0.2 0.4 0.6 o8 10
where Q4 U0 ™" is a positive definite symmetric matrix. time [s]
If the positive definite symmetric solution Py of the Riccati (a)
equation is used to define the P4 norm and the positive semi- -
definite  symmetric  matrix Ry is chosen so that s0 3
Ay =Qq—Ryand Ay 20 then the PyRg-diding sector 25 \
defined in (44) can be rewritten as: T 20 I

So =Pl Ise) <3 ) % 00"} (48) g3t
where s, =Syx Sy =T Py@ /14T TP,T, . jﬁj

3 I

Ad:Qd_Rd 0OOOIIIIOZIIII04IIII06IIIIO.‘illlllﬂ

time [s]

O =+ XhDgx, Ag 20 and Qu 00 ™ isa positive definite
symmetric matrix. (b)
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(@) position, (b) speed (c) control, (d) phase plane,
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6- Conclusion

In this paper Sliding mode controllers based on diding sectors
have been proposed for both continuous and discrete time
systems.The PR-Sliding sectors, which are subsets of the state
space, have been defined such that the P-norm of the system
state decreases inside them.The control law is designed such

that to move the state from the outside to the inside of the PR-
sector and when in it, the control becomes inactive.To avoid
chattering in the continuous time case, inner and outer sectors
are used. In this case the control moves the state from the
outside of the PR-diding sector to the inner sector and
remains inactive until the system state leaves the PR-dliding
sector.Simulation results show the effectiveness of the
method and good results.
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Notations

d,q : indexes corresponding to the reference frame
RsR, :stator and rotor resistances
L L, Ly stator, rotor and mutual inductances

T T, :stator and rotor time

o : total leakage coefficient 1-L 2 /LgL,

Ny : number of poles pairs

J, f : inertia, viscous coefficient

W, W : stator and rotor electrical angular velocity
WUy, electrical mechanical speed

1] : flux

Vs, Vgs - Stator voltages

igsr Igs - Stator currents

T.T, :€electromagnetic torque load torque

Machine parameters:Py: 1.5KW Rs= 4.85Q R,=3.805Q ;
fN=50Hz ny=2; f=.00114 Ny=1420 trgmn; L=0.274H
L,=.274H, L,=.258H. J=.031kg m* ; V=220V
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