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Abstract

This note deals with the choice of measurement/actuator pairs
for decentralized control, where the controller remains unspec-
ified. The theoretical background of gramian based interac-
tion measures is clarified and a geometrical interpretation is
given. Moreover, a generalization of the Hankel interaction in-
dex array is proposed and it is shown that the introduction of
weighted gramians makes the criteria more flexible compared
to the augmenting with additional filter dynamics.

1 Introduction

Prediction of interaction present in a control system from an
open-loop perspective has been dealt with for a long time. Both
steady state and dynamic measures for interaction have been
suggested.

The first proposed interaction measures were the Rijnsdorp in-
teraction measure [15] and the relative gain array (RGA) [3]
with its extention to a dynamic measure [10]. For the steady-
state gain case, these measures are related to each other via a
non-linear map [7].

In order for the RGA to be applicable, a decentralized con-
troller has to be used and the steady state control error has to
be zero which assumptions are generally not fulfilled. This led
e.g. to the introduction of the block relative gains (BRG) [13]
and partial relative gains (PRG) [8]. Thereby, it became pos-
sible to get indications for interactions in multivariable con-
trol systems with control structures different from decentral-
ized control.

Newly developed measures are a measure based on Hankel
singular values [5] and the Hankel interaction index array
[19], which makes use of the Hankel norm of the scalar sub-
systems. Both measures are gramian based and analyze scalar
sub-systems of the multivariable system in order to get insight
into the system structure and thus draw a-priori conclusions on
interaction in the closed loop system.

Gramian based measures judge the overall dynamic behavior of
a system and therefore indications of these measures are realis-
tic even for transient behavior. Since available publications do
not clarify the geometrical aspects of the gramian based mea-
sures, the paper reviews these aspects to get a better under-
standing of the measures when no specific controller structure
is assumed.

The paper is structured as follows. Starting out from a gen-
eral description of linear multivariable systems, the notion of
gramians is introduced and utilized to derive subspaces of the

state space. It is illustrated how intersections in subspaces are
related to interaction in multivariable systems. Thereafter, the
connection between gramians and the Hankel operator is dis-
cussed and based on the results generalizations of the Hankel
interaction index array are derived. Then, weighted gramians
are introduced into the interaction measures and their relation
to filtering of process dynamics is analyzed. Finally, an indus-
trial example is given followed by conclusions and outlook.

2 Preliminaries

Interaction concerns input/output behavior of multivariable
systems, namely the relation between different channels. A
channel is defined as the path from an input to an output. The
output of a linear multivariable system is given as the convolu-
tion of an input signal with its impulse response function matrix

to
v(t) = [ gtt=ur)ar M
t1

where y(t) € L5[t1,t2] and u(t) € LP[t1,t2]. The as-
sociated function spaces are denoted ) and U, respectively.
The impulse response function has to be bounded and thus
g(t) € LY ™[t1,ts]. The restriction to the time interval [ty t2]
makes it possible to consider unstable multivariable systems as
long as ¢(t) is bounded in the interval. For stable systems the
interval can be set to [—o00, 00].

The frequency domain representation of (1) can be obtained by
applying the Laplace transform and is given by

Y(s) = G(s)U(s) @

where s denotes the differential operator and Y(s), U(s) de-
note the Laplace transform of y(¢) and u(t), respectively. G(s)
is referred to as the transfer function matrix, which is the
Laplace transform of the impulse response function g(t).

Now, the standard inner product of two vectors ¢(t) and &(t)
in the function space L3 [t;, t2] is defined as

to
o7 (t)E(t)dt 3)

t1

(6(1),&(1) =

For this inner product a Gram matrix, also referred to as
gramian, can be derived by computing the inner product of all
combinations of the vector elements ¢, (¢) and ¢, (¢). The ele-
ments in the gramian are given by

to

b ()& (t)dt

t1

[y = (0a(8),&: (1)) =

Consequently, the gramian can be written as

to
L= [ @) (t)dt )

t1



From the properties of the scalar product, it follows that the
gramian is symmetric and positive semidefinite. Thus, the
eigenvalues of the gramian are all real and non-negative.

The gramian is the matrix of the inner product relative to the
basis in which the vectors ¢ and £ are expressed, [6]. When the
basis is changed using a non-singular transformation 7,

¢'(t) =Te(t), &(t) =TEH)

the gramian for the transformed vectors is then found as

to
I'= [ ¢@We" (#)dt =TrTT

t1

)

Thence, the gramian is not invariant to basis changes. Follow-
ing [6], two vectors are linearly independent if the gramian is
positive definite or, in other words, has only strictly positive
eigenvalues. Gramians have a close relation to the associated
function spaces which is stated in the following lemma.

