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Abstract

In recent years, Large Deviations theory has found
important applications in many areas of engineer-
ing and science including communication and con-
trol systems. The objective of this note is to in-
troduce and explore connections between certain
fundamental concepts of Large Deviations theory
and Information Theory, by introducing determin-
istic measures of information. The connections are
established through the so-called rate functional as-
sociated with the Large Deviations principle, which
lead to a natural definition of (max,plus) determin-
istic measure of information.

1 Preliminary Mathematical

Constructs

In this section we shall introduce the measures
of interest, which in the next section, are related
to Large Deviations Theory. Some of the defini-
tions can be found in [2, 6, 1, 7, 8]. Let “+”
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and “.” denote the usual addition and multipli-
cation operations, defined over the reals �. Let
�̄ �

= {−∞} ∪ � = [−∞,∞] denote the extended
real line, which has all the properties of a compact
interval, so that every subset R ⊂ �̄ has a supre-
mum and an infimum (although they can be −∞
and ∞, respectively). The algebras of interest are
the (log,plus) and the (max,plus), which are defined
over the extended real line �̄.
With respect to the (log,plus) algebra the opera-
tions of addition and multiplication are defined by

a ⊕ε b
�
= ε log

{
exp(

a

ε
) + exp(

b

ε
)
}

;

a ⊗ε b
�
= ε log

{
exp(

a

ε
). exp(

b

ε
)
}
,

a, b ∈ �̄, ε ∈ (0,∞)

With respect to the (max,plus) algebra the opera-
tions of addition and multiplication are defined by

a ⊕ b
�
= max{a, b}; a ⊗ b

�
= a + b, a, b ∈ �̄ (1)

Note that −∞ is the additive identity, and 0 is
the multiplicative identity of the (log,plus) and the
(max,plus) algebras, while there is no additive in-
verse. Moreover, for any sequence {ai}n

i=1 ⊂ �̄
which is independent of the parameter ε ∈ (0,∞)
we have

lim
ε→0

n⊕
i=1

ε
ai

�
= lim

ε→0
ε log

{ n∑
i=1

exp
(ai

ε

)}

1



=
n⊕

i=1

ai = max
i

ai, ∀{ai}n
i=1 ⊂ �̄ (2)

lim
ε→0

n⊗
i=1

ε
ai

�
= lim

ε→0
ε log

{ n∏
i=1

exp
{ai

ε

}}

=
n⊗

i=1

ai =
n∑

i=1

ai, ∀{ai}n
i=1 ⊂ �̄ (3)

Consequently, the (log,plus) algebra converges to
the (max,plus) algebra as ε → 0. This convergence
is a property of Large Deviations theoty, and it
applies to general complete separable metric spaces
on which probability measures are defined (we shall
say more about this in the next section).
Next, introduce the definitions measures with re-
spect to the (log, plus) and the (max, plus) alge-
bras. For ε ∈ [0,∞), let Ia

ε and Im
ε denote the ad-

ditive and multiplicative identities of the (log,plus)
operations ⊕ε,⊗ε, and Ia

0 and Im
0 those of the

(max,plus) operations ⊕,⊗; then Ia
ε = −∞ and

Im
ε = 0 for any ε ∈ [0,∞).

Definition 1.1 Let (Ω,F) be a measurable space.

1. For ε ∈ [0,∞), µε is a measure with respect to
the (log,plus) algebra if the following conditions
hold.

i) µε(A) ∈ [Ia
ε , Im

ε ], ∀A ∈ F ;
ii) µε(Ω) = Im

ε ;

iii) µε
( ⋃

i

Ai

)
=

⊕
i

ε
µε(Ai),

Ai

⋂
Aj = ∅, ∀i �= j, ∀{Ai} ∈ F .

2. µ is a measure with respect to the (max,plus)
algebra if the following conditions hold.

i) µ(A) ∈ [Ia
0 , Im

0 ], ∀A ∈ F ;
ii) µ(Ω) = Im

0 ;

iii) µ
( ⋃

i

Ai

)
=

⊕
i

µ(Ai),

Ai

⋂
Aj = ∅, ∀i �= j, ∀{Ai} ∈ F .

