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Abstract : 

Induction motors, thanks to their numerous advantages, are 
widely used in the  industry. In this study a sliding mode 
controller is designed to control the position of the actuator. 
This controller uses sliding sectors, inside which a norm of 
the state decreases .The control is designed to transfer the 
state from the outside to the inside of this sector, and when 
inside it, the control action becomes zero. 
 

1 Introduction  

Induction motors are relatively cheap, reliable and do not 
need maintenance, but were not used in robotics and  
manipulators drives due to the complexity of their model 
which is non linear, coupled and of high order.  

Therefore these difficulties do not simplify the motor control 
and positioning, but the introduction of the field-oriented  
control technique allows the induction motor to obtain static 
and dynamic performances as those of the direct current 
motor [6]. This technique which  is caracterised by the 
decoupling between the flux and the torque, simplifies greatly 
the control of the system.  
As some parameters change with the heating of the motor, 
and as the load is usually unknown, the classical techniques 
of control such as PID is revealed insufficient and the use of 
robust control is necessary..  
Variable structure control is known to be robust to parameter 
uncertainty and external disturbances because of the sliding 
motion on a predefined hyperplane. The sliding  mode control 
is then used for the position control of the motor 
Various approaches of sliding mode controllers have been 
proposed for continuous and discrete systems [1,4, 9]. 
Furuta [1] proposed the use of the non linear control law 
depending  on subsets of the state space which are obtained 
by partitioning the space into sectors. 
Furuta and Pan in [7] proposed the use of sliding sectors with 
a variable structure controller which drives the system state to 
an appropriately determined sector in the space inside which a 
norm of the system state decreases without any control action. 
Variable structure control based on PR sliding sector is active 
only when the system state is outside of  the PR-sliding 
sector. Such control is said “ lazy”  because the control input is 
zero as long as the state remains in the sector [2, 3,5,8].   
 

 
In this paper we design a sliding sector which is a subset of 
the state  space and inside which the norm of the system state  
is decreasing while the control input is zero. Such sliding 
sector exists for any given system including continuous or 
discrete time systems. 
The resolution of the Riccati equation is used for the synthesis 
of both the continuous and the discrete time PR-sliding 
sectors. 
The organization of the paper is as follows: In section 2, the 
modelisation of the motor is described.  Section 3 defines the 
vectorial control of induction motors. 
Section 4, defines the sliding sector and designs VSS 
controllers corresponding to these sliding sectors for 
continuous time systems, while section 5 presents the design 
of the discrete time controller based on PR-sliding sectors. 

2 Modelisation of an asynchronous  motor  

After the application of the Park transformation, the 
mechanical and electrical  equations expressed in a d-q  
synchronously rotating reference frame are written as 
follows [6]: 
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The stator voltages are considered as control variables, the 
load torque as a disturbance and the states variables can be 



chosen in different ways. The state vector can be defined as 
follows :                            [ ]Tmqsdsqrdr     i    i        X ωψψ=            

the control  vector   [ ]Tqsds   vvU =  
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3 Vectorial control by rotor flux orientation 

The field oriented control [6] is a technique introduced by 
Blashke. The motor’s dynamical equations can be written in a 
frame fixed to the rotor flux. In this new frame , by 
maintaining the rotor flux constant , we have a linear relation 
between the speed and the control variable. 
Let consider the rotor flux,  ψr

* and the torque T*
e as control 

references and let inverse the model by rotor flux orientation , 
we obtain the following equations : 
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where *
rdr ψψ =  and 0=qrψ  

The application of the field oriented control simplifies 
considerably the control structure represented on figure 1, and 
reduces the problem to that of a linear system of second order 
given by  equations (5) .The field-weakening is used for the 
rotor flux control. This last is held constant and equal to its 
nominal value for speeds slower than the nominal value of the 
speed,  and it decreases for speeds higher. 
The mechanical equation of the system is given by:  
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The state representation is given by : 

        LDTBUAXX ++=�  

The state variables are given by:    
*
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4 Sliding mode controller with PR-sliding sector  

In this paper sliding mode control with PR-sliding sector is 
proposed. 

This controller is designed such that a lyapunov function 
which represents a P-norm decreases with a derivative less 
than a specified negative value. Inside the PR-sliding sector, 
this norm decreases for zero input and specified velocity, and 
outside it the variable structure control law is used. 
Let consider a linear time invariant continuous-time system: 

)t(Bu)t(Ax)t(x +=�                           (7)      

where x nℜ∈ and u(t) ℜ∈ are state and input vectors. 
The pair (A,B) is controllable. 
 