Lemma 1. A vector £(1) lies in the range space of the impulse
response function g(t) if and only if it lies in the range space of

r- / C 909" (1)t

ty
Proof. A proof is given in [4]. O

Thus, using the eigenvector/eigenvalue decomposition of the
gramian an orthonormal basis for the range of ¢(¢) can be de-
rived, namely the eigenvectors associated with the non-zero
eigenvalues constitute a basis. An important generalization to
the decomposition of gramians is the operator decomposition,
namely the derivation of singular values and Schmidt pairs of
a compact operator and its adjoint [20].

Often g(t) is expressed in terms of a state space realization,
z(t) = Az(t) + Bul(t) (62)
y(t) = Cx(t) + Du(t) (6b)

where A € R"*", B € R"*™, C € RP*" and D € RP*™,
All state space realizations of a system can be obtained by the
similarity transform

z2(t) = Tz(t) (7a)
3(t) = TAT '2(t) + TBu(t) (7b)
y(t) = CT 'z2(t)+ Du(t) (7¢)

The solution of (6) is given by

¢

y(t) = CeAt=g(t))+ [ CeA'"") Bu(r)dr+Du(t) (8)
t1

where z(t;) is the initial condition. Since interaction concerns

the input/output relationship, the initial condition x(¢,) = 0

can be assumed without loss of generality. Then, (8) equals (1)

for all impulse response functions with g(¢) = 0, ¢ < 0. In the

frequency domain, G(s) = C(sI — A)~'B + D.

Each of the pm scalar subsystems, which describes the behav-
ior from input j to output ¢, is then defined by either the triple
(A4, Bj,C;), Gij(s) or gi;(t). There, Bj is the jt" column vec-
tor in B and C; is the i*" row vector in C.

3 Subspaces of X

Subspaces are a geometrical construct which is used to divide
up a vector space according to properties of its elements like
controllability and observability. Subsystems of a multivari-
able system are also associated with subspaces and thus, the
same framework can be used to analyze the relationship be-
tween subsystems in terms of system properties. Thence, sub-
spaces can be used in interaction analysis of multivariable sys-
tems.

In order to characterize subspaces that are associated with sub-
systems of (6), the indices ¢ and j are used, e.g. X;5 would
denote the state space of the scalar subsystem from input 2 to
output 1.

3.1 Controllable subspace of X'

The state vector x(t) is governed by the differential equation
(6a). Thus the state impulse response matrix can be given as

X(t) = [X1(t) Xo(t) ... Xp(t)] )

where X (t) = e!B; is the response to a Dirac delta impulse
in w;(t) with 2(¢t1) = 0. Accordingly, the state impulse re-
sponse matrix in the frequency domain is obtained as

X(s)=(sI—A)™'B

According to [14], the controllable subspace A is the subspace
of X of least dimension containing the range of the state im-
pulse response function X (¢). The controllable subspace that
is associated with input j is denoted A;.

Applying the definition of the gramian (4) to X (¢) the control-
lability gramian is obtained as

to .
T, = / eAtBBTeA tdt

t1

(10)

For stable systems, the controllability gramians in time domain
and frequency domain are connected via Parseval’s equality
yielding for individual inputs

e

to T
/ e B; Bl e tdt
ty
I -1 Tz Ty-1
= o) _joo(sI—A) B;B; (s — A%)ds
where 5 denotes the complex conjugate.

From Lemma 1 it follows that a basis for X;; can be found via
the eigenvector/eigenvalue decomposition of the controllability
gramian I';;, where the eigenvectors are denoted a;. Only the
eigenvectors associated with the non-zero eigenvalues are con-
sidered and they are sorted according to the size of the eigen-
values.

Xej =span{ajr|r =1...dim(X;)}

According to (5), the controllability gramians of two state
space realization are connected via the transform matrix 7" as

I, =TC,T"



where I', ; is the controllability gramian of the transformed sys-
tem.

3.2 Observable subspace of

The characterization of the observable subspace can be done in
a similar manner as for the controllable subspace. The output
impulse response matrix to an initial condition «;(t1) = 1 with
u(t) = 0 can be found as

Y(t)=[Y1(¢) Ya(t) ... Yo(?)] 1n
where Y;(t) = C;ett. Clearly, the Laplace transform of Y (t)
is given by Y'(s) = C(sI — A)~L.