This coincides with the standard definition for
the usual algebra. Next, we illustrate how the
(log,plus) and the (max,plus) measures arize when

one considers the probability of rare events, studied
in the Theory of Large Deviations [4, 5, 3].
Let

{(
Ω,F , P ε

)}
ε>0

be a family of probability

measures indexed by ε > 0.
For any A ∈ F , define

µε(A)
�
= ε log P ε(A), A ∈ F , (4)

(with log(0)
�
= −∞). Then, for {Ai} a countable

collection of disjoint sets in F we have

µε(
∞⋃

i=1

Ai) =
∞⊕

i=1

ε
µε(Ai),

Ai

⋂
Aj = ∅, ∀i �= j, {Ai} ∈ F . (5)

Therefore, (5) implies that P ε is a (log,plus) prob-
ability measure indexed by ε.
Next, suppose the following limit exists

µ(A)
�
= lim

ε→0
µε(A) = lim

ε→0
ε log P ε(A)

= ess sup
{
I(x); x ∈ A

}
, A ∈ F (6)

where I : Ω → [−∞, 0] is an upper semicontin-
uous (u.s.c) function. In general, the above limit
will exists whenever P ε is absolutely continous with
respect to the Lebesgue measure [4, 5, 3]. Then
µ is a (max,plus) finite-additive measure which
satisfies conditions i)-iii) of Definition 1.1 with
Ia
ε = −∞, Im

ε = 0. Moreover, for all I : Ω →
[−∞, 0] which are measurable with respect to F ,
and {Ai} ∈ F countable and disjoint,

µ(
∞⋃

i=1

Ai) = ess sup

{
I(ω) : ω ∈

∞⋃
i=1

Ai

}

= sup
i

{
ess sup {I(ω) : ω ∈ Ai}

}
= sup

i
µ(Ai),

Ai ∩ Aj = ∅, ∀i �= j, {Ai}n
i=1 ∈ F ,

thus µ is also countable additive. Unfortunately,
µ does not have a density because µ({ω}) =
−∞, ∀ω ∈ Ω. However, if we replace (6) by

µ(A)
�
= sup

{
I(ω); ω ∈ A

}
, A ∈ F , then µ has I

as its density. Moreover, the measure of the even
A ∈ F can be expressed in terms of the indicator
function of A with respect to the (max,plus) alge-
bra as follows. Define the indicator function χA

of A ∈ F , by χA(ω) = 0 = Im
ε if ω ∈ A, and



χA(ω) = −∞ = Ia
ε if ω /∈ A. Then Im

ε = 0 is the
indicator of A = Ω and Ia

ε = −∞ is the indicator of
A = ∅. Therefore, µ(A) = sup

{
χA(ω) + I(ω); ω ∈

Ω
}
, A ∈ F . Let IA is the indicator function

of the event A ∈ F associated with the family
of probability spaces

{(
Ω,F , P ε

)}
ε>0

, defined by

IA(ω)
�
=

{
1 if ω ∈ A
0 if ω �∈ A

. The above construction

implies that the expectation of the indicator func-
tion χA, A ∈ F with respect to the (max,plus) mea-
sure µ is Eµ[χA] = 0⊗µ(A) = µ(A) = limε→0 µε(A)
= limε→0 εEµε [χA] = limε→0 ε log EP ε [IA]. Next,
we may considerer (max,plus) simple functions of

the form f(ω)
�
=

∑n
i=1 ai ⊗ χAi(ω), {Ai} ∈

F , Ai

⋂
Aj = ∅, ∀i �= j. Then the expectation of f

with respect to the (max,plus) measure µ is defined
by Eµ[f ] =

⊕n
i=1 αi ⊗ µ(Ai), {Ai} ∈ F , Ai

⋂
Aj =

∅, ∀i �= j. Next, we may extend the definition of
expectation to nonnegative measurable functions,
and then measurable functions.
We shall show in the next section that for a
family of probability measures which satisfies the
Large Deviations Principle, the above construction
of measures is directly obtained by invoking two
fundamental results of Large Deviations Theory,
namely, the Contraction Principle and the Laplace-
Varadhan Lemma, provided every element of F is
a continuity set of the action functional.

2 Large Deviations Theory
and Related Deterministic

Measures

Throughout we let X be a Polish space (e.g., com-
plete separable metric space), BX the Borel algebra
of X , and {P ε}ε>0 a family of probability measures
on BX . Next we introduce the precise conditions for
an underlying family of probability spaces to satisfy
the LDP (see [4, 5, 3]).