4.1 PR-sliding sector [2] 
A norm is defined on nℜ and is used in the following. 

The P-Norm
p

.  of the system state is defined as : 

( ) n2

1

  x, ℜ∈= Pxxx T
p

                          (8) 

where P nxnℜ∈  is a positive definite symmetric matrix. 
The square of the P-norm is denoted as:  

00
2 ≠ℜ∈∀>== x,x    ,PxxxL nT

p
                         (9)      

If the autonomous system (7) is stable then : 

( ) nTTT x    ,xPAPAxL ℜ∈∀≤+= 0�            (10) 

If the system (7) is instable, the inequality (10) does not hold. 

And we can have    0>L� for some n x ℜ∈  and  

   ,0≤L�   for some other n x ℜ∈ .  

The sector where    ,0≤L� is a subset in which the P-norm 

decreases. 

The PR-sliding sector is a subset of nℜ defined by: 

( ){ }nT      x,  x| ℜ∈−≤+= RxxxPAPAxS TTT              (11) 

where P nxnℜ∈  is a positive definite symmetric matrix,  and 

R nxnℜ∈  is a positive semi-definite symmetric 

matrix CCR T= . lxnR ℜ∈ 1≥l and (C,A) is an observable 
pair. Such PR- sliding sector exists because at least the zero 
state satisfies this condition. Inside the PR-sliding sector, the 

P-Norm 
p

x of the plant (7) without any control action 

decreases because: Sx    ,RxxL T ∈∀≤−≤ 0�          (12) 

Furuta shows that  for any plant (7) ,the PR-sliding sector 
defined by (11) can be rewritten as: 

( ) ( ){ }xx  s|xS 2 2δ≤=                     (13) 

where ( ) ( ) 01
2 ≥= xPxxs T                                                (14) 

and ( ) ( ) 02
2 ≥=δ xPxx T                         (15) 

1P and
2P are nxn a positive semi-definite symmetric matrices. 

Denote ( )RPAPA TT ++=∆                        (16) 

Then   the PR-sliding   defined by (11) is determined by : 

0≤∆xxT                          (17) 

( )12 ,...,, n
T rrrdiagUU =Ω                                   (18) 

where :ri (i=1,2,….,n) are the characteristics roots of ∆ which 
are all real because∆  is symmetric. 
Assume: 
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1P 2P   are composed  of the positive eigenvalues and the 

negatives eigenvalues of ∆ , respectively. 

21 PPUU T −=Ω                         (21) 

 0≥iP  (i=1,2)                          (22) 

UPUP i
T

i =                          (23) 

21 PP −=Ω  0≥iP  (i=1,2 )                        (24) 

A simplified PR-sliding sector is a subset of nℜ  defined as 

 [ 2]:    { }n   x(x),s(x)    ℜ∈≤= δsS ,                       (26) 

where the linear functional s(x) ,and the square root δ (x) of 

the quadratic function )(2 xδ are respectively determined by:  
xnSSxxs 1,)( ℜ∈=                       (27) 

xxx T ∆=)(δ , nxnℜ∈∆ and 0≥∆ ( )0≠∆                       (28) 

Inside the simplified PR-sliding sector S (26), the P-norm 
decreases with zero input and the derivative of the candidate 
Lyapunov function L(t) satisfies the condition 

RxxxxsPxx
dt

d
L TT −−== )()( 22 δ�  

S  x(t)   , ∈∀−≤ RxxL T�                         (29) 

A simplified PR-sliding sector can be designed by using the 
following RICCATI equation: 

QPPBBPAPA TTT −=−+                        (30) 

where Q nxnℜ∈ is a positive definite-symmetric matrix. 
As the pair (A,B) in (7) is assumed to be controllable, the 

positive definite-symmetric solution  P nxnℜ∈  
of the Riccati equation (30) exists. 
If we take the solution P to design the PR-sliding sector, then 
for zero input  

( ) )()()( txPAPAtxtL TTT +=�                               (31) 

( ) QxxtxPPBBtxtL TTT −= )()()(�                         (32) 

For any controllable plant , if the positive definite symmetric 
solution P of the Riccati equation is used to define the P-norm 
and the positive semi-definite symmetric matrix R is chosen 

so that 0≥−=∆ RQ  and 0≠∆ where Q nxnℜ∈  in the 

Riccati equation (30) is a positive definite-symmetric matrix, 
then the PR-sliding sector defined in (13) can be rewritten as 
the following simplified PR- sliding sector. 