In the case of observability, the row space of Y'(¢) or Y (s)
has to be analyzed. Again according to [14], the observable
subspace X, is the subspace of least dimension containing the
row space of the output impulse response matrix Y (¢). The
observable subspace that is associated with an individual output
is denoted X,;.

Analogously, the observability gramians are given by

to -
r, = / e toTCettdt
ty
1 [
= (51 — ATY7LCTC(sI — A)~tds
271'] —joo
t2 T
Foi = / €A tCiTCieAtdt
t1
1 [

= — 51 — ATyl oy(sT — A)7!
5] _joo(s )~ C; Ci(s )" 'ds

Applying the eigenvector/eigenvalue decomposition the eigen-
vectors b; of I'; are found and a basis for X,; is constituted by
the b; associated with the r non-zero eigenvalues

Xoi = span {b;.|r = 1...dim(Xy)}

Again, after the similarity transform, I"/; of the transformed
system is
I, =T""T,T""

3.3 Controllable and observable subspace X,

The controllable and observable subspace is the intersection of
the observable subspace and the controllable subspace, namely
Xeo = XN A,

As already known from the minimal realization theory [12] the
subspace X, is associated with a realization of (6) that has
the same input-output behavior with least order. Using e.g. the
Kalman canonical decomposition [21] a realization with X, as
state space can be extracted.

The subspace X,,;; is then related to a minimal realization of
the scalar subsystem between input j and output ¢. A charac-
terization of the subspace can be obtained from the associated
controllable and observable subspaces.

The subspaces X.; and X,; are spanned by {a;1,...,a;q} and
{bi1,...,bir}, respectively. Vectors that lie in the intersection
of the two vector spaces can be parameterized in both bases
simultaneously.

q r
z(tp) = Z Gjada = Z ajphp, ti <ty <o
a=1 £A=1
The condition can be rewritten to

Ajq bil - (12)

-

T

[(1]'1

According to [16], a basis for the intersection can be found by
deriving a set of linearly independent vectors that lie in the null
space of Y. Thus, (12) needs to have non-trivial solutions.

If X.0i; # O then the output ¢ is affected by the input j. Fur-
thermore, if there is an input r with r # j for which X,y # 0,
then there are two channels that affect each other in the multi-
variable system and thus, interaction is present. Consequently,
the intersection of controllable and observable subspaces con-
tain information on interaction.

4 Gramians and the Hankel operator

Generally, the input/output behavior of a linear causal system
without direct term can be described by a Hankel operator. It is
defined by

\I/g : EQ(—O0,0] — EQ[0,00)

{ ffoo CeAt=T)Bu(r)dr t>0
0

Y.ult) =
gu(t) t<0

13)

Applying the bilateral Laplace transform to (13) a frequency
domain representation of the Hankel operator can be derived.
The Hankel operator then becomes a strictly proper transfer
function matrix.

When a general transfer function matrix G is given, the non-
causal and direct part of the transfer function matrix need
to be removed. Introducing the orthogonal projection P :
L2(—00,00] = L£5]0,00) and applying it to G the Hankel op-
erator can be stated as

Yq
voU =

Hi = Ho
P(GU), withU € Hy

There, the spaces Hi and H, are the counterparts of
L2(—00,0] and £3[0,00) in the frequency domain, respec-
tively.

Furthermore, the adjoint of the Hankel operator can be defined
as

Wi £[0,00) b La(—00,0)
* _ I BTeAT(t_T)CTy(T)dT 7<0
e = {§ <04



Singular values and Schmidt pairs of the Hankel operator can
now be derived from ¥} W¥,. The Schmidt pairs are a general-
ization of eigenvectors and W7 W, can be interpreted as a gen-
eralization of a gramian. Thus, two operators can be defined in
terms of the Hankel operator and its adjoint

Fq; EQ(_O0,0] = L:Q(_O0,0]

T'gu = \II:;\I/gu (15a)
| L]0, 00) = L2]0, 00)

ryu = \I!g\Il;u (15b)

When (15a) or (15b) are applied on a Dirac delta impulse func-
tion and the resulting functions are evaluated at 0, the following
gramians can be obtained.

Fin

o0
/ BTeA"t0TCeAtBdt = B'T,B
0

o0
Tout = / Ce'BBTeA O dt = CT.CT
0
These gramians can be used to derive bases for the range or row
space of the impulse response function g(¢). Descriptions for
the frequency domain can be obtained as well, but are omitted
here.