Definition 2.1 (Large Deviations Principle) [4, 5,
3]. Let

{(
X ,BX , P ε

)}
ε>0

be a family of complete

probability spaces indexed by ε and let

µε
X (A) = ε logP ε(A), µX (A)

�
= lim

ε→0
µε
X (A), A ∈ BX

provided the limit exists.
We say that this probability space satisfies the Large
Deviations Principle (LDP) with real-valued rate
function IX (·), denoted by

{(
X ,BX , P ε

)}
ε>0

∼
IX (x) if there exists a function IX : X → [−∞, 0]
called the action functional which satisfies the fol-
lowing properties.

1. −∞ ≤ IX (x) ≤ 0, ∀x ∈ X
2. IX (·) is Upper Semicontinuous (u.s.c))

3. For each m > −∞ the set {x; m ≤ IX (x)} is
a compact set in X .

4. For each C ∈ BX

lim
ε→0

sup ε logP ε(C) ≤ sup
x∈C̄

IX (x) (7)

where C̄ is the closure of the set C ∈ BX .

5. For each O ∈ BX

lim
ε→0

inf ε logP ε(O) ≥ sup
x∈O0

IX (x) (8)

where C0 is the interior of the set O ∈ BX .

6. If C ∈ BX is such that

sup
x∈C0

IX (x) = sup
x∈C

IX (x) = sup
x∈C̄

IX (x) (9)

then

µX (C) = sup
x∈X

IC(x) (10)

and C ∈ X is called a continuity set of IX (·).
If (9) holds for all elements C ∈ BX then BX
is called a continuity σ−algebra of IX (·).
In 4, 5, 6 the supremum over an empty set is
defined to be −∞.

Next, we shall introduce two fundamental Theo-
rems associated with the LDP, which will lead to
the conclusion that if BX is a family of continuity
sets of IX (·) then µX (·) define above is a determin-
istic (max,plus) measure.

Theorem 2.2 (Contraction Principle) [4, 5, 3]
Let

{(
X ,BX , P ε

)}
ε>0

∼ IX (x). Let F ε : X → Y



be a continuous map where Y is another complete
separable metric space satisfying

lim
ε→0

F ε = F uniformly on compact subsets of X (11)

Then the induced measures
{
Qε

}
ε>0

on Y, namely,

Qε = P ε ◦F ε,−1 satisfy the LDP with rate function
IY(·) given by

IY(y) = sup
{
IX (x); y = F (x), x ∈ X

}
(12)

Lemma 2.3 (Laplace-Varadhan Lemma) [4, 5, 3]
Suppose

{(
X ,BX , P ε

)}
ε>0

∼ IX (x). Then for any

bounded continuous function F (·) on X

lim
ε→0

ε log
∫
X

exp
(F (x)

ε

)
dP ε(x)

= sup
x∈X

{
F (x) + IX (x)

}
(13)

The Laplace-Varadhan Lemma gives rise to the
definition of the expectation with respect to the
(max,plus) measure, (at least when every element
of BX is a continuity element of IX , and thus sat-
isfies (9)), among many other essential properties.

Assumption 2.4 In subsequent discussions, and
unless otherwise state, we assume that all LD state-
ments are with respect to continuity sets of IX (·),
so that (9) is satisfied and (10) is well defined.

2.1 Deterministic Measures

Armed with the above statements we shall
show that if the family of probability spaces{(

X ,BX , P ε
)}

ε>0
satisfies the LDP with rate

IX (·), then the rate induces a (max,plus) measure
defined by

µX (O)
�
= lim

ε→0
ε log P ε(O), ∀O ∈ BX (14)

Indeed, the countable additivity property of the
measure for any finite collection {Ai}n

i=1 of disjoint
sets in BX , follows from the statements preceding
Lemma 3.2. Thus, each x ∈ X is associate with
IX (x), which is also called the self-rate functional.
The more likely x ∈ X is the larger the value of
IX (x) ∈ [−∞, 0].

Theorem 2.5 Let
{(

X ,BX , P ε
)}

ε>0
∼ IX (x).

Then ∀O ∈ BX

IX (O)
�
= lim

ε→0
ε logP ε(O) = sup

x∈O
IX (x)

= sup
{
χO(x) + IX (x); x ∈ X

}
, (15)

is a finite-additive probability measure.

Expectation with Respect to Deterministic Mea-
sures. Clearly, for max-plus probability measures
the rate functional IX : X → [−∞, 0] is the analog
of the density function for usual probability mea-
sures. Therefore, by Laplace-Varadhan lemma we
have the following definition of expectation with
respect to the max-plus measure.