( ){ }n       x),(s  | ℜ∈≤= xxxS δ                          (33) 

where  )()( tSxxs = PBS T=                                           (34) 

)()()( txtxx T ∆=δ                                              (35) 

RQ −=∆                                                              (36) 

4.2 Variable structure controller design  

The controller is designed using the following steps: 
a-The parameter matrices Q, P,R, and ∆ may be chosen as: 

• Choose an nxn positive-definite symmetric matrix Q. 
• Choose a positive constant r (0<r<1) and let rQ=∆ and 

( )QrR −= 1  

b- Solve the Riccati equation for the positive definite 
symmetric matrix P  
c- To avoid the chattering occurring on the boundary of the 
PR-sliding sector an inner sector iS  and an outer sector 

oS are subsets of the PR-sliding sector and  defined as : 

     ( ){ }n       x),(s  | ℜ∈≤= xxxS i αδ                         (37) 

    ( ){ }n       x),(s  )(        | ℜ∈≤<= xxxxSo δδα              (38) 

where 10 << α  

oi SSS ∪= and  ℵ=∩ oi SS with ℵ the null set in nℜ . 
d- The variable structure control law will be active to move 
the state from the outside of the sliding sector into the inside 
of the inner sector, then the input will become zero until the 
state  move to the outside of the PR-sliding sector. 
Furuta in [2] shows that : 
Corresponding to the inner and outer sectors of the PR-sliding 
sector S, with rQ=∆ and ( )QrR −= 1 for some positive 

constants 10 << α and 10 << r , the variable structure 

control law: ( )( ) ( ))()(),()( 1 xKsSAxSBxxstu +−= −δσ      (39) 

Ensures the movement of  the state from the outside of the 
sliding sector into the inside of the inner sector and the 
decreasing of the P-norm, and results in a quadratically stable 
variable structure control system if the positive coefficient K 

is large enough so that 
�
�
�

�
�
�> 0,

2
max K

SB
K , where the 

positive constant K0, satisfies the following quadratic 
inequality: 

02 2
0 >++ SSASASrQK TTTα                        (40) 

)))(),(( xxs δσ is a hysterisis dead zone function on s(x) and 

)(xδ and is defined as: 
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Figure 1 -Hysterisis dead zone function σ(s(x),δ(x) 
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4.3 Simulation results : 
Simulation results shown on figure 2 were carried out for a 
step position of  3.14 rad and a sampling time of Ts=.01s, the 
coefficient of the control law is K=45 and the coefficient 
defining inner and outer sectors is α=0.28 . We see that the 
position converges towards its reference value rapidly and the 
control input is sometimes inactive. 
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Figure 2  Responses of continuous time VS control 

(a) position, (b) speed (c) control, (d) phase plane, 
(e)surface, (f) P-norme, (g) direct rotor flux component, 
(h) quadrature rotor flux component 

This is due to the fact that when the state is inside the PR-
sliding control, there is  no control action until it moves 
outside of it.The system state P- norm decreases in the state 
space. 
Furthermore the rotor fluxes are maintained to their reference 
values ψdr=1Wb andψqr= 0Wb 



5  Discrete-time sliding mode controller  

The discretization of the system: )t(Bu)t(Ax)t(x +=�  

yields to:        kkk uxx Γ+φ=+1                                     (41) 

The control is given at every sampling instant kTs, where Ts is 
the sampling period”  The control, input is held constant 
between sampling :      u(t)=ukk∆ ( )∆+≤≤ 1kt              (42) 

where )k(xxk ∆= ; 
∆=φ Ae ; �

∆
τ τ=Γ

0

deA
 

5.1 Discrete PR-sliding sector [3]  
As for the continuous case  a norm is defined on nℜ  

The dP -Norm
dp

.  of the system state is defined as : 

( ) n
k

2

1

  x, ℜ∈= kd
T
kpk xPxx

d
where nxn

dP ℜ∈  is a positive 

definite symmetric matrix. 
The square of the dP -norm is denoted as:  

0,x    ,0 n
k

2 ≠ℜ∈∀>== xxPxxL kd
T
kpk

d
                  (43)      

The discrete PR-sliding sector is a subset of nℜ defined by: 
 

( ){ }n
k

T
k        x,  x| ℜ∈−≤−= kd

T
kkdd

T
d xRxxPPxS φφ (44) 

where dP is a nxn   positive definite symmetric matrix. 

 and Rd  is a nxn positive semi-definite symmetric matrix. 