In contrary to the controllability and observability gramians,
I';, and ',y do not depend on the choice of the state vector
and are directly related to the #-norm via the relationship

1G(s)ll2 = /tr(BTT,B) = \/tr(CT.CT)

When scalar subsystem are analyzed, the gramians I',,,; and
I';,, reduce to scalars. Naturally, if I'pyz 5 = CtijCiT is dif-
ferent from zero, then the output ¢ is affected by the input j.
Thence, interaction can be expected if there is at least another
input r with Iy s # 0. Similar statements can be formulated
for T';,,.

5 Quantification of interaction

In decentralized controller design, the choice of the measure-
ment/actuator pair is a crucial task. The achievable perfor-
mance of the closed loop system usually depends on this
choice.

In [19] and [5] the proposed gramian based measures are ap-
plied on the scalar subsystems of a multivariable process. Each
measurement/actuator combination is tested for its viability to
control the measured output.

Two well-known system norms that can be directly derived
from the gramians are the Hankel-norm and the Hs-norm

G)la =
G(s)ll =

p(TcLy)
\/ir(BTT,B) = \/r(CT.CT)

Although the Hankel norm is derived from the gramian prod-
uct, which does depend on the state vector choice, the eigen-
values of the product do not depend on the chosen state space

realization. Moreover, it relates to the X, subspaces of the
state space, and thus is suited as a quantification.

Using the gramian product the H ,,-norm can be bounded ac-
cording to [21] in the form

IG()[r < [|G(8)]loo < 22 Voi(LeLo) = [IG(5)l]

where 0;(T.T',) denotes the eigenvalues of the product.

In [19] the normalized Hankel Interaction Index Array (HIIA)
was suggested to solve the measurement/actuator pairing prob-
lem for decentralized control

G (s)l e
Zq,r [|Gr ()|

Using the above results, the HITA can be generalized to the use
of different gramian based norms, namely

Xwi; = (16)

”Gij (3)“2
Yol,, = ———~ 1% 17
[ 2]” ZQ,T ||qu (3)”2 ( )

D g 1Gar ()l

The generalized measures have the same properties as the orig-
inal HITA. Still, the interaction measures need to be validated,
in order to see the effect of different norms on the measure-
ment/actuator pairing.

As the matrix D is not considered in the computation of grami-
ans, any gramian based measure has the drawback of ignoring
a direct term. In other words, plants with G(co) # 0 have an
HIIA which does not reflect that part of the dynamics. In cases,
where the interaction is purely caused by the direct term and
not by the causal part of the dynamics, the indications derived
from the HITA might be wrong.

The problem can be solved for the Hy-norm based HIIA by
considering the direct term in the computation of the system
norm. The needed modification is rather easy implemented in

a7
=], = Gule +[IGis ()l
3lij > g 1Grg(8)l|2 + [|Grg(00)]|2

where the norm on the direct term is simply the 2-norm for
matrices.

19)

The new measures can now be used to find appropriate mea-
surement/actuator pairs, according to the methodology de-
scribed in [19].

5.1 Weighted gramians and filtering

Not in all application it is desired to judge the overall dynam-
ics but instead focus on certain frequency regions. Especially,
if the multivariable system has largely varying dynamics for
different frequency bands.

In [18] it has also been pointed out that interaction measures
should considered frequency regions where control is active.
Hence, filtering should be applied and there are two different



kinds of approach. Firstly, the filter dynamics can be aug-
mented to the system dynamics, either at the input or the out-
put side of the multivariable system. This approach is utilized
in [19]. Secondly, a weighting function that corresponds to
the filter dynamics can be introduced in the computation of the
gramians, which is discussed here.

Assuming a scalar causal filter with the transfer function F'(s)
is used and a minimal realization of the filter is given as

F(S) = Cf(SI — Af)ile + Df

The filtered state impulse response function can then be ex-
pressed by

X7 (s) = X(s)F(s) = (sI-A)"*B (Cy(sI — A;) "' By + Dy)

and the resulting controllability gramian is obtained as
f LI H 2
= g5 ) XOXTGIFG)P

where X (s) denotes the complex conjugate transpose of
X(s). Clearly, the gramian of the filtered system can be di-
rectly obtained by introducing a weight into the controllability
gramian. Thus, the weight provides an extra degree of freedom
into the criteria.

The filtered controllability gramian can be evaluated by solving
a block matrix Lyapunov equation [17]. It can also be rewritten
as four coupled matrix equations

ATL +TIAT = —(BCsTar + T (BCp)T)(200)

ATy + T2 A} = —BCsTy (20b)
AfTo1 + T AT = Ty (BCy)” (20c)
ATy + A} = —B;B} (20d)

As Ty = I‘le, only three equations have to be solved to ob-
tain 'Y, For the equations to have a unique solution, the matrix
Ay of the chosen weighting function needs to fulfill certain re-
quirements.