Definition 2.6 Suppose
{(

X ,BX , P ε
)}

ε>0
∼

IX (x) and F : X → � is any bounded measurable
function.
The expectation of F (·) with respect to the deter-
ministic measure of IX (·) is defined by

EIX (F )
�
= lim

ε→0
ε log

∫
X

exp
(F (x)

ε

)
dP ε(x)

= sup
x∈X

{
F (x) + IX (x)

}
. (16)

The definition of the expectation given by (16) can
be extended to measurable functions F which are
u.s.c..

Induced Rate Functionals. Induced (max,plus)
measures are obtained by the contraction principle.

Joint and Marginal Rate Functionals. The next
theorem extends these results to a pair of R.V.’s.,
and therefore to an arbitrary number of R.V.’s.

Lemma 2.7 Let
{(

X × Y,BX×Y , P ε
X,Y

)}
ε>0

∼
IX ,Y : X × Y → [−∞, 0]. Then

IX (Ox)
�
= lim

ε→0
ε log

∫
Ox

∫
Y

dP ε
X,Y (x, y)

= sup
x∈Ox

sup
y∈Y

IX ,Y(x, y), ∀Ox ∈ BX

= sup
{
χOx(x) + χY(y) + IX ,Y(x, y);

(x, y) ∈ Ox × Y
}
, ∀Ox ∈ BX (17)

in the marginal measure on (X ,BX ) and IX ,Y(x, y)
is the joint-rate functional.



Letting Ox = {x} and Oy = {y} in (17), (??), re-
spectively, we obtain the marginal rate functionals
from the joint-rate functions as follows.

IX (x) = sup
y∈Y

IX ,Y(x, y); IY(y) = sup
x∈X

IX ,Y(x, y) (18)

Conditional Rate Functionals. We can also define
the conditional rate functional that emerges from
the definition of the conditional expectation of two
R.V.’s (X, Y ) : Ω → X ×Y.

Lemma 2.8 Let
{(

X × Y,BX×Y , P ε
X,Y

)}
ε>0

∼
IX ,Y : X × Y → [−∞, 0].
Then for all Ox ∈ BX , y ∈ Y

IX|Y(Ox|y)
�
= lim

ε→0
ε logP ε

X|Y
(
X ∈ Ox|Y = y

)
= sup

{
IX ,Y(x, y) + χOX (x); x ∈ X

}
− IY(y)

= sup
{
IX|Y(x|y) + χOX (x); x ∈ X

}
. (19)

The next statement relates the joint-rate functional
and the conditional rate functional. It is equivalent
to the Bayes rule with respect to the usual proba-
bility measure.

Corollary 2.9 Let
{(

X ×Y,BX×Y , P ε
X,Y

)}
ε>0

∼
IX ,Y : X ×Y → [−∞, 0]. Then the joint-rate func-
tional of x and y is the sum of the conditional rate-
functional of x given y and the marginal rate func-
tional of y:

IX ,Y(x, y) = IX|Y(x|y) + IY(y) (20)

and ∀Ox ∈ BX , ∀y ∈ Y

IX|Y(Ox|y) = sup
x∈Ox

{
IX ,Y(x, y)

}
− IY(y) ≤ 0 (21)

Note that independence of the R.V.’s X and Y
implies that IX|Y(x|y) = IX (x) and IX ,Y(x, y) =
IX (x) + IY(y), suggesting that knowledge of the
values of y will result in a reduction of uncertainty
about x, that is, IX|Y(Ox|y),Ox ∈ BX denotes the
uncertainly reduction of Ox given the observed y.
Therefore we have the following definition of inde-
pendence.

Definition 2.10 We say that the variables x ∈
X and y ∈ Y are independent if and only if
IX|Y(x|y) = IX (x) ⇐⇒ IX ,Y(x, y) = IX (x)+IY (y),
∀(x, y) ∈ (X ,Y).