Inside the PdRd-sliding sector, the P-Norm 
dp

x of the plant 

(41) without any control action decreases because 

( ) kdd
TT

kkkk xPPxLLL −=−=∆ + φφ1  

                            dk Sx    ,0 ∈∀≤−≤ kd
T
k xRx (45) 

A simplified PR-sliding sector  is defined as 

    { }n
kkkd xxS ℜ∈≤= ,s      | k δ                        (46) 

where kdk xSs = and kd
T

k xx Tk ∆=δ  

To design the discrete-time simplified PdRd-sliding sector the 
following discrete time Riccati equation is solved: 

φφφφ d
T

dd
T

d
T

dd PPPPQP ΓΓΓ+Γ−+= −1)1(                (47) 

where nxn
dQ ℜ∈ is a positive definite symmetric matrix. 

If the positive definite symmetric solution Pd  of the Riccati 
equation is used to define the Pd norm and the positive semi-
definite symmetric matrix Rd  is chosen so that 

ddd RQ −=∆ and 0≠∆ d  then the PdRd-sliding sector 

defined in (44) can be rewritten as: 

( ) ( ){ }n
kkkkd xxxxS ℜ∈≤= ,s      | δ                 (48) 

where kdk xSs = kd
T

d
T

d PPS ΓΓ+Γ= 1/   φ  

ddd RQ −=∆  

kd
T

k xx Tk ∆=δ 0≥∆ d  and nxn
dQ ℜ∈ is a positive definite 

symmetric matrix. 
 

The discrete-time PdRd-sliding sector can be defined as a 
subset of the continuous PR-sliding sector.The PR-Sliding 
sector becomes smaller after sampling.The discrete PR-
Sliding sector becomes closer to the continuous-time one 
when the sampling frequency increases. 

5.2 variable structure controller design 

The design of the discrete sliding mode controller  is done as 
follows: 

• Choose the nxn positive definite symmetric matrix Qd. 
• Solve the discrete time Riccati equation (47) with Pd its 
solution to design the discrete time PdRd-sliding sector. 
• Choose the positive constant r (0<r<1) and let dd rQ=∆  

and dd QrR )1( −=  

• The discrete time control law to move the system state 
from the outside to the inside of the PdRd-sliding sector is 
given by: 

( ) ( )�
�
�

∉Γ+Γ−
∈

= −
dkkddkdd

d
k SsSsignKxSS

S
u

k
1

k

     x)((

x                                                            0

δφ
 

where the coefficient Kd satisfies the condition 0
�
Kd<1. 

5-3 Simulation results 

Simulation results shown on figure 3 were carried out for a 
step position of  3.14 rad.  

Q=100* �
�

�
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10

01
; r=0.91; alpha =.28; Kd=0.012 

We see a fast convergence of the position to its reference 
value.We notice that in some time intervals, the control is 
zero: this is due to the fact that the state moves into the PR-
sliding sector. 
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Figure 3  Responses of discrete  time VS control τ=.01s 
(a) position, (b) speed (c) control, (d) phase plane, 
(e)surface, (f) P-norm 

 

6- Conclusion  

In this paper Sliding mode controllers based on sliding sectors 
have been proposed for both continuous and discrete time 
systems.The PR-Sliding sectors, which are subsets of the state 
space, have been defined such that the P-norm of the system 
state decreases inside them.The control law is designed such 

that to move the state from the outside to the inside of the PR-
sector and when in it, the control becomes inactive.To avoid 
chattering in the continuous time case, inner and outer sectors 
are used. In this case the control moves the state from the 
outside of the PR-sliding sector to the inner sector and 
remains inactive until the system state leaves the PR-sliding 
sector.Simulation results show the effectiveness of the 
method and good results. 
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Notations  

d,q  : indexes corresponding to the reference frame   
Rs Rr  : stator and rotor resistances 
Ls, Lr Lm: stator , rotor and mutual  inductances  
Ts, Tr : stator and rotor time  
σσσσ : total leakage coefficient 1-Lm

2 /LSLr 

np  : number of poles pairs  
J, f : inertia, viscous coefficient 
ωωωωs , ωωωωr  : stator and rotor electrical angular velocity 
ωωωωsgωm   : electrical  mechanical speed 
ψψψψ  : flux 
vds, vqs  : stator voltages 
ids, iqs : stator currents 
Te Tl  : electromagnetic torque load torque 

Machine parameters :PN : 1.5KW RS= 4.85Ω Rr=3.805Ω ; 
fN=50Hz np=2 ; f=.00114 NN=1420 trs/mn ; Ls=0.274H 
Lr=.274H, Lm=.258H. J=.031kg m2 ; VN=220V 
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