First, A;(A) and p;(Ay) denote the eigenvalues of A and Ay,
respectively. Then according to [9], the Lyapunov equations
have a unique solution if and only if A;(A4) + \;(A4) # 0,Vi, j
and p;(Ay) + p;(Ay) # 0,Vi,j. A unique solution for the
Sylvester equation is obtained if and only if A\;(A) + p;(Ay) #
0,Vi, 7. This implies, that for a stable multivariable system
any stable weighting function yields a unique solution for the
equations and thus for the gramians.

The use of weighted gramians as underlying structure for
gramian based norms leads to different results than augmenting
the multivariable system with additional filter dynamics. Ad-
ditionally, through the weighting functions model uncertainties
can be considered in the interaction measures, see Example 1.
A drawback of the weighted gramians approach is the restric-
tion to scalar filter functions.

6 Example

The aim of the example is to illustrate the usage of the gramian-
based measures on a real-life process. The linearized physical
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Figure 1: Real part of the RGA for the coal injection vessel
over frequency.

model of a coal injection vessel, which is an example of a con-
tinuous time 2 x 2 servo system, is studied to find appropriate
measurement/actuator pairs for decentralized control.

First, the dynamic RGA for the process is analyzed and the
pairs whose elements have the closest value to 1 are chosen.
Then, the gramian based measures are computed with no filter-
ing according to (16), (18) and (19). Pairs that yield the largest
sum are chosen and compared with the RGA based choice. Ap-
propriate filters are chosen and the gramian based measures
are computed via weighted gramians (20). Finally, the perfor-
mance of the measures is evaluated according to the correctness
of the indications.

Example 1 (Coal injection vessel). The coal injection vessel
is a pressurized multivariable tank system which is discussed in
[11], [1] and [2]. Consult the above references for the process
model. The input signals are the openings of the pressure and
flow control valves. The output consists of the pressure in the
vessel and the net weight.

Fig. 1 shows a plot for the real parts of the RGA elements over
frequency. Clearly, the measurement/actuator pairing changes
from anti-diagonal to diagonal from low to high frequencies.
Drawing conclusions on the pairing from the static RGA, the
anti-diagonal pairing should be favored, which means the pres-
sure is stabilized with the flow control valve and the weight is
controlled with the pressure control valve. According to knowl-
edge of the process, this is an unconventional choice.

Computation of the gramian based interaction measures
Y, Yo, Yoo yields the following arrays

N, = 0.3740 0.5297 Sy = 0.4676 0.5043
7= 0.0500 0.0463 |’ =2~ | 0.0133 0.0148
5 . 0.4680 0.4676
o 0.0335 0.0309

First of all, the gramian based measures do not differ much,
although different norms were used. When a pairing decision
should be taken according to ¥z and ¥, the anti-diagonal pair-
ing is favored again, while a distinction based on ¥, cannot be



made. Thus, more knowledge of the process is needed to make
a clear decision.

Due to the character and operation of the coal injection pro-
cess and model uncertainties, the linear model is not reflecting
the plant dynamics in frequency ranges below 10~* rad/sec.
Therefore, high pass filtering should be applied.

In order to avoid non-strictly proper weighting functions, a
band pass filter with the break frequencies 0.01 rad/sec and
1 rad/sec is chosen instead. Using the filter as weight in the
gramians, the HITA are recomputed

v _ [05000 049317 . _[05002 04931
H = 100003 0.0065 |’ =2~ | 0.0002 0.0065
s _ [ 05001 04930
= 10.0004 0.0065

Obviously, the gramian based measures have changed and now
Y & Yy & Y. Inall three cases the diagonal pairing should
be chosen for decentralized control. According to knowledge
on the process the diagonal pairing should be favored and has
been successfully used for decentralized control of the process.

From the example it can be seen, that the generalized gramian
measures can be used to improve the decision process for mea-
surement/actuator pairing. Still knowledge of the process and
model uncertainties is needed to make the correct choice for
weighting functions.

7 Conclusions

The theoretical background for the gramian based interaction
measures is discussed. It is shown that the gramian based ap-
proach to interaction is closely related to intersections of sub-
spaces of function spaces. The relation between the Hankel
operator and the gramian based measures is clarified and an
extension to the use of different norms is given.

Moreover, it can be suggested that weighting functions in the
underlying scalar product should be used to emphasize impor-
tance of certain frequency regions. Thereby, the model dynam-
ics are not augmented with additional process states and model
uncertainty can be considered.
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