2.2 Information Theoretic Measures

In this section we illustrate the importance of the
rate functionals in defining entropy, conditional en-
tropy, mutual information, etc., and we investigate
some of their properties.
Entropy of Rate Functionals. Let{(

X ,BX , P ε
X

)}
ε>0

be a family of probability

spaces, and X : (Ω,F) → (X , BX ) a R.V. defined
on it. Suppose that X is the output of a discrete
information source having a finite alphabet con-
taining M symbols, X =

{
x1, x2, . . . , xM

}
, and

each xi is produced according to the probability
P ε

X({xi}), 1 ≤ i ≤ M . If xi occurs then the
amount of information associated with the known
occurrence of xi is defined by − logP ε

X({xi}). If X
is a discrete memoryless source, then the informa-
tion generated each time a symbol xi is selected
is − log P ε

X({xi}) bits. Moreover, the average
amount of information per source output symbol,
known as the average information, uncertainty or
entropy is

H(P ε
X) = −

M∑
i=1

P ε
X({x1}) log P ε

X({x1}), (22)

in bits/symbol.

Definition 2.11 Let
{(

X ×Y,BX×Y , P ε
X,Y

)}
ε>0

∼ IX ,Y : X × Y → [−∞, 0].

1. The Entropy Rate Functional of any event
Ox ∈ BX denoted by HX (Ox) is defined by

HX (Ox)
�
= lim

ε→0
ε log

1

P ε
X

(
X ∈ Ox

)
= −µX (Ox), Ox ∈ BX (23)

2. The Joint-Entropy Rate Functional of any
events Ox ∈ BX ,Oy ∈ BY is defined by

HX ,Y(Ox,Oy)
�
= −µX ,Y(Ox,Oy) (24)

3. The Conditional Entropy Rate Functional of
any events Ox ∈ BX given another event Oy ∈
BY is defined by

HX|Y(Ox|Oy) = −µX ,Y(Ox,Oy) + µY(Oy) (25)



According to the above definition the entropy rate
functional stated in (23) enjoys analogous proper-
ties as the entropy H(P ε

X), defined by (22). Sup-
pose µX (A) = sup

{
IX (x); x ∈ Ox

}
, Ox ∈ BX is a

(max,plus) measure induced by a variable X taking
values in the discrete space, X =

{
x1, x2, . . . , xM

}
,

in which X models the output of a discrete in-
formation source, producing symbols according to
the (max,plus) law

{
IX ({xi})

}
. If symbols xi oc-

curs then the amount of information associated
with the known occurrence of xi is defined by
−IX ({xi}) ≥ 0. Moreover, we have the follow-
ing properties. i) The entropy rate functional is
nonnegative, HX (Ox) ≥ 0, ∀Ox ∈ BX , and equal
to zero, HX (Ox) = 0, if and only if at least
one IX ({xi}), is equal to zero. Moreover, unlike
the entropy function H(P ε

X) which can be nega-
tive for continuous R.V., the entropy rate func-
tional is never negative, because the rate functional
IX : X → [−∞, 0]. ii) The entropy rate func-
tional HX (Ox

)
is a continuous function of the rate

functional IX . iii) The entropy rate functional,
HX (Ox), is a concave function of the rate func-
tional, IX (x). iv) The entropy rate functional of
a set of variables {Xi} is less than or equal to the
sum of the entropy rate functional of the individ-
ual variables, that is, HX1,...,Xn(Ox1 , . . . ,Oxn) ≤∑n

i=1 HXi(Oxi), and equality holds of the variable
are independent (by Corollary 2.9).
Moreover, it is easily seen that the following sym-
metry holds.

HX ,Y(Ox,Oy) = HX (Ox) + HY|X (Oy|Ox)
= HY(Oy) + HX|Y(Ox|Oy). (26)

Thus, joint-Entropy rate functional of any events
Ox ∈ BX ,Oy ∈ BY is the entropy of one event plus
the conditional entropy rate functional of the other
event.
Mutual Information Rate Functionals. Next, we
introduce the mutual information rate functional,
which is a measure of the amount of information
that one variable contains about another variable.

Lemma 2.12 Let
{(

X × Y,BX×Y , P ε
X,Y

)}
ε>0

∼
IX ,Y : X × Y → [−∞, 0].
The Mutual Information Rate Functional of two

events Ox ∈ BX ,Oy ∈ BY is defined by

IX ;Y
(
Ox;Oy

)
= sup

(x,y)∈
(
Ox,Oy

) IX ,Y(x, y)

− sup
x∈Ox

IX (x) − sup
y∈Oy

IY(y),

and, if X and Y are independent, IX ;Y(Ox;Oy) =
0.

The above lemma suggests that the self-mutual in-
formation of x with respect to y should be defined
by IX ;Y(x; y)

�
= −IX (x) − IY(y) + IX ,Y(x, y).
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